第六章数字地面模型解读
- 格式:ppt
- 大小:4.59 MB
- 文档页数:80
数字地面模型名词解释
数字地面模型是指使用数字技术和地理信息系统(GIS)技术进
行数据处理和模拟建模的一种方法。
它通过对现实世界地理信息的数
字化处理,生成具有地理位置信息的虚拟地图数据,以实现对地理空
间的精确描述和模拟。
数字地面模型可以包含地形、地貌、建筑物、
交通网络等各种地理要素的三维模型,能够反映真实地理环境的形态、空间布局和动态变化。
通过数字地面模型,可以进行地质勘探、城市
规划、环境评估、风险管理等多个领域的分析与决策支持。
5.1.2 整体渐变地面特性的格网结构在诸如地表起伏形态等整体渐变的地面特性,在采用格网结构时,有比较适用的降维和压缩方法。
格网结构数据的存储——降维存储整体渐变地面特性的格网结构,除了可采用行次序降维存储外,在大多数情况下,采用块次序降维存储,将更有利于数据压缩和后续处理。
上图为格网结构按块次序降维的一种存储形式,图中所注数字表示每个格点面元的存储次序。
格网结构的数据压缩整体渐变地面特性的取值通常为数值,而且相邻格点面元的地面特性取值具有高度的相关性,这有利于进一步第提高数据压缩比。
具体办法是先对格网数据进行差分运算,再用行程码或四分树压缩差分结果。
实用文档5.2 数字地面模型的矢量数据结构[2]定义在线性代数中,将一组元素的有序集合称为矢量,平面直角坐标系(x,y)是二维矢量,空间直角坐标(x,y,z)是三维矢量。
数字地面模型的矢量结构,是指用二维坐标来描述地面特性空间分布的数据存储形式,可以是手扶跟踪数字化作业的直接结果,也可由扫描矢量化或者其它数据结构转换而来。
散点数字地面模型用离散点集的坐标存储。
线状分布的数字地面模型用沿线点列的有序坐标串存储。
有关拓扑数据结构的一些基本概念两相临图斑之间的有向边界称为弧,由有关弧连环而成平面多边形周界,即图斑周界。
弧可以是直线,但大多数情况下是一条折线。
组成折线弧的每一条直线段称作段,段的端点称为节点,而弧的端点称作结点。
当弧的首尾结点重合时,围成的图斑称作单岛。
实用文档弧一般以它的两个结点以及被它分隔的两个图斑来描述。
这种考虑点、线、面间连接和相邻关系的数据描述和组织方式,是以拓扑几何学原理为基础的,称作拓扑数据结构。
5.2.1 平面矢量数据结构平面矢量数据结构包括:平面多边形矢量结构;线状地面特性的矢量结构;等值线矢量结构;散点矢量结构;平面多边形矢量结构平面多边形矢量结构用于组织土壤、植被、土地利用、行政区等局部等值地面特性的二维空间分布数据,它分为两个层次:第一层次体现点、线、面之间连接和相邻的拓扑关系,第二层次以弧段为单位,存储弧段点列的平面坐标串,实现弧段的显式地理空间定位。
第六章数字地面模型的建立及应用1.摄影测量4D产品:DOM(数字正射影像图)、DEM(数字高程模型)、DRG(数字栅格地图)、DLG(数字线划地图)※DTM与DEM的区别:DTM中除了包含X,Y,Z三维坐标外还包括地形属性特征。
2.DEM的三种表示形式3.DEM数据采集方法地面测量:利用全站仪在野外实测现有地图的数字化空间传感器数字摄影测量的DEM采集方式4.DEM数据预处理a. 数据的编辑:发现错误、进行补测;b. 数据格式的变换c. 坐标系统的转换d. 栅格数据矢量化e. 数据分块:原因:由于采集方式不同,数据点在计算机内排列的顺序不同方法:先将区域划分为等间隔的格网(比DEM格网大),然后将格网按行列号顺序排列。
6。
DEM的内插的特点1)整个地球表面的起伏形态不可能用一个简单的低次多项式来拟合,而高次多项式的解不稳定且会产生不符合实际的震荡;2)地形表面既有连续光滑的特性,有可能存在由于自然或人为的原因而产生的地形不连续;3)由于计算机内存的限制,不可能同时对很大的范围来内插数字高程模型。
因此要采用局部函数内地形插,并兼顾数据点和地形特征点、线。
7.内插生成DEM的三种方法8.DEM的管理存储、检查、拼接、更新9.三角网数字地面模型的构建(1)角度判断法建立TIN:已知三角形的两个顶点,计算备选第三顶点的三角形内角的大小,选择最大者对应的点为该三角形的第三顶点(2)泰森多边形与狄洛尼三角网10.TIN与DTM存储的差别TIN存储每个网点的高程,平面坐标,网点链接的拓扑关系以及三角形及邻接三角形信息12.三角网中的内插:(1)格网点的检索(2)高程内插11.DEM的应用基于矩形格网的DEM多项式内插等高线绘制立体透视图11.基于矩形格网的等高线绘制步骤1)利用DEM的矩形或方形格网点高程,内插出格网边上的等高线点位置,并将这些等高线点按顺序排列; 2)利用按顺序排列的等高线点的平面坐标进行插补,进一步加密等高线点,并绘制光滑的曲线。
§6.3 数字地面模型实例分析华东师范大学地理系在进行洋山港区及附近海域风场数值模拟研究时,为了使洋山港的风场数值模拟更好的符合实际情况,对大洋山及其附近岛屿进行了地形模拟。
大洋山、小洋山位于1220 0’-1220 9’E,300 34’ - 300 40’N。
我们选取的是1:100000地形图为基本的数据资料,以TM数据磁带为补充,进行三维数字地形模型的生成。
采用的基础软件是PC ARC/INFO 与SURFER(美国),同时也利用了中国地质大学的MAPGIS,提高工作速度与质量,并在ER-MAPPER环境中进行了三维彩色动态显示与飞行模拟。
具体方法是:一地形数据的输入与编辑1 等高线的输入为保证数字地形模型的精度,等高线的输入是采用扫描输入法进行的。
首先将地形图上的等高线在聚脂薄膜上翻晒成阳片,然后在500dpi的精度下扫描成(0,1)二值化线化图象,将图象进行平滑滤波,除噪声之后进行边缘检测,图象细化跟踪矢量化,生成以(X,Y)坐标串表示的图形文件。
我们借用了MAPGIS软件中的自动矢量化功能,大大减少了工作量。
当然,如果没有MAPGIS软件,也可以直接采用数字化板在一些GIS软件包(如MAPINFO、ARC/INFO等)的支持下进行手扶跟踪数字化或进行屏幕数字化。
自动跟踪生成图形文件的等高线具有一定的缺省属性值,因此还必须给编辑好的等高线赋以正确的高程属性值。
地形图如图6-33所示:图6-33 大洋山地形示意图2 高程点的输入高程点和地面控制点对地表形态的描述起着十分重要的控制作用,在高程点输入中,我们采用点方式下的跟踪法进行输入。
二数据转换与数字地形模型的生成在输入地形数据之后,在这个基础上建立矩形数字高程模型。
首先建立拓扑关系,经检查无误后,在ARC/INFO环境下进行投影变换,用ARCATLAS命令将该COVERAGE转换成ATLAS图形输出文件格式YS.BNA文件(在具体进行转换时,输出的ITEM的第二项选取高程属性)。