经典:7.数字高程模型数据质量分析与控制
- 格式:ppt
- 大小:2.99 MB
- 文档页数:44
数字⾼程模型(DEM)考试题⽬答案1、什么是数字⾼程模型,它有什么特点?答:⼴义:地形表⾯形态的数字化表达狭义:有限的离散⾼程采样数据对地表形态的数字化模拟特点1)精度的恒定性2)表达的多样性3)更新的实时性4)尺度的综合性2、简述数字⾼程模型的主要研究内容。
答:1)地形数据采集;2)数据组织与地表建模,主要分为不规则格⽹DEM(TIN)和规则格⽹DEM (GRID);3)精度分析与质量控制;4)可视化表达;5)应⽤与分析3、试分析数字⾼程模型数据源及其特点1)地⾯本⾝通过⽓压测⾼法、航空和测⾼仪等可获得精度要求不⾼的⾼程数据,以⽤于⼤范围⾼程要求不⾼的科学研究2)既有模拟/数字地形图a地形图现势性:纸质地形图制作⼯艺复杂、更新周期长,⼀般不能反映局部地形地貌的变化情况。
b地形图存储介质:多为纸质存储介质导致地形图幅不同程度的变形。
c地形图精度:不同的精度对应的等⾼线等⾼距、对地形的综合程度、成图⽅法各不同。
3)航空/航天遥感影象航空/航天遥感影象的更新速度快,⼀直是地形图测绘和更新最有效、也是最主要的⼿段特点:遥感的⼏何畸变;遥感数据的增强处理;遥感数据的空间分辨率;遥感影像数据的解译与判读4)既有DEM数据4、简述数字⾼程模型数据采样中的基本布点⽅式及采样数据的属性。
基本布点⽅式:选择性采样、沿等⾼线采样、剖⾯法、规则格⽹采样、渐近采样、混合采样采样数据的三⼤属性:点的分布、密度、数据精度5、⽬前主流的DEM数据采集⽅法有哪些?并对各⽅法进⾏对⽐分析。
1)从地⾯直接采集的⽅法全站仪数字采集、GPS采集(RTK⽅式);精度⾮常⾼(cm)、效率低、成本⾼、适⽤于⼩范围区域(特别是⼯程应⽤)2)地形图数据采集⽅法精度与底图有关(图上0.1~0.3mm)、效率⾼、成本低、适⽤于国家范围内的中低精度DEM的数据采集3)摄影测量数据采集⽅法精度⽐较⾼(cm~dm)、效率⾼、成本⽐较⾼、适⽤于国家范围内的较⾼精度DEM的数据采集6、DEM数据获取中的新技术和⽅法有哪些?答:1)合成孔径雷达⼲涉测量数据采集⽅法;2)机载激光扫描数据采集;3)基于声波、超声波的DEM数据采集7、简述GRID的结构特点与数据组织形式。
数字测绘产品的质量检查与质量控制数字测绘产品是指基于计算机技术和数学模型构建地理信息数据库的产品,包括数字地图、数字高程模型、数字影像、数字地球等。
这些产品的质量对于地理信息系统的应用和决策具有重要影响,在生态保护、城市规划、资源开发等领域发挥着重要作用。
因此,数字测绘产品的质量检查和质量控制是非常重要且必不可少的。
数字测绘产品的质量检查是指对数字测绘产品的数据质量、时空精度、符号说明以及数据完整性等指标进行检查。
其中,数据质量是数字测绘产品的基础,并且是其质量的关键点之一。
通过对数据的源头、采集、整理、处理等方面进行检查,以保证数字测绘产品的数据质量达到可接受的标准。
时空精度是指数字测绘产品中数据所描述的位置和时间与真实位置和时间的误差程度。
时空精度的检查需要根据数字测绘产品的需求和使用环境进行,保证其符合需要的精度标准。
符号说明是数字测绘产品中重要的元数据,能够帮助用户理解产品,使用、分析和操作数据。
因此,对于数字测绘产品,符号说明的质量也是必须要检查的。
数字测绘产品的质量控制是在数据质量检查的基础上,采取一系列措施,保证数字测绘产品的质量符合标准,并且满足用户的需求。
数字测绘产品的质量控制包括两个方面:过程控制和输出控制。
其中,过程控制是指对数字测绘产品的生产和处理过程进行控制,以保证数据采集、处理和存储等环节的质量符合标准。
过程控制需要采用一系列有效的措施,例如建立标准化的数据采集和处理流程、完善数据质控制度、加强设备维护和管理等,以保证数字测绘产品的数据质量。
总之,数字测绘产品的质量检查和质量控制是数字测绘行业中非常重要的方向,需要根据不同的需要和环境采取一系列有效措施来保证数字测绘产品质量。
只有如此,才能保证数字测绘产品的质量符合标准,满足用户需求,并发挥其应有的作用。
测绘技术中的数字高程模型处理技巧随着科技的发展和测绘技术的进步,数字高程模型(Digital Elevation Model,DEM)在地理信息系统(Geographic Information System,GIS)和测绘领域中的应用越来越广泛。
数字高程模型是一种用于描述地理表面形态和地形特征的数据模型,它以离散点集或栅格形式存储地表高程信息。
本文将探讨数字高程模型处理的一些技巧,以帮助专业人士更好地应用这一技术。
首先,获取高质量的原始数据是数字高程模型处理的基础。
在测绘实践中,我们可以利用航空激光雷达(LiDAR)或卫星遥感数据等多种传感器获取地表高程信息。
其中,航空激光雷达技术由于其高精度和高空间分辨率的特点被广泛使用。
在数据采集过程中,应注意应避免遮挡物对数据质量的影响,并合理选择采样密度和扫描分辨率,以保证获取到的数据精度和覆盖范围。
在数据获取之后,数字高程模型的处理流程包括数据预处理、插值和精确度评估等步骤。
数据预处理是为了去除数据中的噪声和异常值,以确保模型的准确度和可靠性。
常用的预处理方法包括数据滤波、平滑和去除局部异常等。
插值是将离散的高程点或栅格数据转化为连续的地形表面,用以生成全面的数字高程模型。
插值方法有很多种,包括反距离权重插值、样条插值、克里金(Kriging)插值等。
在选择插值方法时,应考虑数据点分布特征、采样密度和地形类型等因素,并根据需求权衡插值结果的准确度和计算效率。
除了数据预处理和插值之外,精确度评估也是数字高程模型处理中至关重要的一步。
通过评估数字高程模型的误差和精度,可以判断其是否符合使用要求,并对后续分析和应用值的结果进行合理的判断和调整。
精确度评估的方法有很多种,如可视化分析、高程差分、平面精度指标等。
此外,还可以利用场地测量数据和精度参考数据进行对比,从而验证数字高程模型的准确性。
除了基础的处理步骤,数字高程模型的应用还有很多值得探讨的方面。
例如,数字高程模型可以用于制图、工程设计、地貌分析、水文模拟等多个领域。
数字高程模型的精度评估技巧数字高程模型(Digital Elevation Model,DEM)是一种以数字形式呈现地表地形的技术。
精度评估是判断DEM数据真实性和可靠性的重要步骤。
本文将探讨数字高程模型的精度评估技巧。
一、简介数字高程模型是指通过测量、控制点云数据和空间插值技术生成的一种数值化地表地形模型。
DEM被广泛应用于地理信息系统、地质勘探、气象、水文、城市规划等领域。
然而,DEM数据的精度直接影响其应用效果和准确性。
二、精度评估的意义精度评估是判断DEM数据质量的重要手段。
精度评估能够帮助用户了解DEM 数据的精确程度,提供科学决策的依据,并确保数据的可靠性。
通过准确评估DEM数据的精度,可以避免在实际应用中因数据误差造成的不良影响。
三、影响DEM精度的因素1. 测量精度:测量设备、测量方法等影响了DEM数据的精度。
使用高精度测量设备和精确的测量方法能提高DEM数据的精度。
2. 栅格间距:栅格间距指DEM数据中每个栅格点代表的空间距离。
较小的栅格间距能够提供更精细的地形信息,提高DEM数据的精度。
3. 数据质量:DEM数据的来源和处理过程也会影响其精度。
高质量的原始数据和精细的数据处理能够得到更准确的DEM数据。
四、常用的精度评估技巧1. 独立控制点法独立控制点法是通过在DEM数据中设置若干个已知高程的控制点,并与实地测量数据进行对比,计算DEM数据的误差和精度。
这种方法可用于验证DEM的整体精度。
2. 交叉验证法交叉验证法是将DEM数据分割成两个部分,一部分用于插值生成DEM,另一部分则用于与实地测量数据进行对比。
通过比较两者之间的差异,可以评估DEM数据的精度。
3. 精度与分辨率关系分析法高分辨率DEM数据与低分辨率DEM数据之间存在一定的精度关系。
通过比较不同分辨率DEM数据与实地测量数据之间的误差,可以分析出DEM数据的精度。
4. 基准面对比法采用已知高程的基准面进行对比和校正,对比基准面和DEM数据之间的差异,可以评估DEM数据的精度。
测绘技术中的数字高程模型分析方法数字高程模型(Digital Elevation Model,简称DEM)是测绘技术中一种重要的数据模型,用于描述地球表面的地形高程信息。
它通过将地面的海拔高程转化为数字化数据,为地理信息系统(Geographical Information System,简称GIS)和地图制作提供了基础数据。
本文将介绍数字高程模型的基本概念、获取方法以及其在测绘中的分析应用。
一、数字高程模型的基本概念数字高程模型是一种数值化地理模型,它以离散的高程数值来表示地表的形态特征。
在数字高程模型中,地表被分割成一系列的矩形网格或三角形网格,每个网格点上都有一个高程数值。
这些高程数值可以通过实地测量、遥感图像解译、光学测距等手段获取。
数字高程模型主要包括DEM(数字高程模型)和DTM(数字地形模型)。
DEM是最基本的数字高程模型,它以等高线、点测高、曲面拟合等方法确定地表点的高程值。
DTM是DEM的一种扩展,它不仅包括地表点的高程值,还包括障碍物(如建筑物、树木等)的高程值,能够更准确地描述地表的形态特征。
二、数字高程模型的获取方法1. 实地测量法:传统的数字高程模型获取方法是通过实地进行测高。
这种方法需要在地表上设置测量器材,通过精确的测量仪器获取地表各个点的高程值。
实地测量法的优点是测量结果准确可靠,但是需要耗费大量的人力和物力。
2. 遥感测量法:遥感测量是通过遥感卫星、航空摄影等手段获取地表高程信息的方法。
遥感测量法通过拍摄地表图像,并利用图像解析技术计算地表高程。
这种方法具有成本低、效率高的特点,可以获取大范围区域的高程数据。
三、数字高程模型的分析应用数字高程模型在测绘中的应用非常广泛,可以用于地形分析、地理信息系统分析、工程规划等领域。
1. 地形分析:数字高程模型可以用于地表形态的分析,如地貌分类、地形剖面分析等。
通过对数字高程模型进行等高线提取、坡度计算等操作,可以得到地表的形状信息,为地质灾害识别和地貌研究提供依据。
如何进行数字高程模型的测绘与分析数字高程模型(Digital Elevation Model,DEM)是地理信息系统(GIS)中的一种重要数据模型,用于描述地表形态的高程信息。
在地质勘探、土地规划、环境管理等领域,DEM的测绘与分析对地表形态的认知和决策具有重要作用。
本文将探讨如何进行数字高程模型的测绘与分析,包括数据采集、处理以及应用等方面。
一、数据采集数字高程模型的测绘首先需要采集高程数据。
常用的数据采集方法包括全球卫星导航系统(GNSS)测量、激光雷达扫描以及航空摄影测量等。
其中,激光雷达扫描是目前最常用的高程数据采集技术之一。
激光雷达利用激光束扫描地面,通过测量激光束的反射时间和角度,可以获取高精度的地面点云数据。
这些点云数据可以构建数字高程模型,同时还可以进行地物分类和三维建模等应用。
二、数据处理1. 数据预处理在进行数字高程模型的测绘与分析之前,需要对采集到的原始数据进行预处理。
主要包括数据去噪、点云配准和分块处理等。
数据去噪是指对采集到的点云数据中的噪声点进行滤除,以保证后续处理的准确性。
点云配准是将不同采集位置的点云数据进行匹配,以建立一个统一的坐标系。
分块处理是将大范围的点云数据划分为小块,以便后续处理时提高计算效率。
2. 数据重采样为了减少数据量和保证数据的统一性,在进行数字高程模型的分析时,常常需要对原始点云数据进行重采样。
重采样是指将不规则采样的点云数据转换为规则网格形式的数据。
常用的重采样方法包括TIN(三角形不规则网格)和Grid(规则网格)等。
根据具体的应用需求,可以选择不同的重采样方法。
3. 高程数据提取在建立数字高程模型之前,还需要从点云数据中提取高程信息。
常见的高程数据提取方法包括插值法和几何法。
插值法是利用已知高程点的高程值推算未知高程点的高程值。
几何法基于点云数据的几何特征,通过计算邻域内的点云密度或曲面拟合等方式进行高程数据提取。
三、数据分析与应用1. 地形分析数字高程模型的测绘与分析主要用于描述地表形态,因此地形分析是DEM应用的核心内容之一。
如何进行数字高程模型的制作和分析数字高程模型(Digital Elevation Model,DEM)是地理学和地图制图中常用的一种工具,用于描述地球表面的地形高程。
制作和分析数字高程模型是地理信息系统(Geographic Information System,GIS)领域中的重要研究内容。
本文将介绍数字高程模型的制作和分析过程。
一、数字高程模型的数据获取数字高程模型的制作需要用到地形数据,常用的获取方法包括遥感卫星影像、激光雷达和测绘数据。
遥感卫星影像可以通过遥感技术获取地表的影像数据,通过影像处理和解译,可以得到地表特征和高程信息。
激光雷达是一种主动遥感技术,可以通过激光束扫描地表,测量地面和物体的高程信息。
测绘数据则是通过传统测量手段获得的地形数据,例如航测、地形测量等。
二、数字高程模型的数据处理1. 影像预处理:如果使用遥感卫星影像作为数据源,首先需进行预处理。
预处理包括影像色调校正、去噪和增强等,以提高数据质量。
2. 点云生成:对于激光雷达数据或测绘数据,需要将原始数据转化为点云数据。
点云数据是由大量的三维坐标点组成,每个点对应一个地面或物体的高程。
3. 数据过滤:对点云数据进行噪声过滤和异常值处理,以提高数据质量。
4. 数据插值:由于实际采集到的高程数据点通常不均匀分布,需要进行数据插值以补充缺失的高程信息。
常用的插值方法有逆距离加权法、克里金法等。
三、数字高程模型的制作1. 三角网剖分:将采集到的高程数据点通过连接相邻点构成三角网,形成由三角形构成的网格。
2. TIN模型生成:通过三角网剖分,可以生成三角不规则网(Triangulated Irregular Network,TIN)模型,即一种由三角形组成的地表模型。
TIN模型可以准确地表示地表的地形特征,并具有高度的灵活性。
3. 栅格模型生成:栅格模型是将地表划分为等大小的网格单元,并将每个单元的高程值存储在栅格数据中。
栅格模型可以方便地进行空间分析和计算。
数字高程模型DEM的质量控制及精度分析数字高程模型(Digital Elevation Model, DEM)是“4D”产品的一种,它是一定区域范围内对地球表面地形地貌的一种离散数字表达。
在城市和工程建设的各个领域,数字高程模型都有着广泛的应用价值。
从DEM可以方便地派生出一系列适合工程应用的产品,如等高线、坡度图、坡向图、晕染图、立体透视图等。
DE也是生产数字正射影像、建立三维城市景观模型以及GIS(Geographic Information System)建库不可缺少的重要数据。
在实际生产中,采用的比较多的DEM生产模式为通过模式取样进行摄影测量或其他测量测定一系列取样点的高程数据。
目前,测绘数据作为计算基础,实际测绘误差并不大,DEM逼近手段也很高,但实际DEM精度却往往不能满足要求,矛盾是很突出的。
本文主要是讨论数字高程模型DEM在实际生产中的质量控制及其误差来源及精度的分析。
DEM的生产流程DEM生产流程见下图:其中对于特征点线的采集。
特征点为山顶、凹地、鞍部、山谷及地形突变点;特征线为山脊线、山谷线、水系、水域线、断裂线及地形变换线、双线公路等。
等高线、高程点亦可作为图内的特征点线。
可在测图方式下采集地面特征点线,所采集的特征线不要穿越房屋、桥梁等高出地面的地物。
对于平坦地区采集地面点线,不能有大面积空洞;对于等高的面状区域如水库、湖泊等,按常水位同一高度采集。
静止水域的DEM格网点高程应一致,流动水域的上下游DEM 格网点高程应梯度下降,关系合理。
在生产DEM时,矢量数据尽可能采集的比实际范围大一些。
在构TIN时,TIN网的三角形是按临近的原则找点,若边缘的矢量数据不够,容易导致DEM边界数据出错,矢量数据一般比真实DEM范围外扩300m左右,生成DEM时全部用地面矢量构TIN。
图幅与图幅之间的特征矢量数据一定要接边。
图幅内DEM的高程偏差不大于一个基本等高距。
为保证DEM的接边精度,单模型DEM之间至少有2~3排格网的重叠带,相邻图幅DEM数据重叠区公共格网点高程必须一致。
摘要:本文以广东省1:1万DEM数字高程模型整合项目的质量控制为例,探讨了在质量控制过程中如何利用有效的检查方法和工具对数字高程模型(DEM)进行检查,提高工作效率,阐述了基于ARCGIS数字高程模型(DEM)质量控制的一些方法与技巧。
关键词:1:1万数据整合DEM ArcGIS0引言数字高程模型(Digital Elevation Model DEM)是“4D”产品的一种,它是一定区域范围内对于地球表面地形地貌的一种离散数字表达。
近年来,随着数字中国地理空间框架建设的加速推进,全国各省、市、自治区测绘部门的1:1万基础地理信息数据库建设发展迅速,覆盖范围不断扩大。
为满足地理信息应用服务、地理国情监测普查、地理信息公共服务平台建设、多级基础地理信息数据快速联动更新等需要,建立了一套基础地理信息数据更新机制,综合利用各种来源的现势资料,包括最新的航空影像、最新的数字高程模型(DEM)数据、高分辨率卫星遥感影像、最新的行政勘界资料、最新的地面实测数据等,形成符合国家标准的全国横向统一、纵向衔接的基础地理信息数据库,建成优化升级版的广东省1:1万基础地理信息数据库管理系统和服务系统,最终为满足广东省1:1万数据库动态更新、快速制图、多尺度数据联动更新与集成应用服务的需要提供了数据。
因此数字高程模型(DEM)数据的质量控制显得尤为重要,由于全省数据源比较复杂,质量的控制难度很大,迫使在质量控制方面探讨更有效的检查方法和技巧,以便提高质量控制的效率。
1DEM质量控制方法研究的背景1.1影响DEM精度的主要因素及误差来源影响DEM精度的因素多种多样,其中DEM原始数据的质量是最主要的因素,自基础库建成全省第一代1: 10000DEM数据后,广东省分区域持续开展了1:10000 DEM数据更新工作,紧跟1:10000DLG框架要素和全要素数据更新进度,1:10000DEM数据的现势性与1: 10000DLG框架要素和全要素数据的现势性基本一致。