人教版七年级数学上册整式
- 格式:ppt
- 大小:409.50 KB
- 文档页数:16
人教版七年级数学上册2.1《整式》教案一. 教材分析人教版七年级数学上册2.1《整式》是学生在学习了有理数、四则运算、及数轴等知识的基础上,进一步学习代数知识的重要章节。
整式是代数表达式的基础,对于学生理解和掌握代数知识体系具有重要意义。
本节课的主要内容有整式的定义、分类和基本运算,通过学习,使学生能理解和运用整式进行简单的数学问题求解。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于有理数、四则运算等概念有一定的了解。
但是,对于整式这一概念,学生可能较为抽象,难以理解。
因此,在教学过程中,需要借助具体的例子,帮助学生理解和掌握整式的概念和运算规律。
三. 教学目标1.理解整式的定义,能正确识别各种整式。
2.掌握整式的基本运算规律,能进行整式的加减乘除运算。
3.培养学生的逻辑思维能力,提高学生解决实际问题的能力。
四. 教学重难点1.整式的定义和分类。
2.整式的基本运算规律。
五. 教学方法采用“问题驱动”的教学方法,通过设置一系列问题,引导学生思考和探索,从而达到理解和掌握整式的目的。
同时,结合具体例子,进行讲解和操作,使学生能直观地理解和运用整式。
六. 教学准备1.准备相关的教学PPT,包括整式的定义、分类和运算规律等内容。
2.准备一些实际的数学问题,用于巩固和拓展学生的知识。
七. 教学过程1.导入(5分钟)通过一个具体的数学问题,引入整式的概念。
例如:已知两个一次函数的图像分别为y=2x+1和y=3x-2,求这两个函数的交点坐标。
2.呈现(10分钟)介绍整式的定义、分类和基本运算规律。
通过PPT展示相关的例子,使学生能直观地理解和掌握整式。
3.操练(10分钟)让学生进行一些整式的运算练习,巩固所学知识。
可以设置一些填空题、选择题等,检验学生对整式的理解和掌握程度。
4.巩固(10分钟)通过一些具体的例子,让学生运用整式解决实际问题。
例如:计算一道购物优惠的问题,需要学生运用整式进行计算。
5.拓展(10分钟)引导学生思考和探索整式的应用领域,例如物理中的运动方程、化学中的反应方程等。
人教版七年级数学(上)第一章《整式》经典例题及练习一. 教学内容:整式1. 单项式的有关概念,如何确定单项式的系数和次数;2. 多项式的有关概念,如何确定多项式的系数和次数;3. 什么是整式;4. 分析实际问题中的数量关系,培养用字母表示数量关系以及解决实际问题的能力.二. 知识要点:1. 用字母表示数时,应注意以下几点:(1)加、减、乘、除、乘方等运算符号将数和表示数的字母连接而成的式子是代数式.(2)代数式中出现的乘号一般用“·”或省略不写,例如4乘a写作4a.(3)在代数式中出现除法运算时,一般按分数的写法来写,例如a除以t写作.(4)代数式中大于1的分数系数一般写成假分数,例如2. 单项式(1)如3a,xy,-6m2,-k等,它们都是数与字母的积,像这样的式子叫做单项式. 对于单项式的理解有以下几点需要注意:①单项式反映的或者是数与字母,或者是字母与字母之间的运算关系,且这种运算只能是乘法,而不能含有加减运算,如代数式(x+1)3不是单项式.②字母不能出现在分母里,如不是单项式,因为它是n与m的除法运算.③单独的一个数或一个字母也是单项式,如0,-2,a都是单项式.(2)单项式的系数:是指单项式中的数字因数,如果一个单项式只含有字母因数,它的系数就是1或-1,如m就是1·m,其系数是1;-a2b就是-1·a2b,其系数是-1.(3)单项式的次数:是指一个单项式中所有字母的指数的和. 掌握好这个概念要注意以下几点:①从本质上说,单项式的次数就是单项式中字母因数的个数,如5a3b就是5aaab,有4个字母因数,因此它的次数就是4.②确定单项式的次数时,不要漏掉“1”. 如单项式3x2yz3的次数是2+1+3=6,字母因数的指数为1时,不能认为它没有指数.③单项式的次数只与单项式中的字母因数的指数有关,而不能误加入系数的指数,如单项式-2a3b4c5的次数是字母a、b、c的指数和,即3+4+5=12,而不是2+3+4+5=14.④单独一个非零数字的次数是零.3. 多项式(1)多项式:是指几个单项式的和. 其含义有:①必须由单项式组成;②体现和的运算法则,如3a2+b-5是多项式,(2)多项式的项:是指多项式中的每个单项式. 其中不含字母的项叫做常数项. 要特别注意,多项式的项包括它前面的性质符号(正号或负号).另外,一个多项式化简后含有几项,就叫做几项式. 多项式中的某一项的次数是n,这一项就叫做n次项. 如多项式x3+2xy+x2-x+y-1是六项式,x3的次数是3,叫三次项,2xy、x2的次数都是2,都叫二次项,-x、y的次数都是1,都叫一次项,后面的-1叫常数项.(3)多项式的次数:是指多项式里次数最高的项的次数. 应当注意的是:不要与单项式的次数混淆,而误认为多项式的次数是各项次数之和,如多项式3x4+2y2+1的次数是4,而不是4+2=6,故此多项式叫做四次三项式.4. 单项式与多项式统称为整式.三. 重点难点:1. 重点:单项式和多项式的有关概念.2. 难点:如何确定单项式的次数和系数,如何确定多项式的次数.【典型例题】例1. (1)(2008年宁夏)某市对一段全长1500米的道路进行改造. 原计划每天修x米,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天修路比原计划的2倍还多35米,那么修这条路实际用了__________天.(2)(2008年全国数学竞赛广东初赛)某商店经销一批衬衣,每件进价为a元,零售价比进价高m%,后因市场变化,该商店把零售价调整为原来零售价的n%出售,那么调整后每件衬衣的零售价是()A. a(1+m%)(1-n%)元B. am%(1-n%)元C. a(1+m%)n%元D. a(1+m%·n%)元分析:(1)修这条路实际用的天数等于这条路的全长1500米除以实际每天的工作量,原计划每天修x米,实际施工时,每天比原计划的2倍还多35米,即(2x+35)米. 用1500除以(2x+35)就可以了. (2)每件衬衣进价为a元,零售价比进价高m%,那么零售价就是a(1+m%),后来零售价调整为原来的n%,也就是a(1+m%)n%.评析:用字母表示数时,要注意书写代数式的惯例(数字在前字母在后,乘号省略,如果是除法写成分数的形式,系数是代分数时写成假分数,数字和字母写在括号的前面等)例2. 找出下列代数式中的单项式,并写出各单项式的系数和次数.单独一个数字是单项式,它的次数是0.8a3x的系数是8,次数是4;-1的系数是-1,次数是0.评析:判定一个代数式是否是单项式,关键就是看式子中的数字与字母或字母与字母之间是不是纯粹的乘积关系,如果含有加、减、除的关系,那么它就不是单项式.例3. 请你用代数式表示如图所示的长方体形无盖的纸盒的容积(纸盒厚度忽略不计)和表面积,这些代数式是整式吗?如果是,请你分别指出它们是单项式还是多项式.分析:容积是长×宽×高,表面积(无盖)是五个面的面积,在分辨它们是不是整式,是单项式还是多项式时,牵牵把握住概念,根据概念判断.解:纸盒的容积为abc;表面积为ab+2bc+2ac(或ab+ac+bc+ac+bc). 它们都是整式;abc是单项式,ab+2bc+2ac(或ab+ac+bc+ac+bc)是多项式.评析:①本题是综合考查本节知识的实际问题,作用有二:一是将本节所学知识直接应用到具体问题的分析和解答中,既巩固了知识,又强化了对知识的应用意识;二是将几何图形与代数有机结合起来,有利于综合解决问题能力的提高. ②本题解答关键:长方体的体积公式和表面积公式.故只剩下-2x2a+1y2的次数是7,即2a+1+2=7,则a=2.解:2评析:本题考查对多项式的次数概念的理解. 多项式的次数是由次数最高的项的次数决定的.例5. 把代数式2a2c3和a3x2的共同点填写在下列横线上.例如:都是整式.(1)都是____________________;(2)都是____________________.分析:观察两式,共同点有:(1)都是五次式;(2)都含有字母a.解:(1)五次式;(2)都含有字母a.评析:主要观察单项式的特征.例6. 如果多项式x4-(a-1)x3+5x2-(b+3)x-1不含x3和x项,求a、b的值.分析:多项式不含x3和x项,则x3和x项的系数就是0. 根据这两项的系数等于0就可以求出a和b 的值了.解:因为多项式不含x3项,所以其系数-(a-1)=0,所以a=1.因为多项式也不含x项,所以其系数-(b+3)=0,所以b=-3.答:a的值是1,b的值是-3.评析:多项式不含某项,则某项的系数为0.【方法总结】1. “用字母表示数”是代数学的基础,这种符号化的表示方法随着学习的深入会逐渐加深数学抽象化的程度,我们要体会这种抽象化,它更接近数学的本质,也是有效地解决数学问题的工具.2. 在学习多项式的时候,要注意和单项式的概念进行比较,通过比较两者之间的相同点和不同点,掌握两个概念之间的联系与区别,突出概念的本质,帮助我们理解多项式的概念.【模拟试题】(答题时间:40分钟)一. 选择题1. 在代数式中单项式共有()A. 2个B. 4个C. 6个D. 8个*2. 下列说法不正确的是()C. 6x2-3x+1的项是6x2,-3x,1D. 2πR+2πR2是三次二项式3. 下列整式中是多项式的是()4. 下列说法正确的是()A. 单项式a的指数是零B. 单项式a的系数是零C. 24x3是7次单项式D. -1是单项式5. 组成多项式2x2-x-3的单项式是下列几组中的()A. 2x2,x,3B. 2x2,-x,-3C. 2x2,x,-3D. 2x2,-x,3*7. 下列说法正确的是()B. 单项式a的系数为0,次数为2C. 单项式-5×102m2n2的系数为-5,次数为58. 下列单项式中的次数与其他三个单项式次数不同的是()**9. (2007年华杯初赛)如果一个多项式的各项的次数都相同,则称该多项式为齐次多项式. 例如:x3+2xy2+2xyz+y3是3次齐次多项式. 若x m+2y2+3xy3z2是齐次多项式,则m等于()A. 1B. 2C. 3D. 4二. 填空题1. (2007年云南)一台电视机的原价为a元,降价4%后的价格为__________元.三. 解答题*1. 下列代数式中哪些是单项式,并指出其系数和次数.2. 说出下列多项式是几次几项式:(1)a3-ab+b3(2)3a-3a2b+b2a-1(3)3xy2-4x3y+12(4)9x4-16x2y2+25y2+4xy-1四. 综合提高题**3. 一个关于字母a、b的多项式,除常数项外,其余各项的次数都是3,这个多项式最多有几项?试写出一个符合这种要求的多项式,若a、b满足︱a+b︱+(b-1)2=0,求你写出的多项式的值.【试题答案】一. 选择题1. B2. D3. B4. D5. B6. C7. D8. B9. B二. 填空题三. 解答题2. (1)三次三项式(2)三次四项式(3)四次三项式(4)四次五项式四. 综合提高题1. 由题意可知m+2+1=8,∴m=52. (1)四次六项式,最高次项是-3x3y,最高次项系数是-3,常数项是1(2)三次三项式,最高次项是y3,最高次项系数是1,常数项是-0.53. 最多有5项(可以含有a3,b3,a2b,ab2),如a3+a2b+ab2+b3+1(答案不唯一). 因为︱a+b ︱+(b-1)2=0,所以b=1,a=-1,所以原式=-1+1-1+1+1=1。
课堂教学设计
例3、用多项式填空,并指出它们的项和次数.
(1)一个长方形相邻两条边的长分别为a,6,则这个长方形的周长为________
(2)m为一个有理数,m的立方与2的差为________
(3)某公司向某地投放共享单车,前两年每年投放a辆,为环保和安全起见,从第三年年初起不再投放,且每个月回收b辆.第三年年底,该地区共有这家公司的共享单车的辆数为________
(4)现存于陕西历史博物馆的我国南北朝时期的
官员独孤信的印章如图4.1-2所示,它由18个
相同的正方形和8个相同的等边三角形围成.如
果其中正方形和等边三角形的边长都为a,等边
三角形的高为6,那么这个印章的表面积为
___________
多项式的排列
运用加法交换律,任意交换多项式x+x2+1中各项的位置,可以做到__种不同的排列方式。
你认为哪几种比较整齐?
1)降幂排列:把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把这个多项式按这个字母降幂排列。
x2+x+1
(2)升幂排列:把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把这个多项式按这个字母升幂排列。
1+x+x2出多项式的概念,发展学生数学抽象能力核心素养
与学习的热情,
比较、
力
步巩固多项式的概念
展学生数学抽象能力核心素养
2。
人教版数学七年级上册《整式的加减运算》教案一. 教材分析人教版数学七年级上册《整式的加减运算》是学生在掌握了有理数、实数、代数式等基础知识后,进一步学习整式运算的重要内容。
本节课的内容包括整式的加减法则、加减运算的步骤和注意事项等。
通过本节课的学习,学生能够掌握整式加减运算的方法,提高解决实际问题的能力。
二. 学情分析学生在六年级时已经学习了简单的代数运算,对于加减乘除等基本运算有一定的掌握。
但是,对于整式的加减运算,学生可能还存在以下问题:1. 对整式的概念理解不深,容易混淆;2. 运算顺序掌握不牢固,容易出错;3. 对于复杂的整式运算,缺乏解决方法。
三. 教学目标1.知识与技能:学生能够掌握整式的加减法则,正确进行整式加减运算。
2.过程与方法:通过实例分析,让学生学会将实际问题转化为整式加减运算,提高解决问题的能力。
3.情感态度与价值观:培养学生对数学的兴趣,培养学生合作、探究的精神。
四. 教学重难点1.重点:整式的加减法则。
2.难点:复杂整式加减运算的解决方法。
五. 教学方法采用“问题驱动法”和“实例分析法”,以学生为主体,教师为指导,通过提问、讨论、实践等方式,引导学生主动探索、发现和解决问题。
六. 教学准备1.教学素材:教材、多媒体课件、黑板、粉笔。
2.教学工具:投影仪、计算机。
七. 教学过程1.导入(5分钟)通过一个实际问题引出整式加减运算的概念,激发学生的学习兴趣。
2.呈现(10分钟)讲解整式的加减法则,引导学生理解并掌握加减运算的步骤。
3.操练(10分钟)学生分组进行练习,教师巡回指导,及时发现并纠正错误。
4.巩固(5分钟)选取一些典型的题目进行讲解,加深学生对整式加减运算的理解。
5.拓展(5分钟)讲解一些复杂的整式运算,引导学生学会运用合适的方法解决问题。
6.小结(3分钟)对本节课的主要内容进行总结,强调重点知识点。
7.家庭作业(2分钟)布置适量的家庭作业,巩固所学知识。
8.板书(贯穿整个教学过程)在教学过程中,适时地进行板书,总结关键步骤和注意事项。
人教版七年级数学上册2.1《整式》教学设计一. 教材分析《整式》是人教版七年级数学上册第二单元的第一节内容,主要介绍整式的概念及其基本运算。
本节内容是学生从小学数学向初中数学过渡的关键环节,对于培养学生的抽象思维能力和逻辑推理能力具有重要意义。
教材从简单的数字和字母组合出发,引导学生认识整式,并通过例题和练习使学生掌握整式的基本运算方法。
二. 学情分析七年级的学生已经具备了一定的数学基础,能够理解和掌握基本的代数概念。
但同时,他们对整式的理解和运算还需要通过具体的例子和实际操作来逐步培养。
因此,在教学过程中,需要关注学生的认知水平,通过引导和激励,激发学生的学习兴趣,帮助他们建立整式的概念,掌握整式的运算方法。
三. 教学目标1.知识与技能:使学生理解整式的概念,掌握整式的基本运算方法。
2.过程与方法:通过观察、思考、操作、交流等活动,培养学生的抽象思维能力和逻辑推理能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养他们勇于探索、积极思考的精神。
四. 教学重难点1.重点:整式的概念,整式的基本运算方法。
2.难点:整式的运算规律,整式的应用。
五. 教学方法1.引导法:通过问题引导,激发学生的思考,帮助他们建立整式的概念。
2.示例法:通过具体的例子,演示整式的运算方法,让学生在实践中掌握知识。
3.讨论法:学生进行小组讨论,促进学生之间的交流与合作,培养他们的团队精神。
六. 教学准备1.教学PPT:制作包含整式概念、例题和练习的PPT,以便于进行课堂教学。
2.练习题:准备一些有关整式的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过一个简单的数字和字母组合的例子,引导学生思考:如何表示这类数学表达式?让学生回顾小学学过的知识,为新课的学习做好铺垫。
2.呈现(10分钟)介绍整式的概念,讲解整式的定义及其基本性质。
通过PPT展示整式的各种形式,使学生对整式有一个直观的认识。
同时,给出整式的基本运算方法,如加、减、乘、除等。