全等三角形_辅助线做法讲义
- 格式:doc
- 大小:232.50 KB
- 文档页数:11
全等三角形问题中罕有的帮助线的作法(有答案)泛论:全等三角形问题最重要的是结构全等三角形,结构二条边之间的相等,结构二个角之间的相等【三角形帮助线做法】图中有角等分线,可向双方作垂线. 也可将图半数看,对称今后关系现.角等分线平行线,等腰三角形来添. 角等分线加垂线,三线合一尝尝看.线段垂直等分线,常向两头把线连. 要证线段倍与半,延伸缩短可实验.三角形中两中点,衔接则成中位线. 三角形中有中线,延伸中线等中线.1.等腰三角形“三线合一”法:碰到等腰三角形,可作底边上的高,运用“三线合一”的性质解题2.倍长中线:倍长中线,使延伸线段与原中线长相等,结构全等三角形3.角等分线在三种添帮助线4.垂直等分线联络线段两头5.用“截长法”或“补短法”:碰到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后组成等边三角形7.角度数为30.60度的作垂线法:碰到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目标是组成30-60-90的特别直角三角形,然后盘算边的长度与角的度数,如许可以得到在数值上相等的二条边或二个角.从而为证实全等三角形创造边.角之间的相等前提.8.盘算数值法:碰到等腰直角三角形,正方形时,或30-60-90的特别直角三角形,或40-60-80的特别直角三角形,常盘算边的长度与角的度数,如许可以得到在数值上相等的二条边或二个角,从而为证实全等三角形创造边.角之间的相等前提.罕有帮助线的作法有以下几种:最重要的是结构全等三角形,结构二条边之间的相等,二个角之间的相等.1)碰到等腰三角形,可作底边上的高,运用“三线合一”的性质解题,思维模式是全等变换中的“半数”法结构全等三角形.2)碰到三角形的中线,倍长中线,使延伸线段与原中线长相等,结构全等三角形,运用的思维模式是全等变换中的“扭转”法结构全等三角形.3)碰到角等分线在三种添帮助线的办法,(1)可以自角等分线上的某一点向角的双方作垂线,运用的思维模式是三角形全等变换中的“半数”,所考常识点经常是角等分线的性质定理或逆定理.(2)可以在角等分线上的一点作该角等分线的垂线与角的双方订交,形成一对全等三角形.(3)可以在该角的双DCBAEDF CBA方上,距离角的极点相等长度的地位上截取二点,然后从这两点再向角等分线上的某点作边线,结构一对全等三角形.4)过图形上某一点作特定的等分线,结构全等三角形,运用的思维模式是全等变换中的“平移”或“翻转折叠”5)截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延伸,是之与特定线段相等,再运用三角形全等的有关性质加以解释.这种作法,合适于证实线段的和.差.倍.分等类的标题.6)已知某线段的垂直等分线,那么可以在垂直等分线上的某点向该线段的两个端点作连线,出一对全等三角形.特别办法:在求有关三角形的定值一类的问题时,常把某点到原三角形各极点的线段衔接起来,运用三角形面积的常识解答. 一.倍长中线(线段)造全等例 1.(“愿望杯”试题)已知,如图△ABC 中,AB=5,AC=3,则中线AD 的取值规模是_________.例2.如图,△ABC 中,E.F 分离在AB.AC 上,DE ⊥DF,D 是中点,试比较BE+CF 与EF 的大小.例 3.如图,△ABC 中,BD=DC=AC,E 是DC 的中点,求证:AD 等分∠BAE. 运用:1.(09崇文二模)以ABC ∆的双方AB.AC 为腰分离向外作等腰Rt ABD ∆和等腰Rt ACE ∆,90,BAD CAE ∠=∠=︒衔接DE,M.N 分离是BC.DEEDCBADCBAPQCBA的中点.探讨:AM 与DE 的地位关系及数目关系.(1)如图①当ABC ∆为直角三角形时,AM 与DE 的地位关系是, 线段AM 与DE 的数目关系是; (2)将图①中的等腰RtABD∆绕点A 沿逆时针偏向扭转︒θ(0<θ<90)后,如图②所示,(1)问中得到的两个结论是否产生转变?并解释来由. 二.截长补短1.如图,ABC ∆中,AB=2AC,AD 等分BAC ∠,且AD=BD,求证:CD ⊥AC2.如图,AD ∥BC,EA,EB 分离等分∠DAB,∠CBA,CD 过点E,求证;AB =AD+BC. 3.如图,已知在ABC内,060BAC ∠=,040C ∠=,P,Q 分离在BC,CA 上,并且AP,BQ 分离是BAC ∠,ABC ∠的角等分线.求证:BQ+AQ=AB+BP4.如图,在四边形ABCD 中,BC >BA,AD =CD,BD 等分ABC ∠,求证:0180=∠+∠C A5.如图在△ABC 中,AB >AC,∠1=∠2,P 为AD 上随意率性一点,求证;AB-AC >PB-PC 运用: 三.平移变换例1AD 为△ABC 的角等分线,直线MNDCBFED CBA⊥AD 于A.E 为MN 上一点,△ABC 周长记为A P ,△EBC 周长记为B P .求证B P >A P .例2如图,在△ABC 的边上取两点 D.E,且BD=CE,求证:AB+AC>AD+AE.四.借助角等分线造全等1.如图,已知在△ABC 中,∠B=60°,△ABC 的角等分线AD,CE订交于点O,求证:OE=OD2.如图,△ABC 中,AD 等分∠BAC,DG ⊥BC BC,DE ⊥AB 于E,DF ⊥AC 于F.(1)解释BE=CF 的来由;(2)假如AB=a ,AC=b ,求AE.BE 的长. 运用:1.如图①,OP 是∠MON 的等分线,请你运用该图形画一对以OP 地点直线为对称轴的全等三角形.请你参考这个作全等三角形的办法,解答下列问题:(1)如图②,在△ABC 中,∠ACB 是直角,∠B =60°,AD .CE 分离是∠BAC .∠BCA 的等分线,AD .CE 订交于点F .请你断定并写出FE 与FD 之间的数目关系;(2)如图③,在△ABC 中,假如∠ACB 不是直角,而(1)中的其它前提不变,请问,你在(1)中所得结论是否仍然成立?若成立,请证实;若不成立,请解释来由. 五.扭转例1正方形ABCD 中,E 为BC 上的一点,F 为(第23题图)OP AMNEB CD F ACEFBD图①图②图③ACD 上的一点,BE+DF=EF,求∠EAF 的度数.例2D 为等腰Rt ABC ∆斜边AB 的中点,DM ⊥DN,DM,DN 分离交BC,CA 于点E,F.(1)当MDN ∠绕点D 迁移转变时,求证DE=DF.(2)若AB=2,求四边形DECF 的面积例3如图,ABC ∆是边长为3的等边三角形,BDC ∆是等腰三角形,且0120BDC ∠=,以060角,使其双方分离交AB 于点M,交AC 于点N,衔接MN,则AMN ∆的周长为;运用: 1.已知四边形ABCD中,AB AD ⊥,BC CD ⊥,AB BC =,120ABC =∠,60MBN =∠,MBN ∠绕B 点扭转,它的双方分离交AD DC ,(或它们的延伸线)于E F ,.当MBN ∠绕B 点扭转到AE CF =时(如图1),易证AE CF EF +=.当MBN ∠绕B 点扭转到AE CF ≠时,在图2和图3这两种情形下,上述结论是否成立?若成立,请赐与证实;若不成立,线段AE CF ,,EF 又有如何的数目关系?请写出你的猜测,不需证实.2.(西城09年一模)已知,PB=4,以AB 为一边作正方形(图1) A B CDEFM N(图2)C(图3)ABC DE F MNDC BAABCD,使P.D 两点落在直线AB 的两侧.(1)如图,当∠APB=45°时,求AB 及PD 的长;(2)当∠APB 变更,且其它前提不变时,求PD 的最大值,及响应∠APB 的大小.3.在等边ABC ∆的双方AB.AC 地点直线上分离有两点M.N,D 为ABC 外一点,且︒=∠60MDN ,︒=∠120BDC ,BD=DC. 探讨:当M.N 分离在直线AB.AC 上移动时,BM.NC.MN 之间的数目关系及AMN ∆的周长Q 与等边ABC ∆的周长L 的关系.图1 图 2图3(I )如图1,当点M.N 边AB.AC 上,且DM=DN 时,BM.NC.MN 之间的数目关系是; 此时=LQ; (II )如图2,点M.N 边AB.AC 上,且当DM ≠DN 时,猜测(I )问的两个结论还成立吗?写出你的猜测并加以证实;(III ) 如图3,当M.N 分离在边AB.CA 的延伸线上时, 若AN=x ,则Q=(用x .L 暗示). 参考答案与提醒 一.倍长中线(线段)造全等例 1.(“愿望杯”试题)已知,如图△ABC 中,AB=5,AC=3,则中线AD 的取值规模是_________.解:延伸AD 至E 使AE =2AD,连BE,由三角形性质知 AB-BE <2AD<AB+BE 故AD 的取值规模是1<AD<4EDF CBA例2.如图,△ABC 中,E.F 分离在AB.AC 上,DE ⊥DF,D 是中点,试比较BE+CF 与EF 的大小.解:(倍长中线,等腰三角形“三线合一”法)延伸FD 至G 使FG =2EF,连BG,EG, 显然BG =FC,在△EFG 中,留意到DE ⊥DF,由等腰三角形的三线合一知 EG =EF在△BEG 中,由三角形性质知 EG<BG+BE 故:EF<BE+FC例 3.如图,△ABC 中,BD=DC=AC,E 是DC 的中点,求证:AD 等分∠BAE.解:延伸AE 至G 使AG =2AE,连BG,DG, 显然DG =AC,∠GDC=∠ACD 因为DC=AC,故∠ADC=∠DAC 在△ADB 与△ADG 中, BD =AC=DG,AD =AD,∠ADB=∠ADC+∠ACD=∠ADC+∠GDC =∠ADG故△ADB ≌△ADG,故有∠BAD=∠DAG,即AD 等分∠BAE 运用:1.(09崇文二模)以的双方AB.AC 为腰分离向外作等腰Rt ABD ∆和等腰Rt ACE ∆,90,BAD CAE ∠=∠=︒衔接DE,M.N 分离是ABC ∆BC.DE的中点.探讨:AM与DE的地位关系及数目关系.∆为直角三角形时,AM与DE的地位关系是,(1)如图①当ABC线段AM与DE的数目关系是;(2)将图①中的等腰Rt ABD∆绕点A沿逆时针偏向扭转︒θ(0<θ<90)后,如图②所示,(1)问中得到的两个结论是否产生转变?并解释来由.C∴DE AM ⊥,DE AM 21=二.截长补短1.如图,ABC ∆中,AB=2AC,AD 等分BAC ∠,且AD=BD,求证:CD ⊥AC 解:(截长法)在AB 上取中点F,连FD△ADB 是等腰三角形,F 是底AB 中点,由三线合一知 DF ⊥AB,故∠AFD =90° △ADF ≌△ADC (SAS )∠ACD =∠AFD =90°即:CD ⊥AC2.如图,AD ∥BC,EA,EB 分离等分∠DAB,∠CBA,CD 过点E,求证;AB =AD+BC解:(截长法)在AB 上取点F,使AF =AD,△ADE ≌△AFE (SAS )∠ADE =∠AFE, ∠ADE+∠BCE =180° ∠AFE+∠BFE =180°CBA故∠ECB =∠EFB △FBE ≌△CBE (AAS ) 故有BF =BC 从而;AB =AD+BC3.如图,已知在△ABC 内,060BAC ∠=,040C ∠=,P,Q 分离在BC,CA 上,并且AP,BQ 分离是BAC ∠,ABC ∠的角等分线.BQ+AQ=AB+BP解:(补短法, 盘算数值法)延伸AB 至D,使BD BP,连DP在等腰△BPD 中,可得∠BDP =40° 从而∠BDP =40°=∠ACP △ADP ≌△ACP (ASA ) 故AD =AC又∠QBC =40°=∠QCB 故 BQ =QC BD =BP从而BQ+AQ=AB+BP4.如图,在四边形ABCD 中,BC >BA,AD =CD,BD 等分ABC ∠,求证: 0180=∠+∠C A解:(补短法)延伸BA 至F,使BF =BC,连△BDF ≌△BDC (SAS ) 故∠DFB =∠DCB ,FD =DC 又AD =CD故在等腰△BFD中∠DFB=∠DAF故有∠BAD+∠BCD=180°5.如图在△ABC中,AB>AC,∠1=∠2,P为AD上随意率性一点,求证;AB-AC>PB-PC解:(补短法)延伸AC至F,使AF=AB,连PD△ABP≌△AFP(SAS)故BP=PF由三角形性质知PB-PC=PF-PC < CF=AF-AC=AB-AC运用:剖析:此题衔接AC,把梯形的问题转化成等边三角形的问题,然后运用已知前提和等边三角形的性质经由过程证实三角形全等解决它们的问题.B∴FEC AED ∠=∠ 在ADE ∆与FCE ∆中CFE EAD ∠=∠,EF AE =,FEC AED ∠=∠∴FCE ADE ∆≅∆ ∴FC AD = ∴AE AD BC +=点评:此题的解法比较新鲜,把梯形的问题转化成等边三角形的问题,然后运用全等三角形的性质解决. 三.平移变换例1 AD 为△ABC 的角等分线,直线MN ⊥AD 于A.E 为MN 上一点,△ABC 周长记为A P ,△EBC 周长记为B P .求证B P >A P .解:(镜面反射法)延伸BA 至F,使AF =AC,连FEAD 为△ABC 的角等分线, MN ⊥AD 知∠FAE =∠CAE 故有△FAE ≌△CAE (SAS ) 故EF =CE在△BEF 中有: BE+EF>BF=BA+AF=BA+AC 从而P B =BE+CE+BC>BF+BC=BA+AC+BC=P A例 2 如图,在△ABC 的边上取两点 D.E,且BD=CE,求证:O ED CB AAB+AC>AD+AE.证实:取BC中点M,连AM并延伸至N,使MN=AM,连BN,DN.∵BD=CE,∴DM=EM,∴△DMN≌△EMA(SAS),∴DN=AE,同理BN=CA.延伸ND交AB于P,则BN+BP>PN,DP+PA>AD,相加得BN+BP+DP+PA>PN+AD,各减去DP,得BN+AB>DN+AD,∴AB+AC>AD+AE.四.借助角等分线造全等1.如图,已知在△ABC中,∠B=60°,△ABC的角等分线AD,CE 订交于点O,求证:OE=OD,DC+AE =AC证实(角等分线在三种添帮助线,盘算数值法)∠B=60度,则∠BAC+∠BCA=120度;AD,CE均为角等分线,则∠OAC+∠OCA=60度=∠AOE=∠COD;∠AOC=120度.在AC上截取线段AF=AE,衔接OF.又AO=AO;∠OAE=∠OAF.则⊿OAE≌ΔOAF(SAS),OE=OF;AE=AF;∠AOF=∠AOE=60度.则∠COF=∠AOC-∠AOF=60度=∠COD;又CO=CO;∠OCD=∠OCF.故⊿OCD≌ΔOCF(SAS),OD=OF;CD=CF.OE=ODDC+AE=CF+AF=AC.2.如图,△ABC中,AD等分∠BAC,DG⊥BC且等分BC,DE⊥AB于E,DF⊥AC于F.(1)解释BE=CF的来由;(2)假如AB=a,AC=b,求AE.BE的长.解:(垂直等分线联络线段两头)衔接BD,DCDG垂直等分BC,故BD=DC因为AD等分∠BAC, DE⊥AB于E,DF⊥ACEDGFC BA于F,故有 ED =DF故RT △DBE ≌RT △DFC (HL ) 故有BE =CF. AB+AC =2AE AE =(a+b )/2 BE=(a-b)/2 运用:1.如图①,OP 是∠MON 的等分线,请你运用该图形画一对以OP 地点直线为对称轴的全等三角形.请你参考这个作全等三角形的办法,解答下列问题:(1)如图②,在△ABC 中,∠ACB 是直角,∠B =60°,AD .CE 分离是∠BAC .∠BCA 的等分线,AD .CE 订交于点F .请你断定并写出FE 与FD 之间的数目关系;(2)如图③,在△ABC 中,假如∠ACB 不是直角,而(1)中的其它前提不变,请问,你在(1)中所得结论是否仍然成立?若成立,请证实;若不成立,请解释来由. 解:(1)FE 与FD 之间的数目关系为FD FE = (2)答:(1)中的结论FD FE =仍然成立.证法一:如图1,在AC 上截取AE AG =,贯穿连接FG ∵21∠=∠,AF 为公共边, ∴AGF AEF ∆≅∆(第23题图) OP A MN E B C D F ACEFBD图①图②图③FED CBA∴AFG AFE ∠=∠,FG FE =∵︒=∠60B ,AD .CE 分离是BAC ∠.BCA ∠的等分线 ∴︒=∠+∠6032∴︒=∠=∠=∠60AFG CFD AFE ∴︒=∠60CFG∵43∠=∠及FC 为公共边 ∴CFD CFG ∆≅∆ ∴FD FG = ∴FD FE =证法二:如图2,过点F 分离作AB FG ⊥于点G ,BC FH ⊥于点H ∵︒=∠60B ,AD .CE 分离是BAC ∠.BCA ∠∴可得︒=∠+∠6032,F 是ABC ∆的心坎 ∴160∠+︒=∠GEF ,FG FH =又∵1∠+∠=∠B HDF ∴HDF GEF ∠=∠ ∴可证DHF EGF ∆≅∆ ∴FD FE = 五.扭转例 1 正方形ABCD 中,E 为BC 上的一点,F 为CD 上的一点,BE+DF=EF,求∠EAF 的度数.证实:将三角形ADF 绕点A 顺时针扭转90度,至三角形ABG图 1图 2则GE=GB+BE=DF+BE=EF又AE=AE,AF=AG,所以三角形AEF全等于AEG所以∠EAF=∠GAE=∠BAE+∠GAB=∠BAE+∠DAF又∠EAF+∠BAE+∠DAF=90所以∠EAF=45度例 2 D为等腰Rt ABC∆斜边AB的中点,DM⊥DN,DM,DN分离交BC,CA于点E,F.(1)当MDN∠绕点D迁移转变时,求证DE=DF.(2)若AB=2,求四边形DECF的面积.解:(盘算数值法)(1)衔接DC,D为等腰Rt ABC∆斜边AB的中点,故有CD⊥AB,CD=DA CD等分∠BCA=90°,∠ECD=∠DCA=45°因为DM⊥DN,有∠EDN=90°因为 CD⊥AB,有∠CDA=90°从而∠CDE=∠FDA=故有△CDE≌△ADF(ASA)故有DE=DF(2)S△ABC=2, S四DECF= S△ACD=1例3 如图,ABC∆是等腰三角形,且∆是边长为3的等边三角形,BDC60角,使其双方分离交AB于点M,∠=,以D为极点做一个0BDC120交AC于点N,衔接MN,则AMN∆的周长为;解:(图形补全法, “截长法”或“补短法”, 盘算数值法) AC 的延伸线与BD的延伸线交于点F,在线段CF上取点E,使CE=BM∵△ABC为等边三角形,△BCD为等腰三角形,且∠BDC=120°,∴∠MBD=∠MBC+∠DBC=60°+30°=90°,∠DCE=180°-∠ACD=180°-∠ABD=90°,又∵BM=CE,BD=CD,∴△CDE≌△BDM,∴∠CDE=∠BDM,DE=DM,∠NDE=∠NDC+∠CDE=∠NDC+∠BDM=∠BDC-∠MDN=120°-60°=60°,∵在△DMN和△DEN中,DM=DE∠MDN=∠EDN=60°DN=DN∴△DMN≌△DEN,∴MN=NE∵在△DMA和△DEF中,DM=DE∠MDA=60°- ∠MDB=60°- ∠CDE=∠EDF (∠CDE=∠BDM)∠DAM=∠DFE=30° ∴△DMN ≌△DEN (AAS), ∴MA=FEAMN ∆的周长为AN+MN+AM=AN+NE+EF=AF=6运用: 1.已知四边形ABCD中,AB AD ⊥,BC CD ⊥,AB BC =,120ABC =∠,60MBN =∠,MBN ∠绕B 点扭转,它的双方分离交AD DC ,(或它们的延伸线)于E F ,.当MBN ∠绕B 点扭转到AE CF =时(如图1),易证AE CF EF +=.当MBN ∠绕B 点扭转到AE CF ≠时,在图2和图3这两种情形下,上述结论是否成立?若成立,请赐与证实;若不成立,线段AE CF ,,EF 又有如何的数目关系?请写出你的猜测,不需证实.解:(1)∵AD AB ⊥,CD BC ⊥,BC AB =,CF AE =∴CBF ABE ∆≅∆(SAS ); ∴CBF ABE ∠=∠,BF BE =∵︒=∠120ABC ,︒=∠60MBN∴︒=∠=∠30CBF ABE ,BEF ∆为等边三角形 ∴BF EF BE ==,BE AE CF 21==∴EF BE CF AE ==+(图1) A B C D EF MN (图2)AB C DE F MN(图3)ABC DE F MN(2)图2成立,图3不成立.证实图2,延伸DC 至点K ,使AE CK =,衔接BK 则BCK BAE ∆≅∆∴BK BE =,KBC ABE ∠=∠ ∵︒=∠60FBE ,︒=∠120ABC ∴︒=∠+∠60ABE FBC ∴︒=∠+∠60KBC FBC ∴︒=∠=∠60FBE KBF ∴EBF KBF ∆≅∆ ∴EF KF = ∴EF CF KC =+ 即EF CF AE =+图3不成立,AE .CF .EF 的关系是EF CF AE =- 2.(西城09年一模)已知以AB 为一边作正方形ABCD,使P.D 两点落在直线AB 的两侧.(1)如图,当∠APB=45°时,求AB 及PD 的长;(2)当∠APB 变更,且其它前提不变时,求PD 的最大值,及响应∠APB 的大小.剖析:(1)作帮助线,过点A 作PB AE ⊥于点E ,在PAE Rt ∆中,已知APE ∠,AP 的值,依据三角函数可将AE ,PE 的值求出,由PB 的值,可求BE 的值,在ABE Rt ∆中,依据勾股定理可将AB 的值求出;求PD 的值有两种解法,解法一:可将PAD ∆绕点A 顺时针扭转︒90得到K ABCDE FMN图 2AB P '∆,可得AB P PAD '∆≅∆,求PD 长即为求B P '的长,在P AP Rt '∆中,可将P P '的值求出,在B P P Rt '∆中,依据勾股定理可将B P '的值求出;解法二:过点P 作AB 的平行线,与DA 的延伸线交于F ,交PB 于G ,在AEG Rt ∆中,可求出AG ,EG 的长,进而可知PG 的值,在PFG Rt ∆中,可求出PF ,在PDF Rt ∆中,依据勾股定理可将PD 的值求出;(2)将PAD ∆绕点A 顺时针扭转︒90,得到AB P '∆,PD 的最大值即为B P '的最大值,故当P '.P .B 三点共线时,B P '取得最大值,依据PB P P B P +'='可求B P '的最大值,此时︒='∠-︒=∠135180P AP APB .解:(1)①如图,作PB AE ⊥于点E ∵PAE Rt ∆中,︒=∠45APB ,2=PA∴()1222===PE AE∵4=PB∴3=-=PE PB BE 在ABE Rt ∆中,︒=∠90AEB ∴1022=+=BE AE AB②解法一:如图,因为四边形ABCD 为正方形,可将将PAD ∆绕点A 顺时针扭转︒90得到AB P '∆,,可得AB P PAD '∆≅∆,B P PD '=,A P PA '=∴︒='∠90P PA ,︒='∠45P AP ,︒='∠90PB P ∴2='P P ,2=PA∴52422222=+=+'='=PB P P B P PD ;解法二:如图,过点P 作AB 的平行线,与DA 的延伸线交于F ,设DA 的延伸线交PB 于G .EPA DCBP ′PA CBDEP ′PACBDP ′PACBD在AEGRt ∆中,可得310cos cos =∠=∠=ABE AE EAG AE AG ,31=EG ,32=-=EG PE PG在PFG Rt ∆中,可得510cos cos =∠=∠=ABE PG FPG PG PF ,1510=FG 在PDF Rt ∆中,可得(2)如图所示,将PAD ∆绕点A 顺时针扭转︒90,得到AB P '∆,PD 的最大值,即为B P '的最大值∵B P P '∆中,PB P P B P +'' ,22=='PA P P ,4=PB 且P .D 两点落在直线AB 的两侧∴当P '.P .B 三点共线时,B P '取得最大值(如图)此时6=+'='PB P P B P ,即B P '的最大值为6此时︒='∠-︒=∠135180P AP APB3.在等边ABC ∆的双方AB.AC 地点直线上分离有两点M.N,D 为ABC 外一点,且︒=∠60MDN ,︒=∠120BDC ,BD=DC. 探讨:当M.N 分离在直线AB.AC 上移动时,BM.NC.MN 之间的数目关系及AMN ∆的周长Q 与等边ABC ∆的周长L 的关系.图1 图2图3(I )如图1,当点M.N 边AB.AC 上,且DM=DN 时,BM.NC.MN 之G FP A CBDE间的数目关系是; 此时=LQ; (II )如图2,点M.N 边AB.AC 上,且当DM ≠DN 时,猜测(I )问的两个结论还成立吗?写出你的猜测并加以证实;(III ) 如图3,当M.N 分离在边AB.CA 的延伸线上时, 若AN=x ,则Q=(用x .L 暗示).剖析:(1)假如DN DM =,DNM DMN ∠=∠,因为DC BD =,那么︒=∠=∠30DCB DBC ,也就有︒=︒+︒=∠=∠903060NCD MBD ,直角三角形MBD .NCD 中,因为DC BD =,DN DM =,依据HL 定理,两三角形全等.那么NC BM =,︒=∠=∠60DNC BMD ,三角形NCD 中,︒=∠30NDC ,NC DN 2=,在三角形DNM 中,DN DM =,︒=∠60MDN ,是以三角形DMN 是个等边三角形,是以BM NC NC DN MN +===2,三角形AMN 的周长=++=MN AN AM QABAC AB NC MB AN AM 2=+=+++,三角形ABC 的周长ABL 3=,是以3:2:=L Q .(2)假如DN DM ≠,我们可经由过程构建全等三角形来实现线段的转换.延伸AC 至E ,使BM CE =,衔接DE .(1)中我们已经得出,︒=∠=∠90NCD MBD ,那么三角形MBD 和ECD 中,有了一组直角,CEMB =,DCBD =,是以两三角形全等,那么DE DM =,CDE BDM ∠=∠,︒=∠-∠=∠60MDN BDC EDN .三角形MDN 和EDN中,有DE DM =,︒=∠=∠60MDN EDN ,有一条公共边,是以两三角形全等,NE MN =,至此我们把BM 转换成了CE ,把MN 转换成了NE ,因为CE CN NE +=,是以CN BM MN +=.Q与L 的关系的求法同(1),得出的成果是一样的.图 1N MAD CB (3)我们可经由过程构建全等三角形来实现线段的转换,思绪同(2)过D 作MDB CDH ∠=∠,三角形BDM 和CDH 中,由(1)中已经得出的︒=∠=∠90MB DCH ,我们做的角CDH BDM ∠=∠,CD BD =,是以两三角形全等(ASA ).那么CH BM =,DH DM =,三角形MDN 和NDH 中,已知的前提有DH MD =,一条公共边ND ,要想证得两三角形全等就须要知道HDN MDN ∠=∠,因为MDB CDH ∠=∠,是以︒=∠=∠120BDC MDH ,因为︒=∠60MDN ,那么︒-︒=∠60120NDH︒=60,是以NDH MDN ∠=∠,如许就组成了两三角形全等的前提.三角形MDN 和DNH 就全等了.那么BM AC AN NH NM -+==,三角形AMN 的周长+++=++=BM AB AN MN AM AN QAB AN BM AC AN 22+=-+.因为x AN =,L AB 31=,是以三角形AMN 的周长L x Q 322+=. 解:(1)如图1,BM .NC .MN 之间的数目关系:MN NC BM =+;此时32=LQ .(2)猜测:结论仍然成立.证实:如图2,延伸AC 至E ,使BM CE =,衔接DE ∵CD BD =,且︒=∠120BDC ∴︒=∠=∠30DCB DBC 又ABC ∆是等边三角形 ∴︒=∠=∠90NCD MBD 在MBD ∆与ECD ∆中 ∴ECD MBD ∆≅∆(SAS )E 图 2NMAD CB NA∴DE DM =,CDE BDM ∠=∠ ∴︒=∠-∠=∠60MDN BDC EDN 在MDN ∆与EDN ∆中 ∴EDN MDN ∆≅∆(SAS ) ∴BM NC NE MN +== 故AMN∆的周长=++=MN AN AM Q ()()AB AC AB NC AN BM AM 2=+=+++而等边ABC ∆的周长AB L 3= ∴3232==ABAB LQ(3)如图3,当M .N 分离在AB .CA 的延伸线上时,若x AN =,则L x Q 322+=(用x .L 暗示).点评:本题考核了三角形全等的剖断及性质;标题中线段的转换都是依据全等三角形来实现的,当题中没有显著的全等三角形时,我们要依据前提经由过程作帮助线来构建于已知和所求前提相干的全等三角形.。
知识精讲一.中点类辅助线作法见到中线(中点),我们可以联想的内容无非是倍长中线或者是与中点有关的一条线段,尤其是在涉及线段的等量关系时,倍长中线的应用更是较为常见,常见添加方法如下图(AD是丄ABC底边的中线)..角平分线类辅助线作法有下列三种作辅助线的方式:1•由角平分线上的一点向角的两边作垂线;2 •过角平分线上的一点作角平分线的垂线,从而形成等腰三角形;3. OA =0B,这种对称的图形应用得也较为普遍.三•截长补短类辅助线作法截长补短法,是初中数学几何题中一种辅助线的添加方法,也是把几何题化难为易的一种思想.所谓“截长”,就是将三者中最长的那条线段一分为二,使其中的一条线段等于已知的两条较短线段中的一条,然后证明其中的另一段与已知的另一条线段相等;所谓“补短”,就是将一个已知的较短的线段延长至与另一个已知的较短的长度相等,然后求出延长后的线段与最长的已知线段的关系.有的是采取截长补短后,使之构成某种特定的三角形进行求解.三点剖析•考点:全等三角形辅助线的作法全等三角形辅助线的作法CE图1C•重难点:中点类、角平分线类、截长补短类辅助线作法三.易错点:1•辅助线只是一个指导方法,出现相关条件或结论时不一定要作辅助线或者是按照模型作辅助线,关键是如何分析题目;2•辅助线不是随便都可以作的,比如“作一条线段等于另外一条线段且与某条线段夹角是多少度”这种辅助线就不一定能作出来.了』题模精讲题模一:中点类例1.1.1 已知:△ ABC中,AD是BC边上的中线,AB =8 , AC = 6,试求AD的取值范围.【答案】 1 :::AD :7【解析】该题考查了三角形三边关系和三角形的全等.延长AD至E,使得DE =AD,连结CE在^ A甕和△D ECD中1. ■■: ZADB ZEDCI•••△ ABDNDECD (SAS)••• AB 二CE• AE 的取值范围为CE - AC ::: AE ::: CE - AC2 ::: AE <141 ::AD ::7例1.1.2 如图所示,在ABC中,AB =AC ,延长AB到D,使BD =AB , E为AB的中点,连接CE、CD,求证:CD =2EC .C【答案】见解析【解析】解法一:如图所示,延长CE到F ,使EF二CE,连接BF.容易证明AEBF 也AEAC,从而BF =AC,而AC =AB =BD,故BF =BD .注意至U . CBD =/BAC . ACB =/BAC . ABC ,.CBF - . ABC . FBA 二.ABC . CAB ,故.CBF - . CBD,而BC 公用,故厶CBF :CBD , 因此CD =CF =2CE .解法二:如图所示,取CD的中点G,连接BG .因为G是CD的中点,B是AD的中点,1 1故BG是.DAC的中位线,从而BG二AC二AB二BE ,2 2由BG // AC 可得.GBC 二.ACB = ABC 二.EBC,故.BCE 也.:BCG ,从而EC =GC , CD =2CE .题模二:角平分线类例 1.2.1 如图,.A • . D =180 , BE 平分.ABC , CE 平分.BCD,点E 在AD 上.①探讨线段AB、CD和BC之间的等量关系.②探讨线段BE与CE之间的位置关系.【答案】见解析【解析】①AB CD =BC :②BE_CE •证明如下:在线段BC上取点F,使FB =AB,连结EF • 在. ABE和.:FBE中AB 二FB.ABE FBEBE 二BE.•. ABE 也FBE••• . AEB = FEB , . BAE =. BFE••• . A D =180而.BFE . CFE =180•. CDE =. CFE在.CDE和.:CFE中^CDE ZCFE;_DCE =• FCECE 二CE•CDE也CFE•. DEC - . FEC , CD =CF•AB CD = BC , . BEC 二.BEF . CEF = 90BD 为/ ABC 的平分线,CEL BE ,•/ •••△ BEF ◎△ BEC ,「. BC =BF , CE =FE ••/ . BAC =90 , CEL BE ,「. . ABD 二.ACF ,T AB 二 AC , •△ ABD 也厶 ACF , • BD =CF .二 BD =2CE •又例 1.2.3 已知 ZMAN =120。
全等三角形六种辅助线方法及例题全等三角形是初中数学中一个非常重要的概念,掌握全等三角形的判定方法和辅助线方法对于解题至关重要。
本文将介绍全等三角形的六种辅助线方法,并结合例题进行详细讲解。
一、辅助线法1.等角分线法:将三角形内角的平分线相互交点构成的点与三角形的另外一个顶点相连,得到一条辅助线。
这条辅助线将三角形分成两个等角的小三角形,从而得到相似或全等三角形。
2.中线法:将三角形任意两边的中点相连,得到三角形的中线。
相等的中线将三角形分成两个面积相等的小三角形,从而得到相似或全等三角形。
3.高线法:将三角形内任意一条边的垂线向另外两边引出,得到三角形的高线。
相等的高线将三角形分成两个面积相等的小三角形,从而得到相似或全等三角形。
4.角平分线法:将三角形内角的平分线相互交点构成的点相连,得到三角形的角平分线。
相等的角平分线将三角形分成两个面积相等的小三角形,从而得到相似或全等三角形。
5.角平分线中垂线法:将三角形内角的平分线的中垂线相互交点构成的点相连,得到三角形的角平分线中垂线。
相等的角平分线中垂线将三角形分成两个面积相等的小三角形,从而得到相似或全等三角形。
6.外心连线法:将三角形外接圆心与三角形三个顶点分别相连,得到三条辅助线。
这三条辅助线相等,将三角形分成三个面积相等的小三角形,从而得到相似或全等三角形。
二、例题解析1.已知△ABC,点D,E分别为BC,AB边上的中点,连接AD,BE相交于点F,求证:△DEF≌△ABC。
解析:由题意可知,△ABC是由两个等腰三角形组成的,因此可使用中线法证明两个三角形的全等。
由于D,E分别是BC,AB边上的中点,因此DE是AC中线,即DE=1/2AC;同理,AE是BC中线,AF=1/2BC。
因此,△ADB和△AEC是等腰三角形,且AD=EC,AB=AB,∠BAC=∠BAC,因此△ADB≌△AEC。
又因为DE是AC中线,BF是AE中线,因此DE=1/2AC,BF=1/2AE。
三角形全等证明常见做辅助线方法一、遇到三角形中线时常见的辅助线若遇到三角形的中线,可倍长中线,使延长线段与原中线长相等,构造全等三角形。
(倍长中线法或“旋转”全等)1、如图,AD 为 △ABC 的中线,求证:AB +AC >2AD 。
(三角形一边上的中线小于其他两边之和的一半)2、已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 。
3、如图,已知:AD 是△ABC 的中线,且CD=AB ,AE 是△ABD 的中线,求证:AC=2AE.C二、遇到角平分线时常见的辅助线1.角平分线上点向角两边作垂线构造全等 过角平分线上一点向角两边作垂线,利用角平分线上的点到角两边距离相等的性质来证明问题。
(作垂线)2.截取构造全等(截长法、补短法)如图1-1,∠AOC=∠BOC ,如取OE=OF ,并连接DE 、DF ,则有△OED ≌△OFD ,从而为我们证明线段、角相等创造了条件。
ADBC图1-1B3.延长垂线段(延长法)遇到垂直于角平分线的线段,则延长该线段与角的另一边相交,构成等腰三角形。
4.作平行线①、以角平分线上一点作角的另一边的平行线,构造等腰三角形,图4-1。
②、通过一边上的点作角平分线的平行线与另外一边的反向延长线相交,从而也构造等腰三角形,图4-2。
图4-2图4-1ABCBIG4、已知:如图2-6,在正方形ABCD 中,E 为CD 的中点,F 为BC上的点,∠FAE=∠DAE 。
求证:AF=AD+CF 。
5、已知CE 、AD 是△ABC 的角平分线,∠B=60°,求证:AC=AE+CD6、已知:如图在△ABC 中,∠A=90°,AB=AC ,BD 是∠ABC 的平分线,求证:BC=AB+AD三、截长补短法(适合于证明线段的和、差、倍、分等类题目)截长法:在长线段上截取与两条线段中的一条相等的一段,证明剩余的线段与另一段相 等(截取----全等----等量代换)图2-6ECDABCD AEBDC补短法:延长其中一短线段使之与长线段相等,再证明延长段与另一短线段相等(延长----全等----等量代换)①、对于证明有关线段和差的不等式,通常会联系到三角形中两线段之和大于第三边、之差小于第三边,故可想办法将其放在一个三角形中证明。
倍长中线专题初中阶段三角形有三条重要的、也是最基本的线段:三角形的高线、中线、角平分线。
三种线段各有其重要信息反馈,就中线而言,它具有的功能:①必有相等的线段②必有相等的面积③必有倍长中线构成全等。
本专题只讨论倍长中线的问题。
【基本原理】:如图所示,AD是△ABC的中线,延长AD至E点,使DE=AD,得到△ADC≌△EDB。
口诀:图形有中线,倍长延中线,连接另一端,全等尽呈现。
【模型实例】:如图,在△ABC 中,AD 是BC 边的中线,E 是AD 上一点,连接BE 并延长交AC 于F 点,AF=EF ,求证:AC=BE证明: 如图所示。
延长AD 至G 点,使DG=AD ,连接BG 。
在△ADC 与△GDB 中,⎪⎩⎪⎨⎧=∠=∠=CD BD GDB ADC GD AD∴△ADC ≌△GDB∴BG =AC ,∠1=∠G又因为AF=EF∴∠1=∠2=∠3∴∠3=∠G∴BG=BE (等角对等边)∴AC=BE②证全等①作倍长中线 ③列出需要用的结果④转化替代 ⑤得出结果【练习1】:如图,在在△ABC中,D为BC的中点,求证:AD+>AB2AC【练习2】:如图,在△ABC中,D为B C的中点,且AD是角平分线。
求证:AB=AC【练习3】:AD是△ABC的中线,分别以AB边、AC边为直角边向外作等腰直角三角形,求证:EF=2AD【练习4】:在四边形ABCD中,AB∥DC,E为BC边的中点,∠BAE=∠EAF,AF与DC的延长线相交于F点。
试探究线段AB与AF、CF之间的数量关系,并证明你的结论。
截长补短专题要证明两条线段之和等于第三条线段,可以采用“截长补短”法。
①截长法:把较长的线段截取一段等于两较短线中的一条;②补短法:把两条较短的线段补成一条,再证与长线段相等。
【模型实例】:如图,△ABC中,∠1=∠2,∠B=2∠C。
求证:AC=AB+BD 方法一:截长(利用角平分线构建全等三角形)分析:如图,在AC上截AE=AB,连接DE。
全等三角形问题中常见的辅助线的作法(有答案)总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。
从而为证明全等三角形创造边、角之间的相等条件。
8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。
常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。
1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”法构造全等三角形.3)遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。
全等三角形中常见的辅助线的作法全等三角形问题中最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等,本节来介绍下在全等三角形中常见的几种辅助线的作法:图中有角平分线,可向两边作垂线。
线段垂直平分线,常向两端把线连。
线段计算和与差,巧用截长补短法。
三角形里有中线,延长中线至两倍。
在作辅助线的时候要注意以下两点:①在原图形中作辅助线要用“虚线”;②在证明过程中要描述添加方法。
一、用角平分线的性质构造全等例1、如图,在四边形ABCD 中, ∠A= ∠D =90°, BE、CE 分别是∠B 和∠C 的角平分线。
求证:BC= AB + CD。
证明:过点E 作EF⊥BC ,垂足为点F∵BE 是∠B 的角平分线,∠EFB = ∠A = 90°∴EF = AE在△EFB 和△EAB 中∵∠EFB = ∠A = 90°,EF = AE ,EB = EB∴△EFB ≌△EAB (HL)∴BF = BA同理可证:CF = CD∴BC = CF + BF = AB + CD二、连接法例题2、如图,在五边形ABCDE中,点M 是CD 的中点,AB = AE , BC = ED ,AM⊥CD 。
求证:∠B = ∠E 。
连接AC ,AD∵点M 是CD 的中点,AM⊥CD∴AC = AD在△ABC 和△AED 中∵AB = AE , BC = ED,AC = AD∴△ABC ≌△AED (SSS)∴∠B = ∠E三、用“截长法”或“补短法”构造全等三角形例题3、如图,在△ABC中,AD是∠BAC的角平分线,∠C = 2∠B 。
求证:AB = AC + CD 。
证明:方法一、截长法在线段AB 上取点E ,使得AE = AC , 连接ED∵AD是∠BAC的角平分线∴∠EAD = ∠CAD在△EAD 和△CAD 中∵AE = AC , ∠EAD = ∠CAD ,AD = AD∴△EAD ≌△CAD∴ED = CD , ∠AED = ∠ACD又∵∠AED = ∠B + ∠EDB (三角形外角和定理),∠ACD = 2∠B∴∠B + ∠EDB = 2∠B (等量代换)∴∠B = ∠EDB∴BE = ED (等角对等边)又∵AB = AE + EB∴AB = AC + CD (等量代换)方法二、补短法延长线段AC 至点 F ,使CF = CD ,连接DF略证:由∠ACB = 2∠B = ∠CDF + ∠F ,∠CDF = ∠F可得∠B = ∠F在证△ABD ≌△AFD (AAS)可得AB = AF而AF = AC + CF = AC + CD即证AB = AC + CD注:遇到有二条线段长之和等于第三条线段的长,常用此方法。
全等三角形几何证明常用辅助线
辅助线证明三角形全等
一、辅助线定义
辅助线,又称辅助规则,是专门用来证明几何结论的辅助线,它可以
指向几何结论的前提或结果,以更清晰地证明几何结论。
二、辅助线用法
1.在证明三角形全等的情况下,用辅助线来证明角的相等性:用一条
辅助线平分角A,然后将辅助线平移到角B上,如果辅助线可以在角B上
的两点重合,则说明角A和角B是相等的。
2.在证明三角形全等的情况下,用辅助线来证明边的相等性:用一条
辅助线平分边AB,然后将辅助线平移到边CD上,如果辅助线可以在边CD
上的两点重合,则说明边AB和边CD是相等的。
3.在证明三角形全等的情况下,用辅助线来证明两个三角形的相等性:在三角形ABC中画出一条辅助线,然后将该辅助线平移到三角形CDE中,
如果辅助线可以在三角形CDE中的三个点重合,则说明两个三角形ABC和CDE是相等的。
三、辅助线证明三角形全等的步骤
1.识别出待证明的相关图形,并将其准确地表示在平面上。
2.根据定义,确定三角形全等的前提条件,并假设三角形全等。
3.画出两个三角形之间的辅助线,如果相交点都在两个三角形相交的
边上,证明该辅助线可以同时在两个三角形中存在。
全等三角形问题中常见的辅助线的作法巧添辅助线一——倍长中线【夯实基础】例:ABC ∆中,AD 是BAC ∠的平分线,且BD=CD ,求证AB=AC 方法1:作D E ⊥AB 于E ,作D F ⊥AC 于F ,证明二次全等 方法2:辅助线同上,利用面积 方法3:倍长中线AD【方法精讲】常用辅助线添加方法——倍长中线△ABC 中 方式1: 延长AD 到E ,AD 是BC 边中线使DE=AD , 连接BE方式2:间接倍长作CF ⊥AD 于F , 延长MD 到N , 作BE ⊥AD 的延长线于E 使DN=MD ,连接BE 连接CD【经典例题】例1:△ABC 中,AB=5,AC=3,求中线AD 的取值范围例2:已知在△ABC 中,AB=AC ,D 在AB 上,E 在AC 的延长线上,DE 交BC 于F ,且DF=EF ,求证:BD=CE例3:已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE=AC ,延长BE 交AC 于F ,求证:AF=EF提示:倍长AD 至G ,连接BG ,证明ΔBDG ≌ΔCDA 三角形BEG 是等腰三角形A D ABCED AB C F E D BA N DB A M FEC FC AD例4:已知:如图,在ABC ∆中,AC AB ≠,D 、E 在BC 上,且DE=EC ,过D 作BA DF //交AE 于点F ,DF=AC. 求证:AE 平分BAC ∠提示:方法1:倍长AE 至G ,连结DG 方法2:倍长FE 至H ,连结CH例5:已知CD=AB ,∠BDA=∠BAD ,AE 是△ABD 的中线,求证:∠C=∠BAE提示:倍长AE 至F ,连结DF 证明ΔABE ≌ΔFDE (SAS )进而证明ΔADF ≌ΔADC (SAS )【融会贯通】1、在四边形ABCD 中,AB ∥DC ,E 为BC 边的中点,∠BAE=∠EAF ,AF 与DC 的延长线相交于点F 。
试探究线段AB 与AF 、CF 之间的数量关系,并证明你的结论提示:延长AE 、DF 交于G 证明AB=GC 、AF=GF 所以AB=AF+FC2、如图,AD 为ABC ∆的中线,DE 平分BDA ∠交AB 于E ,DF 平分ADC ∠交AC 于F. 求证:EF CF BE >+3、已知:如图,∆ABC 中,∠C=90︒,CM ⊥AB 于M ,AT 平分∠BAC 交CM 于D ,交BC 于T ,过D 作DE//AB 交BC 于E ,求证:CT=BE.提示:过T 作TN ⊥AB 于N 证明ΔBTN ≌ΔECD第 1 题图ABFDECE D A B CF E A B C 第 14 题图DF CBE ADABMTE截长补短法引辅助线思路:当已知或求证中涉及到线段a、b、c有下列情况时:,如直接证不出来,可采用截长法:在较长的线段上截取一条线段等于较短线段;补短法:延长较短线段和较长线段相等,这两种方法放在一起叫截长补短法。
通过线段的截长补短,构造全等把分散的条件集中起来。
例1. 如图,△ABC中,∠ACB=2∠B,∠1=∠2。
求证:AB=AC+CD证法一:(补短法)延长AC至点F,使得AF=AB在△ABD和△AFD中∴△ABD≌△AFD(SAS)∴∠B=∠F∵∠ACB=2∠B∴∠ACB=2∠F而∠ACB=∠F+∠FDC∴∠F=∠FDC∴CD=CF而AF=AC+CF∴AF=AC+CD∴AB=AC+CD证法二:(截长法)在AB上截取AE=AC,连结DE 在△AED和△ACD中∴△AED≌△ACD(SAS)例2. 如图,在Rt△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD交BD的延长线于E,证明:BD=2CE。
分析:这是一道证明一条线段等于另一条线段的2倍的问题,可构造线段2CE,转化为证两线段相等的问题,分别延长BA,EDCBADCBAPQCBACE 交于F ,证△BEF≌△BEC,得,再证△ABD≌△ACF,得BD =CF 。
1、如图,ABC ∆中,AB=2AC ,AD 平分BAC ∠,且AD=BD ,求证:CD ⊥AC2、如图,AC ∥BD ,EA,EB 分别平分∠CAB,∠DBA ,CD 过点E , 求证;AB =AC+BD3、如图,已知在ABC 内,060BAC ∠=,040C ∠=,P ,Q 分别在BC ,CA 上,并且AP ,BQ 分别是BAC ∠,ABC ∠的角平分线。
求证:BQ+AQ=AB+BP4、如图,在四边形ABCD 中,BC >BA,AD =CD ,BD 平分ABC ∠,求证: 0180=∠+∠C A5.已知:如图,△ABC 中,AD 平分∠BAC ,若∠C=2∠B,证明:AB=AC+CD.6.已知:如图,△ABC 中,∠A=60°,∠B 与∠C 的平分线BE,CF 交于点I ,求证:BC=BF+CE.CDBAB CAFE ICB A7.已知:如图,在正方形ABCD 中,E 为AD 上一点,BF 平分∠CBE 交CD 于F ,求证:BE=CF+AE.与角平分线有关的辅助线角平分线具有两条性质:a 、对称性;b 、角平分线上的点到角两边的距离相等。
对于有角平分线的辅助线的作法,一般有两种。
①从角平分线上一点向两边作垂线;②利用角平分线,构造对称图形(如作法是在一侧的长边上截取短边)。
通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形。
至于选取哪种方法,要结合题目图形和已知条件。
(1)截取构全等如图1-1,∠AOC=∠BOC ,如取OE=OF ,并连接DE 、DF ,则有△OED ≌△OFD ,从而为我们证明线段、角相等创造了条件。
例1. 如图1-2,AB//CD ,BE 平分∠ABC ,CE 平分∠BCD ,点E 在AD 上,求证:BC=AB+CD 。
简证:在此题中可在长线段BC 上截取BF=AB ,再证明CF=CD ,从而达到证明的目的。
这里面用到了角平分线来构造全等三角形。
另外一个全等自已证明。
此题的证明也可以延长BE 与CD 的延长线交于一点来证明。
自已试一试。
例2. 已知:如图1-3,AB=2AC ,∠BAD=∠CAD ,DA=DB ,求证DC ⊥AC 分析:此题还是利用角平分线来构造全等三角形。
构造的方法还是截取线段相等。
其它问题自已证明。
例3. 已知:如图1-4,在△ABC 中,∠C=2∠B,AD 平分∠BAC ,求证:AB-AC=CDFD AE图1-2ADBCEF图1-3ABCDEA E图1-1OABDEF C分析:此题的条件中还有角的平分线,在证明中还要用到构造全等三角形,此题还是证明线段的和差倍分问题。
用到的是截取法来证明的,在长的线段上截取短的线段,来证明。
练习 1. 已知在△ABC 中,AD 平分∠BAC ,∠B=2∠C ,求证:AB+BD=AC2. 已知:在△ABC 中,∠CAB=2∠B ,AE 平分∠CAB 交BC 于E ,AB=2AC ,求证:AE=2CE 3. 已知:在△ABC 中,AB>AC,AD 为∠BAC 的平分线,M 为AD 上任一点。
求证:BM-CM>AB-AC4. 已知:D 是△ABC 的∠BAC 的外角的平分线AD 上的任一点,连接DB 、DC 。
求证:BD+CD>AB +AC 。
(2)、角分线上点向角两边作垂线构全等过角平分线上一点向角两边作垂线,利用角平分线上的点到两边距离相等的性质来证明问题。
例1. 如图2-1,已知AB>AD, ∠BAC=∠FAC,CD=BC 。
求证:∠ADC+∠B=180分析:可由C 向∠BAD 的两边作垂线。
近而证∠ADC 与∠B 之和为平角。
例2. 如图2-2,在△ABC 中,∠A=90 ,AB=AC ,∠ABD=∠CBD 。
求证:BC=AB+AD分析:过D 作DE ⊥BC 于E ,则AD=DE=CE ,则构造出全等三角形,从而得证。
此题是证明线段的和差倍分问题,从中利用了相当于截取的方法。
例3. 已知如图2-3,△ABC 的角平分线BM 、CN 相交于点P 。
求证:∠BAC 的平分线也经过点P 。
图2-1ABCDE F图2-2CD图2-3PABC NDF分析:连接AP ,证AP 平分∠BAC 即可,也就是证P 到AB 、AC 的距离相等练习:1.如图2-4∠AOP=∠BOP=15 ,PC//OA ,PD ⊥OA ,如果PC=4,则PD=( ) A 4 B 3 C 2 D 12.已知在△ABC 中,∠C=90 ,AD 平分∠CAB ,CD=1.5,DB=2.5.求AC 。
3.已知:如图2-5, ∠BAC=∠CAD,AB>AD ,CE ⊥AB ,AE=21(AB+AD ).求证:∠D+∠B=180 。
4.已知:如图2-6,在正方形ABCD 中,E 为CD 的中点,F 为BC上的点,∠FAE=∠DAE 。
求证:AF=AD+CF 。
5.已知:如图2-7,在Rt △ABC 中,∠ACB=90 ,CD ⊥AB ,垂足为D ,AE 平分∠CAB 交CD 于F ,过F 作FH//AB 交BC 于H 。
求证CF=BH 。
(3)、作角平分线的垂线构造等腰三角形从角的一边上的一点作角平分线的垂线,使之与角的两边相交,则截得一个等腰三角形,垂足为底边上的中点,该角平分线又成为底边上的中线和高,以利用中位线的性质与等腰三角形的三线合一的性质。
(如果题目中有垂直于角平分线的线段,则延长该线段与角的另一边相交)。
例1. 已知:如图3-1,∠BAD=∠DAC ,AB>AC,CD ⊥AD 于D ,H 是BC 中点。
求证:DH=21(AB-AC )分析:延长CD 交AB 于点E ,则可得全等三角形。
问题可证。
图2-4BOA P DC图2-5ABDCE图2-6EACD图2-7FDBAEH图示3-1BD HE例2. 已知:如图3-2,AB=AC ,∠BAC=90 ,AD 为∠ABC 的平分线,CE ⊥BE.求证:BD=2CE 。
分析:给出了角平分线给出了边上的一点作角平分线的垂线,可延长此垂线与另外一边相交,近而构造出等腰三角形。
例3.已知:如图3-3在△ABC 中,AD 、AE 分别∠BAC 的内、外角平分线,过顶点B 作BN 垂直AD,交AD 的延长线于F ,连结FC 并延长交AE 于M 。
求证:AM=ME 。
分析:由AD 、AE 是∠BAC 内外角平分线,可得EA ⊥AF ,从而有BF//AE ,所以想到利用比例线段证相等。
例4. 已知:如图3-4,在△ABC 中,AD 平分∠BAC ,AD=AB ,CM ⊥AD 交AD 延长线于M 。
求证:AM=21(AB+AC ) 分析:题设中给出了角平分线AD ,自然想到以AD 为轴作对称变换,作△ABD 关于AD 的对称△AED ,然后只需证DM=21EC ,另外由求证的结果AM=21(AB+AC ),即2AM=AB+AC ,也可尝试作△ACM 关于CM 的对称△FCM ,然后只需证DF=CF 即可。