六年级数学上册圆环面积
- 格式:pptx
- 大小:134.90 KB
- 文档页数:20
人教版六年级数学上册第四单元复习:(1)已知圆的半径为2厘米,求圆的面积和圆的周长。
(2)已知圆的直径为6分米,求圆的面积。
(3)已知圆的周长为25.12米,求圆的面积。
判断对错:(1)直径是2厘米的圆,它的面积12.56平方厘米。
()(2)两个圆的周长相等,面积也一定相等。
()(3)圆的半径越大,圆所占的面积也越大。
()(4)圆的半径扩大3倍,它的面积扩大6倍。
()×√√×【学习目标】进1、认识圆环的特征,掌握圆环面积的计算方法,合理地进行计算。
2、培养学生主动研究、探索解决问题的方法的能力。
【学习重难点】圆环的特征、圆环面积公式的推导及运用。
什么叫圆环?在大圆中间挖去一个小圆,剩下的部分就形成了一个圆环,组成圆环的是两个同心圆。
环形特征·(1)两个圆的圆心在同一个点上(同一个圆心即:同心圆)(2)两个圆间的距离处处相等。
(环宽相等)···图1图2图3圆环有什么特点?两个圆的圆心相同。
环宽相等×××√画一个圆环R环宽·rr表示小圆半径R表示大圆半径光盘的银色部分是一个圆环,内圆半径是2cm ,外圆半径是6cm 。
它的面积是多少?6cm 2怎样利用内圆和外圆的面积求出环形的面积?圆环面积=外圆面积-内圆面积请写出下面圆环的内圆半径(r )或外圆半径(R ):8厘米R=()厘米8厘米r=()厘米6厘米r=()厘米3厘米R=()厘米4224光盘的银色部分是一个圆环,内圆半径是2cm ,外圆半径是6cm 。
它的面积是多少?6cm2圆环面积=外圆面积-内圆面积3.14×62 -3.14×22= 3.14×36-3.14×4= 113.04–12.56= 100.48(cm 2) 3.14×(62 –22)= 3.14×(36–4)= 3.14×32= 100.48(cm 2)3.14×62 -3.14×22 3.14×(62 –22 )S环=πR2 -πr2求环形的面积,你喜欢那种方法?S环=π(R2 -r2)做一做2.一个圆形环岛的直径是50m ,中间是一个花坛直径为10m 的圆形花坛,其它地方是草坪。
1.圆周长=直径×圆周率=半径×2×圆周率2.半圆形周长=πr+2r=(π+2)r=5.14r(注意:半圆形周长不同于圆周长的一半,前者要加直径)3.圆面积=半径²×圆周率=(直径÷2)²×圆周率=(周长÷圆周率÷2)²×圆周率4.圆环面积=(R²-r²)×圆周率5.外圆内方阴影面积=1.14r²6.外方内圆阴影面积=0.86r²3.14×2=6.28 3.14×3=9.42 3.14×4=12.56 3.14×5=15.7 3.14×6=18.84 3.14×7=21.98 3.14×8=25.12 3.14×9=28.26 3.14×4²=50.24 3.14×5²=78.5 3.14×6²=113.041.圆周长=直径×圆周率=半径×2×圆周率2.半圆形周长=πr+2r=(π+2)r=5.14r(注意:半圆形周长不同于圆周长的一半,前者要加直径)3.圆面积=半径²×圆周率=(直径÷2)²×圆周率=(周长÷圆周率÷2)²×圆周率4.圆环面积=(R²-r²)×圆周率5.外圆内方阴影面积=1.14r²6.外方内圆阴影面积=0.86r²3.14×2=6.28 3.14×3=9.42 3.14×4=12.56 3.14×5=15.7 3.14×6=18.84 3.14×7=21.98 3.14×8=25.12 3.14×9=28.26 3.14×4²=50.24 3.14×5²=78.5 3.14×6²=113.041.圆周长=直径×圆周率=半径×2×圆周率2.半圆形周长=πr+2r=(π+2)r=5.14r(注意:半圆形周长不同于圆周长的一半,前者要加直径)3.圆面积=半径²×圆周率=(直径÷2)²×圆周率=(周长÷圆周率÷2)²×圆周率4.圆环面积=(R²-r²)×圆周率5.外圆内方阴影面积=1.14r²6.外方内圆阴影面积=0.86r²3.14×2=6.28 3.14×3=9.42 3.14×4=12.56 3.14×5=15.7 3.14×6=18.84 3.14×7=21.98 3.14×8=25.12 3.14×9=28.26 3.14×4²=50.24 3.14×5²=78.5 3.14×6²=113.041.圆周长=直径×圆周率=半径×2×圆周率2.半圆形周长=πr+2r=(π+2)r=5.14r(注意:半圆形周长不同于圆周长的一半,前者要加直径)3.圆面积=半径²×圆周率=(直径÷2)²×圆周率=(周长÷圆周率÷2)²×圆周率4.圆环面积=(R²-r²)×圆周率5.外圆内方阴影面积=1.14r²6.外方内圆阴影面积=0.86r²3.14×2=6.28 3.14×3=9.42 3.14×4=12.56 3.14×5=15.7 3.14×6=18.84 3.14×7=21.98 3.14×8=25.12 3.14×9=28.26 3.14×4²=50.24 3.14×5²=78.5 3.14×6²=113.041.圆周长=直径×圆周率=半径×2×圆周率2.半圆形周长=πr+2r=(π+2)r=5.14r(注意:半圆形周长不同于圆周长的一半,前者要加直径)3.圆面积=半径²×圆周率=(直径÷2)²×圆周率=(周长÷圆周率÷2)²×圆周率4.圆环面积=(R²-r²)×圆周率5.外圆内方阴影面积=1.14r²6.外方内圆阴影面积=0.86r²3.14×2=6.28 3.14×3=9.42 3.14×4=12.56 3.14×5=15.7 3.14×6=18.84 3.14×7=21.98 3.14×8=25.12 3.14×9=28.26 3.14×4²=50.24 3.14×5²=78.5 3.14×6²=113.041.圆周长=直径×圆周率=半径×2×圆周率2.半圆形周长=πr+2r=(π+2)r=5.14r(注意:半圆形周长不同于圆周长的一半,前者要加直径)3.圆面积=半径²×圆周率=(直径÷2)²×圆周率=(周长÷圆周率÷2)²×圆周率4.圆环面积=(R²-r²)×圆周率5.外圆内方阴影面积=1.14r²6.外方内圆阴影面积=0.86r²3.14×2=6.28 3.14×3=9.42 3.14×4=12.56 3.14×5=15.7 3.14×6=18.84 3.14×7=21.98 3.14×8=25.12 3.14×9=28.26 3.14×4²=50.24 3.14×5²=78.5 3.14×6²=113.04。
第五单元圆课题第六课时圆环的面积课型新授课内容分析本节课先从圆的面积入手,引导学生理解并掌握了圆环面积的计算方法,达到了教学目标的要求。
在教学时立足于教材制定的知识结构,开放性地吸纳现实生活中有用的信息,让学生通过可操作的学习工具,探究出圆环的特征以及其面积产生的过程。
课时目标知识与能力1.进一步掌握求圆的面积的方法,会求圆环的面积。
2.认识圆环的特征,会正确、灵活地求圆环的面积。
过程与方法经历圆环面积的算法,加深理解与认识情感态度价值观在学习过程中渗透数图结合的思想,获得成功的学习体验。
教学重难点教学重点掌握求圆环的面积的计算方法。
教学难点理解圆环的面积的计算方法。
教学准备课件教学媒体选择PPT教学活动提问,师生讨论教学过程一、谈话导入师:同学们,上节课我们学习了圆的面积计算,你知道圆的面积怎样计算吗?(S=πr2)师:现在请同学们快速计算出下面两个圆的面积。
(出示课件)学生自主解答后集中评价。
师:前面的知识同学们掌握得非常好。
今天我们继续学习圆的面积。
二、认识圆环1.由身边的实例引入圆环。
师:校园圆形花坛的半径是6m,在花坛的周围修一条1m宽的水泥路,想一想,水泥路是什么形状?学生可能说是圆形的或者圆环形的。
结合学生的发言,课件呈现圆环的图形。
师:如果我们用平面图画出来,花坛和水泥路的形状就是这样的。
师:像外面这一圈水泥路的形状,我们称之为“圆环”。
本节课我们就学习圆环的面积计算。
(板书课题:圆环的面积)师:举例说说日常生活中的圆环或圆环横截面。
课件出示图片,感受身边的数学,看看生活当中的圆环。
2.介绍圆环。
师:看看这个圆环,你们觉得圆环跟圆有什么相同和不同的地方?(课件出示一个圆环)学生可能说圆环也是圆形的,圆环是由两个圆组成的,圆环只是圆外面的一部分,等等。
师:圆环中,较大的圆叫外圆,较小的圆叫内圆,两个圆之间的宽度叫环宽。
【设计意图】让学生认识身边的圆环,感受生活与数学的紧密联系,初步认识圆环的基本特征,为后面解决问题打好基础。
六年级圆环的面积知识点圆环是数学中的一个重要概念,掌握圆环的面积计算方法对于六年级学生来说是必不可少的知识点。
在本文中,我们将分析圆环的定义,并介绍相关的计算公式和解题方法。
一、圆环的定义圆环是由一个内圆和一个外圆组成的,内圆和外圆的圆心重合,但半径不同。
我们可以通过两个半径之间的差值来确定圆环的大小。
二、圆环面积的计算公式要计算圆环的面积,我们需要知道内圆的半径和外圆的半径。
设内圆的半径为r,外圆的半径为R,则圆环的面积S可以通过以下公式计算:S = π(R^2 - r^2)其中,π是一个数学常数,约等于3.14。
三、圆环面积计算的解题方法1. 已知内圆和外圆的半径如果我们已知了内圆和外圆的半径,我们可以直接使用上述公式进行计算。
例如,假设内圆的半径为5cm,外圆的半径为8cm,则圆环的面积S可以计算为:S = π(8^2 - 5^2) = π(64 - 25) = π(39) ≈ 122.52 cm^22. 已知圆环的宽度有时候,我们会知道圆环的宽度,即两个半径之间的差值。
我们可以通过已知的宽度来计算圆环的面积。
例如,假设圆环的宽度为3cm,内圆的半径为4cm,则外圆的半径可以计算为:外圆半径 = 内圆半径 + 圆环宽度 = 4cm + 3cm = 7cm然后,我们可以使用上述公式计算圆环的面积:S = π(7^2 - 4^2) = π(49 - 16) = π(33) ≈ 103.67 cm^2这样,我们就可以通过已知的宽度来计算圆环的面积。
四、综合例题现在,让我们通过一个例题来综合应用圆环的面积计算方法。
例题:有一个圆环,内圆的半径为6cm,外圆的半径为9cm。
求这个圆环的面积。
解答:根据已知数据,我们可以使用上述计算公式来求解。
S = π(9^2 - 6^2) = π(81 - 36) = π(45) ≈ 141.37 cm^2所以,这个圆环的面积约为141.37平方厘米。
五、总结通过本文的介绍,我们了解了圆环的定义、计算公式以及解题方法。
小学六年级上册圆的面积公式
与圆相关的公式:
1、圆面积:S=πr²,S=π(d/2)²。
(d为直径,r为半径)。
2、半圆的面积:S半圆=(πr^2)/2。
(r为半径)。
3、圆环面积:S大圆-S小圆=π(R^2-r^2)(R为大圆半径,r为小圆半径)。
4、圆的周长:C=2πr或c=πd。
(d为直径,r为半径)。
5、半圆的周长:d+(πd)/2或者d+πr。
(d为直径,r为半径)。
圆
是一种几何图形。
根据定义,通常用圆规来画圆。
同圆内圆的直径、半径的长度永远相同,圆有无数条半径和无数条直径。
圆是轴对称、中心对称图形。
对称轴是直径所在的直线。
同时,圆又是“正无限多边形”,而“无限”只是一个概念。
圆可以看成由无数个无限小的点组成的正多边形,当多边形的边数越多时,其形状、周长、面积就都越接近于圆。