钢筋力学性能和工艺性能指标
- 格式:doc
- 大小:32.00 KB
- 文档页数:2
常用建筑钢材主要技术性能指标一、碳素结构钢碳素结构钢主要轧制成型材(圆、方、扁、工、槽、角等钢材)、异型型钢(轻轨、窗框钢、汽车轮轮辋钢等)和钢板,用于厂房、桥梁、船舶、建筑及工程结构。
这类钢材一般不需热处理即可直接使用。
碳素结构钢的力学、工艺性能及化学成分指标应符合表10-2、表10-3和表l0-4的规定。
表10-2 碳素结构钢的力学性能表10-3 碳素结构钢的冷弯性能注:B为试样宽度,a为钢材厚度(直径)。
表l0-4 碳素结构钢化学成分Q235A 0.14~0.30~0.30.050 0.045 F.b,ZB 0.12~0.30~0.045C ≤0.18 0.34~0.040 0.040 ZD ≤0.17 0.035 0.035 TZQ255 A 0.18~0.47~0.3 0.050 0.045 F.b.ZB 0.045Q75 0.28~0.50~O.35 0.050 0.045 Z二、常用建筑钢筋按生产工艺、性能和用途的不同,常用建筑钢筋可分为热轧光面圆钢筋、热轧带肋钢筋、低碳热轧网缸条钢筋、冷拉钢筋、热处理钢筋等。
1.热轧光向圆钢筋经热轧成型并自然冷却的成品为表面光圆的钢筋(见图10-1),称为热轧光面圆钢筋。
按其供应方式又可分为热轧直条光圆钢筋(直径为8~20mm)和热轧圆盘条钢筋(直径为5.5~14mm)。
图10-1 光圆钢筋截面形态I级钢筋足用Q235号钢轧制而成,是低强度钢筋,蝮性好,伸长率大,便于弯折成型,焊接性好,广泛用于普通钢筋t昆凝土构件中。
圆钢盘条可用作中小型构件的受力筋或构造筋,还可加工成冷拔低碳钢丝及冷轧钢筋等。
(I)钢筋混凝土用热轧光面圆钢筋钢筋混凝土用热轧光面圆钢筋的力学、工艺性能见表10-5,牌号及化学成分见表10-6。
表10-5 钢筋混凝土用热轧光面圆钢筋力学工艺性能表10-6 钢筋混凝土用热轧光面圆钢筋牌号及化学成分(2)低碳热轧圆盘条(GH701-97)盘条钢筋是成卷盘状供应的热轧钢筋。
钢材的力学性能标准
钢材作为一种常见的建筑材料,其力学性能标准对于保障建筑结构的安全和稳定起着至关重要的作用。
力学性能标准包括了许多方面,如强度、韧性、硬度、塑性等,下面将对钢材的力学性能标准进行详细介绍。
首先,钢材的强度是衡量其抗拉、抗压、抗弯等方面性能的重要指标。
钢材的拉伸强度是指在拉伸试验中材料发生破坏前的最大抗拉应力,而压缩强度和弯曲强度分别是材料在受压和受弯试验中的最大抗压应力和抗弯应力。
这些强度指标直接影响着材料在实际工程中的使用性能,因此在制定力学性能标准时需要对这些指标进行严格的控制和测试。
其次,钢材的韧性是指材料在受力过程中能够吸收较大的能量而不发生断裂的能力。
韧性指标包括冲击韧性和断裂韧性两个方面。
冲击韧性是指材料在受冲击载荷作用下能够吸收的能量,而断裂韧性则是指材料在受静载荷作用下能够抵抗断裂的能力。
这些韧性指标对于钢材在受到外部冲击或载荷时的抗破坏能力起着至关重要的作用,因此也需要在力学性能标准中进行详细规定和测试。
此外,钢材的硬度和塑性也是其力学性能标准中重要的指标之一。
硬度是指材料抵抗划痕或压痕的能力,常用的硬度指标包括洛氏硬度、巴氏硬度等。
而塑性则是指材料在受力作用下发生形变的能力,包括延展性、收缩性等指标。
这些指标直接影响着钢材在加工和使用过程中的性能表现,因此也需要在力学性能标准中进行详细规定和测试。
综上所述,钢材的力学性能标准涵盖了强度、韧性、硬度、塑性等多个方面的指标,这些指标直接影响着钢材在实际工程中的使用性能。
因此,在制定和执行力学性能标准时,需要对这些指标进行严格的控制和测试,以确保钢材在工程中的安全可靠性和稳定性。
常用建筑钢材主要技术性能指标一、碳素结构钢碳素结构钢主要轧制成型材(圆、方、扁、工、槽、角等钢材)、异型型钢(轻轨、窗框钢、汽车轮轮辋钢等)和钢板,用于厂房、桥梁、船舶、建筑及工程结构。
这类钢材一般不需热处理即可直接使用。
碳素结构钢的力学、工艺性能及化学成分指标应符合表10-2、表10-3和表l0-4的规定。
表10-2 碳素结构钢的力学性能表10-3 碳素结构钢的冷弯性能注:B为试样宽度,a为钢材厚度(直径)。
表l0-4 碳素结构钢化学成分Q235A 0.14~0.30~0.30.050 0.045 F.b,ZB 0.12~0.30~0.045C ≤0.18 0.34~0.040 0.040 ZD ≤0.17 0.035 0.035 TZQ255 A 0.18~0.47~0.3 0.050 0.045 F.b.ZB 0.045Q75 0.28~0.50~O.35 0.050 0.045 Z二、常用建筑钢筋按生产工艺、性能和用途的不同,常用建筑钢筋可分为热轧光面圆钢筋、热轧带肋钢筋、低碳热轧网缸条钢筋、冷拉钢筋、热处理钢筋等。
1.热轧光向圆钢筋经热轧成型并自然冷却的成品为表面光圆的钢筋(见图10-1),称为热轧光面圆钢筋。
按其供应方式又可分为热轧直条光圆钢筋(直径为8~20mm)和热轧圆盘条钢筋(直径为5.5~14mm)。
图10-1 光圆钢筋截面形态I级钢筋足用Q235号钢轧制而成,是低强度钢筋,蝮性好,伸长率大,便于弯折成型,焊接性好,广泛用于普通钢筋t昆凝土构件中。
圆钢盘条可用作中小型构件的受力筋或构造筋,还可加工成冷拔低碳钢丝及冷轧钢筋等。
(I)钢筋混凝土用热轧光面圆钢筋钢筋混凝土用热轧光面圆钢筋的力学、工艺性能见表10-5,牌号及化学成分见表10-6。
表10-5 钢筋混凝土用热轧光面圆钢筋力学工艺性能表10-6 钢筋混凝土用热轧光面圆钢筋牌号及化学成分(2)低碳热轧圆盘条(GH701-97)盘条钢筋是成卷盘状供应的热轧钢筋。
建筑钢材的力学性能及其技术指标建筑钢材的力学性能及其技术指标钢筋作为一种建筑材料,广泛用于各种建筑结构、特别是大型、重型、轻型薄壁和高层建筑结构。
钢筋是指钢筋混凝土用和预应力钢筋混凝土用钢材。
钢筋的分类钢筋可按化学成分、外形、加工方法和供货形式进行分类。
钢筋按化学成分的不同可分为碳素钢筋和合金钢筋,碳元素和合金元素的含量还有低、中、高之分。
钢筋按外形的不同分为光圆钢筋、带肋钢筋、刻痕钢筋和钢绞线(建筑结构第三版图2-1)。
带肋是指表面带有凸纹。
目前,带肋钢筋的凸纹一般为月牙纹。
刻痕是将刻出椭圆形的浅坑。
钢绞线则由多股高强度光圆钢筋绞合而成。
钢筋按加工方法的不同可分为热轧钢筋、冷拉钢筋、冷拔钢筋、冷轧钢筋和热处理钢筋等。
热轧钢筋是用低碳钢或低合金钢在高温下轧制而成。
根据其强度标准值的不同,热轧钢筋又分为235、335、400、500四个级别。
级别越高,钢筋的强度也越高,但塑性越差。
235级钢筋用普通低碳钢(含碳不大于0.25%)制成,表面光圆,最小直径为6mm。
335、400、500级钢筋用低、中碳的低合金钢(含碳不大于0.6%,其他合金总量不大于5%)制成,表面有肋纹,最小直径一般为10mm。
各种级别热轧钢筋的符号和所用,钢材的牌号列于表2-1。
各种级别热轧钢筋的符号和牌号表2-1 热扎钢筋级别符号牌号曾用牌号235 HPB235 Q235335 HRB335 20MnSi400 HRB400、RRB400 20MnSiV、20MNnTi、20MnSiNb、K20MnSi500 HRB500 40Si2Mn、48Si2Mn、45Si2Cr注:400级K20MnSi钢筋系余热处理钢筋,牌号为RRB400。
牌号中的字母H表示热轧;P表示光圆,R表示带肋;B表示钢筋。
数字表示最低屈服强度标准值。
冷拉钢筋是在常温下,把热轧钢筋拉伸至强化阶段所得到的钢筋。
热轧钢筋经冷拉后屈服强度有较大提高,经时效处理后抗拉极限强度也有所提高,但钢筋的塑性则有所下降。
钢筋是建筑工程中重要的建筑材料,其质量对建筑物的安全和寿命有着至关重要的影响。
以下是对钢筋的主要技术指标及功能的详细描述。
一、钢筋的强度和变形性能钢筋的强度是衡量钢筋质量最重要的指标,它直接影响到钢筋的抗压、抗拉和抗弯等力学性能。
通常,我们用屈服强度、抗拉强度和伸长率来衡量钢筋的强度和变形性能。
屈服强度代表钢筋在承受压力时发生塑性变形的能力,抗拉强度则代表钢筋承受拉力时抵抗断裂的能力,而伸长率则代表钢筋在承受压力或拉力时变形而不致断裂的能力。
二、钢筋的种类和特点钢筋根据化学成分、生产工艺、形状等特征可以分为多种类型,如碳钢钢筋、合金钢钢筋、有色金属钢筋等。
其中,碳钢钢筋应用最为广泛,包括光面钢筋、带肋钢筋、扭转钢筋等。
每种钢筋类型都有其特定的力学性能和用途。
三、钢筋在建筑中的应用在建筑工程中,钢筋主要用于承受荷载、维持结构的稳定性等方面。
例如,在混凝土结构中,钢筋可以与混凝土共同工作,利用混凝土的抗压性能和钢筋的抗拉性能,形成一种强大的复合材料,有效地提高了结构的承载能力和稳定性。
此外,钢筋还可以用于连接各种建筑材料,如预埋件、锚杆等,进一步增强了建筑物的稳定性和安全性。
四、钢筋的其他技术指标除了强度和变形性能外,钢筋还有许多其他重要的技术指标,如伸长率、冷弯性能、持久性能等。
这些指标直接关系到钢筋在各种环境下的使用性能和安全性。
例如,伸长率是衡量钢筋在承受压力或拉力时变形后仍能保持有效工作能力的重要指标;冷弯性能则代表钢筋在特定温度和压力下的塑性变形能力;持久性能则代表钢筋在长期使用或承受反复荷载作用下的可靠性和稳定性。
总之,钢筋作为建筑工程中的重要建筑材料,其质量和技术指标对建筑物的安全和寿命有着至关重要的影响。
只有选择符合标准、性能优良的钢筋,才能确保建筑工程的质量和安全。
一、钢材的主要性能钢材的力学性能:有明显流幅的钢筋,塑形好、延伸率大。
技术指标:屈服强度、延伸率、强屈比、冷弯性能。
力学性能是最重要的使用性能,包括抗拉性能、冲击韧性、耐疲劳性等。
工艺性能包括冷弯性能和可焊性。
(1)抗拉性能:抗拉性能钢材最重要的力学性能。
屈服强度是结构设计中钢材强度的取值依据。
抗拉强度与屈服强度之比(强屈比)σb/σs,是评价钢材使用可靠性的一个参数。
对于有抗震要求的结构用钢筋,实测抗拉强度与实测屈服强度之比不小于1.25;实测屈服响度与理论屈服强度之比不大于1.3;强屈比愈大,钢材受力超过屈服点工作时的可靠性越大,安全性越高;但强屈比太大,钢材强度利用率偏低,浪费材料。
钢材受力破坏前可以经受永久变形的性能,称为塑性,它是钢材的一个重要指标。
钢材的塑性指标通常用伸长率表示。
伸长率随钢筋强度的增加而降低。
冷弯也是考核钢筋塑性的基本指标。
(2)冲击韧性,是指钢材抵抗冲击荷载的能力,在负温下使用的结构,应当选用脆性临界温度较使用温度为低的钢材。
(3)耐疲劳性:钢材在应力远低于其屈服强度的情况下突然发生脆断破裂的现象,称为疲劳破坏。
危害极大,钢材的疲劳极限与其抗拉强度有关,一般抗拉强度高,其疲劳极限也较高。
二、钢筋的工艺性能1、钢材的性能主要有哪些内容钢材的主要性能包括力学性能和工艺性能。
力学性能是钢材最重要的使用性能,包括抗拉性能、塑性、韧性及硬度等。
工艺性能是钢材在各加工过程中表现出的性能,包括冷弯性能和可焊性。
(1)抗拉性能。
表示钢材抗拉性能的指标有屈服强度、抗拉强度、屈强比、伸长率、断面收缩率。
屈服是指钢材试样在拉伸过程中,负荷不再增加,而试样仍继续发生变形的现象。
发生屈服现象时的最小应力,称为屈服点或屈服极限,在结构设计时,一般以屈服强度作为设计依据。
抗拉强度是指试样拉伸时,在拉断前所承受的最大荷载与试样原横截面面积之比。
钢材的屈服点(屈服强度)与抗拉强度的比值,称为屈强比。
建筑常用钢材的力学性能和工艺性能讲解钢材的技术性能包括力学性能、工艺性能和化学性能等。
力学性能主要包括拉伸性能、冲击韧性、疲劳强度、硬度等;工艺性能是钢材在加工制造过程中所表现的特性,包括冷弯性能、焊接性能、热处理性能等。
只有了解、掌握钢材的各种性能,才能正确、经济、合理地选择和使用各种钢材。
一、力学性能(一)拉伸性能钢材的拉伸性能,典型地反映在广泛使用的软钢(低碳钢)拉伸试验时得到的应力σ与应变ε的关系上,如图7.7所示。
钢材从拉伸到拉断,在外力作用下的变形可分为四个阶段,即弹性阶段、屈服阶段、强化阶段和颈缩阶段。
图7.7低碳钢受拉应力-应变1.弹性阶段在OA范围内应力与应变成正比例关系,如果卸去外力,试件则恢复原来的形状,这个阶段称为弹性阶段。
弹性阶段的最高点A所对应的应力值称为弹性极限σp。
当应力稍低于A点时,应力与应变成线性正比例关系,其斜率称为弹性模量,用e表示。
弹性模量反映钢材的刚度,即产生单位弹性应变时所需要应力的大小。
2.屈服阶段当应力超过弹性极限σp后,应力和应变不再成正比关系,应力在B上和B 下小范围内波动,而应变迅速增长。
在σ-ε关系图上出现了一个接近水平的线段。
试件出现塑性变形,AB称为屈服阶段,B下所对应的应力值称为屈服极限σs。
钢材受力达到屈服强度后,变形即迅速发展,虽然尚未破坏,但已不能满足使用要求。
所以设计中一般以屈服强度作为钢材强度取值的依据。
对于在外力作用下屈服现象不明显的钢材,规定以产生残余变形为原标距长度0.2%时的应力作为屈服强度,用σ0.2表示,称为条件屈服强度。
3.强化阶段当应力超过屈服强度后,由于钢材内部组织产生晶格扭曲、晶粒破碎等原因,阻止了塑性变形的进一步发展,钢材抵抗外力的能力重新提高。
在σ-ε关系图上形成BC段的上升曲线,这一过程称为强化阶段。
对应于最高点C的应力称为抗拉强度,用σb来表示,它是钢材所能承受的最大应力。
钢材屈服强度与抗拉强度的比值(屈强比σs/σb),是评价钢材受力特征的一个参数,屈强比能反映钢材的利用率和结构安全可靠程度。
钢筋力学性能和工艺性能指标重量偏差理论重量=0.00617×D 2×实际长度 (每米理论重量0.00617×D 2) 钢筋重量偏差=(实际总重量-理论重量)÷理论重量牌号 R el /Mpa 屈服 R m /Mpa 拉伸 A/% 伸长率Agt/% 冷弯试验180° d-弯心直径 a-钢筋公称直径不小于Q235 235 ﹤500 23 GB/T701-2008d=0.5a HPB235 235 370 25.010.0 6-22 d=a HPB300 300 420 HRB335 HRBF335335455177.56-25 28-40 >40-50 d=3a d=4a d=5a HRB400HRBF400400 540 166-25 28-40 >40-50 d=4a d=5a d=6a HRB500 HRBF500500 630 156-25 28-40 >40-50d=6a d=7a d=8a热轧光圆钢筋热轧带肋钢筋公称直径/㎜实际重量与理论重量的偏差/%公称直径/㎜ 实际重量与理论重量的偏差/%6-12 ±76-12 ±7 14-22 ±5 14-20 ±522-25±4接头弯曲试验指标拉伸试验步骤:(1)在试件上画标距,估算最大试验拉力。
(2)调试试验机,选择合适量程。
破坏荷载;取试验机量程20﹪~80﹪;精确度±1﹪. (3)测量屈服强度和抗拉强度。
屈服点荷载:指针停止转动后恒定负载或第一次回转的最小负荷;抗拉强度:钢筋拉断时由测力盘或拉伸曲线上的读出的最大负荷。
(4)测量拉伸率。
钢筋级别 弯心直径 弯曲度 HPB235 2d90°HRB355 4d HRB400 5d HRB500 7d。
钢筋进场检验中常见的技术指标和性能要求钢筋是建筑施工中常用的一种材料,用于加固和支撑结构。
为了确保建筑物的安全性和质量,钢筋在进场时需要进行检验,以检查其技术指标和性能是否符合要求。
本文将介绍钢筋进场检验中常见的技术指标和性能要求。
首先,钢筋进场检验的技术指标包括以下几个方面:1. 规格和尺寸:钢筋的规格和尺寸应符合设计要求。
常见的规格有:φ6、φ8、φ10、φ12、φ14、φ16、φ18、φ20等。
尺寸一般以直径和长度来表示,直径的容差范围在±0.3mm内,长度的容差范围为±50mm。
2. 钢筋的化学成分:钢筋的化学成分是保证其强度和韧性的关键因素之一。
常见的钢筋材质有普通碳素钢、低合金钢和高强度钢。
进场检验时,需要取样进行化学成分分析,其中主要检测元素包括碳、硫、磷、锰、硅等。
3. 机械性能:钢筋的机械性能主要包括抗拉强度和屈服强度。
抗拉强度指钢筋在拉伸状态下能承受的最大力量,屈服强度指钢筋在拉伸过程中开始发生塑性变形的最小力量。
常见的机械性能等级有HRB335、HRB400、HRB500等,抗拉强度一般要求不低于415MPa。
4. 钢筋的表面质量:钢筋进场时,其表面应平整,无裂纹、缺陷或其他可见的瑕疵。
同时,钢筋表面还应清洁,无重要锈蚀。
除了技术指标外,钢筋的性能要求也是进场检验中需要关注的重点。
以下是常见的性能要求:1. 可焊性:钢筋在施工中常需要焊接,因此可焊性是一个重要的性能要求。
焊接时,钢筋与焊条或其它钢筋能够实现良好的焊缝质量和焊接强度。
2. 受弯性能:钢筋在使用过程中,常需要经受弯曲作用。
因此,受弯性能是一个重要的性能要求。
合格的钢筋应具有良好的弯曲性能,能够耐受较大的弯曲力矩而不发生裂纹。
3. 耐蚀性:钢筋可能长期处于潮湿或有腐蚀介质的环境中,因此耐蚀性也是一个重要的性能要求。
合格的钢筋应具有较高的抗蚀性,能够降低腐蚀速率,延长使用寿命。
钢筋的进场检验不仅涉及到技术指标和性能要求,还需要进行相应的检测方法和标准。
钢筋的力学性能主要包括引言钢筋是一种广泛应用于建筑和基础设施工程中的重要材料。
它具有优异的力学性能,能够承受巨大的拉力和抗压能力。
本文将重点介绍钢筋的力学性能,包括钢筋的强度、韧性、延性和疲劳寿命等方面。
钢筋的强度钢筋的强度是指钢筋能够承受的最大力量。
钢筋的强度与其钢材的性质有关,一般可以分为屈服强度和抗拉强度两种。
屈服强度是指钢筋开始产生塑性变形时所能承受的最大应力,而抗拉强度是指钢筋在拉伸过程中能够承受的最大应力。
钢筋的强度决定了它在结构中所能发挥的作用,对工程安全和可靠性有着重要的影响。
钢筋的韧性韧性是指材料在受到外力作用时能够产生的塑性变形能力。
钢筋具有良好的韧性,这意味着在受力作用下能够发生较大的形变而不会立即断裂。
钢筋的韧性使其能够吸收能量,增加结构的抗震性能,从而提高工程的安全性。
钢筋的延性延性是指材料在受到外力作用下能够发生较大的塑性变形而不断裂的性能。
钢筋具有良好的延性,这意味着当结构遭受较大荷载时,钢筋能够发生较大的变形,从而吸收能量,减少结构的应力集中,提高结构的抗震能力。
钢筋的疲劳寿命疲劳寿命是指材料在长期交替载荷作用下能够承受的循环次数。
钢筋在建筑结构中常常受到重复的荷载作用,例如地震、风力等。
钢筋的疲劳寿命是衡量其在长期使用过程中的耐久性能指标之一。
通过合理的设计和材料选择,可以提高钢筋的疲劳寿命,从而延长结构的使用寿命。
结论钢筋作为一种重要的建筑材料,具有优异的力学性能。
本文介绍了钢筋的强度、韧性、延性和疲劳寿命等方面的性能。
钢筋的强度决定了其在结构中的作用,韧性和延性使得钢筋能够吸收能量,提高结构的抗震性能。
通过合理的设计和材料选择,可以延长钢筋的使用寿命,提高工程的安全性和可靠性。
钢筋质量标准钢筋作为混凝土结构中的重要材料,其质量标准直接关系到建筑物的安全性和稳定性。
因此,对于钢筋的质量标准,我们必须要有清晰的认识和了解。
钢筋的质量标准主要包括以下几个方面:1. 化学成分,钢筋的化学成分是其质量的重要指标之一。
合格的钢筋应具有一定的化学成分,包括碳含量、硫含量、磷含量等。
这些化学成分直接影响着钢筋的力学性能和耐久性能,因此必须符合相关的国家标准和行业标准。
2. 机械性能,钢筋的机械性能包括屈服强度、抗拉强度、延伸率等指标。
这些指标是衡量钢筋质量优劣的重要依据,合格的钢筋应当具有稳定的机械性能,能够满足建筑物在使用过程中的各项要求。
3. 表面质量,钢筋的表面质量直接关系到其与混凝土的粘结性能。
合格的钢筋应当具有光滑平整的表面,不得有明显的裂纹、疤痕、氧化皮等缺陷,以保证混凝土与钢筋之间的牢固连接。
4. 尺寸偏差,钢筋的尺寸偏差是其质量标准中的重要内容之一。
合格的钢筋应当具有符合国家标准要求的直径、长度、弯曲度等尺寸,以保证在建筑施工过程中的准确使用。
5. 标识标志,合格的钢筋应当在其表面进行清晰的标识,包括钢筋的牌号、生产厂家、生产日期等信息,以便于对钢筋进行追溯和监管。
总的来说,钢筋的质量标准是建筑施工中非常重要的一环,对于保障建筑物的安全和稳定具有不可替代的作用。
因此,在选用和使用钢筋时,必须要严格按照相关的国家标准和行业标准进行执行,确保所使用的钢筋具有良好的质量和性能。
同时,建筑施工中的各个环节也要加强质量监控和管理,杜绝使用不合格的钢筋,确保建筑物的安全可靠。
钢筋质量标准的执行不仅是建筑行业的责任,也是全社会的责任。
只有大家共同努力,才能够保障建筑物的安全和稳定,为人民群众的生命财产安全提供有力保障。
希望各方能够高度重视钢筋质量标准的执行,共同维护建筑物的安全和稳定。
钢筋力学性能检测标准钢筋是混凝土结构中的重要材料,其质量直接关系到工程的安全性和稳定性。
为了确保钢筋的质量和性能符合要求,需要进行力学性能检测。
钢筋力学性能检测标准是保证钢筋质量的重要手段,下面将对钢筋力学性能检测标准进行详细介绍。
首先,钢筋的力学性能包括抗拉强度、屈服强度、伸长率、弯曲性能等指标。
抗拉强度是钢筋在拉伸状态下抵抗破坏的能力,屈服强度是钢筋在拉伸过程中出现塑性变形的能力,伸长率是钢筋在拉伸过程中的延伸程度,弯曲性能是钢筋在受弯矩作用下的抵抗能力。
这些性能指标直接影响着钢筋在工程中的使用效果,因此需要进行严格的检测。
其次,钢筋力学性能检测标准主要包括国家标准、行业标准和企业标准。
国家标准是由国家有关部门制定并颁布的,具有强制性和统一性。
行业标准是由相关行业协会或组织制定的,适用于特定行业领域。
企业标准是由企业根据自身生产实际制定的,适用于企业内部使用。
这些标准的制定和执行,可以有效保障钢筋的质量和性能。
再次,钢筋力学性能检测标准的内容包括检测方法、检测设备、检测要求等方面。
检测方法是指对钢筋力学性能进行检测的具体操作步骤和技术要求,包括拉伸试验、弯曲试验、冲击试验等。
检测设备是指进行检测所需的设备和仪器,包括拉力试验机、万能材料试验机、冲击试验机等。
检测要求是指对钢筋力学性能的具体指标和数值要求,包括抗拉强度不低于多少、屈服强度不低于多少、伸长率不低于多少等。
最后,钢筋力学性能检测标准的执行和监督是保证其有效性和可靠性的重要环节。
执行和监督部门应当对钢筋力学性能检测进行严格的监督和管理,确保检测结果的准确性和可靠性。
同时,相关部门和企业也应当加强对钢筋力学性能检测的重视,提高检测人员的技术水平和仪器设备的精度,保证检测工作的质量和效果。
综上所述,钢筋力学性能检测标准是保证钢筋质量和性能的重要手段,对于工程建设和安全具有重要意义。
只有严格执行相关标准,加强检测工作的管理和监督,才能有效保障钢筋的质量和性能,确保工程的安全和稳定。
二建《建筑工程》建筑材料关键考点汇总考点一:建筑钢材的力学性能(包括力学性能和工艺性能)力学性能1、拉伸性能反映建筑钢材拉伸性能的指标包括屈服强度、抗拉强度和伸长率。
抗拉强度与屈服强度之比(强屈比)是评价钢材使用可靠性的一个参数。
强屈比愈大,钢材受力超过屈服点工作时的可靠性越大,安全性越高;但强屈比太大,钢材强度利用率偏低,浪费材料。
(1)钢筋实测抗拉强度与实测屈服强度之比(强屈比)不小于1.25;(2)钢筋实测屈服强度与规定的屈服强度特征值之比(超屈比)不大于1.30;(3)钢筋的最大力总伸长率不小于9%。
2、冲击性能钢的冲击性能受温度的影响较大,冲击性能随温度的下降而减小;在负温下使用的结构,应当选用脆性临界温度较使用温度为低的钢材。
3、疲劳性能钢材的疲劳极限与其抗拉强度有关,一般抗拉强度高,其疲劳极限也较高。
工艺性能包括弯曲性能和焊接性能等。
考点二:常用水泥的技术要求凝结时间①初凝时间:是指水泥加水拌合起至水泥浆开始失去可塑性所需要的时间;②终凝时间:是指水泥加水拌合起至水泥浆完全失去可塑性所需要的时间。
③初凝时间不得短于45min,硅酸盐水泥的终凝时间不得长于6.5h,其他五类常用水泥的终凝时间不得长于10h。
体积安定性在凝结硬化过程中体积变化的均匀性。
如果水泥硬化后产生不均匀的体积变化,即体积安定性不良,就会使混凝土构件产生膨胀性裂缝。
强度及强度等级采用胶砂法来测定水泥3d和28d的抗压强度和抗折强度,根据测定结果来确定该水泥的强度等级。
考点三:混凝土的技术性能和易性(1)和易性(又称工作性),是指混凝土拌合物易于施工操作并能获得质量均匀、成型密实的性能。
(2)和易性包括流动性、黏聚性和保水性等三方面的含义(记忆口诀:榴莲煲)。
用坍落度试验来测定混凝土拌合物的坍落度或坍落扩展度,作为流动性指标,坍落度或坍落扩展度愈大表示流动性愈大。
对坍落度值小于10mm的干硬性混凝土拌合物,则用维勃稠度试验测定其稠度作为流动性指标,稠度(s)值愈大表示流动性愈小。