电力电子技术PWM波形发生器
- 格式:doc
- 大小:46.00 KB
- 文档页数:3
文献综述毕业设计题目: PWM信号发生器设计PWM信号发生器文献综述(电子信息工程10(1)班E10610119)1前言PWM(Pulse Width Modulation)又称脉冲宽度调制,属于脉冲调制的一种,即脉冲幅度调制(PAM)、脉冲相位调制(PPM)、脉冲宽度调制(PWM)和脉冲编码调制(PCM)。
它们本来是应用于电子信息系统和通信领域的一种信号变换技术,但从六十年代中期以来后,随着电力电子技术被引入到电力变换领域,PWM技术广泛运用于各种工业电力传动领域乃至家电产品中[1]。
信号发生器又称波形发生器,是一种常用的信号源,被广泛地应用于无线电通信、自动测量和自动控制等系统中。
传统的信号发生器绝大部分是由模拟电路构成,借助电阻电容,电感电容、谐振腔、同轴线作为振荡回路产生正弦或其它函数波形。
频率的变动由机械驱动可变元件完成,当这种模拟信号发生器用于低频信号输出往往需要的RC值很大,这样不但参数准确度难以保证,而且体积和功耗都很大,而由数字电路构成的低频信号发生器,虽然其低频性能好但体积较大,价格较贵。
在今天,随着大规模集成电路和信号发生器技术的发展,许多新型信号发生器应运而生。
用信号发生器并配置适当接口芯片产生程控正弦信号,则可替代传统的正弦信号发生器,从而有利于测试系统的集成化、程控化和智能仪表的多功能化。
而信号发生器的最大特点是面向控制,由于它集成度高、运算速度快、体积小、运行可靠、价格低,因此在数据采集、智能化仪器等技术中得到广泛的应用,从而使得信号发生器的应用成为工程技术多学科知识汇集的一个专门研究领域,其应用产生了极高的经济效益和社会效益[2]。
2 PWM信号发生器的发展与现状2.1信号发生器的发展单片微型计算机简称信号发生器,是指集成在一块芯片上的计算机,信号发生器的产生与发展和微处理器的产生与发展大体同步,自1971年美国Intel公司首先推出4位微处理器以来,它的发展到目前为止大致可分为5个阶段:第1阶段(1971~1976):信号发生器发展的初级阶段。
综合性实验设计报告2013年6月课程名称: 单片机综合实验 实验名称: PWM 信号发生器设计 学生姓名: 蔡汉再班级: 通信10A 学号: 2010010101038 实验地点: A302实验室 实验学时: 48《单片机综合实验》设计报告评分表摘要本文设计了一种基于STC89C51单片机的PWM发生器,可通过I/O口输出波形,利用两个按键实现占空比调整,并能对占空比实时显示,经用示波器测试及观察LED亮灭情况可以证实,波形输出得到要求。
关键词:单片机;PWM;占空比I目录1 项目的主要任务 (1)2 总体设计方案 (2)3 硬件设计 (3)3.1STC89C51单片机简介 (3)3.2最小系统电路的设计 (4)3.3按键部分的电路设计 (5)3.4数码管显示电路的设计 (5)3.5扬声器、LED显示电路的设计 (6)4 软件设计 (7)4.1单片机软件设计的一般原则 (7)4.2PWM信号发生器软件设计及思路 (7)5 系统仿真与调试 (9)5.1实验调试 (9)5.2实验仿真 (9)6 设计总结 (11)参考文献 (12)附录A PWM信号发生器原理图 (13)附录B 元器件清单 (14)附录C 源程序清单 (15)II1 项目的主要任务脉宽调制(PWM)信号广泛应用于电机控制、开关电源设计等诸多场合。
PWM信号在自动控制系统中起到重要的作用,其控制作用受外界干扰小,使得系统工作准确可靠,研究PWM信号的产生和原理具有重要的意义。
PWM控制技术以其控制简单、灵活和动态响应好的优点而成为电力电子技术最广泛的控制方式,也是人们研究的热点。
由于当今科学技术的发展已经没有了学科之间的界限,结合现代控制理论思想将会成为PWM控制技术发展的主要方向之一。
本课题的主要任务就是以STC89C51单片机为控制模块、两个按键为外围输入模块、2位的七段数码管、LED为显示模块,采用软件的编程方法,设计出一套基于单片机的PWM 信号发生器。
PWM波信号发生器的研制课程设计说明书课程设计名称:单片机专业课设课程设计题目: PWM信号发生器的研制学院名称:信息工程学院专业:电子信息工程班级:学号:姓名:评分:教师:20 13 年 7 月 2 日摘要1PWM波信号发生器的研制随着电力电子全控开关器件的出现,脉宽调制技术(PWM)在电力电子变流技术中获得了,。
泛的应Hj,如直流开关电源(DC/DC变换)、交。
交变频(AC/AC变换)、交.直.交变频系统、UPS电源(DC/AC变换)、高功率因数整流(PWM整流或功率l灭l数校正PFC等)等电力电子各个应用领域,无不采用PWM控制技术。
PWM控制最基本的实现方法是通过载波和控制波的模拟电路调制米产生,如采用三角形载波(或锯齿波)和直流(或正弦波)控制信号比较器进行比较产生PWM波。
这种方法在模拟控制技术中广泛采用,并出现过许多产生PWM波控制芯片,如用于开关电源的TL494、SG3525、UC3842等。
随着数字控制技术的发展,又出现了许多数字式PWM集成芯片,如用于变频调速的三相PWM发生器HEF4752、SLE4520、MA818等。
但与迅速发展的微机控制技术相比,该方法显示出电路复杂、调制方式不够灵活等缺点,而采用软件计算的实时PWM控制策略越来越彼人们接受,并出现了许多不同的PWM波的计算方法,如采样SPWM法、谐波注入PWM法、均值PWM法、等面积PWM法等。
电力电子的微机PWM控制技术已成为一种必然趋势。
因此本文就PWM的单片机控制与实现进行分析研究,通过对外围电路芯片的设计实现PWM输出波形的频率、电压幅值、占空比的连续调节,达到产生PWM信号目的。
关键字:脉宽调制技术(PWM)、占空比、控制信号2PWM波信号发生器的研制单片机原理与接口技术课程设计任务书20 12 -20 13 学年第 2 学期第 17 周- 19 周注:1、此表一组一表二份,课程设计小组组长一份;任课教师授课时自带一份备查。
STC15W4K32S4系列新增6通道增强型带死区控制高精度PWM 波形发生器应用STC15W4K32S4系列的单片机集成了一组(各自独立6路)增强型的PWM波形发生器。
PWM波形发生器内部有一个15位的PWM计数器供6路PWM使用,用户可以设置每路PWM的初始电平。
另外,PWM波形发生器为每路PWM又设计了两个用于控制波形翻转的计数器T1/T2,可以非常灵活的每路PWM的高低电平宽度,从而达到对PWM的占空比以及PWM的输出延迟进行控制的目的。
由于6路PWM是各自独立的,且每路PWM的初始状态可以进行设定,所以用户可以将其中的任意两路配合起来使用,即可实现互补对称输出以及死区控制等特殊应用。
增强型的PWM波形发生器还设计了对外部异常事件(包括外部端口P2.4的电平异常、比较器比较结果异常)进行监控的功能,可用于紧急关闭PWM输出。
PWM波形发生器还可在15位的PWM计数器归零时出发外部事件(ADC转换)。
STC15W4K32S4系列增强型PWM输出端口定义如下:[PWM2:P3.7, PWM3:P2.1, PWM4:P2.2, PWM5:P2.3, PWM6:P1.6, PWM7:P1.7]每路PWM的输出端口都可使用特殊功能寄存器位CnPINSEL分别独立的切换到第二组[PWM2_2:P2.7, PWM3_2:P4.5, PWM4_2:P4.4, PWM5_2:P4.2, PWM6_2:P0.7, PWM7_2:P0.6]所有与PWM相关的端口,在上电后均为高阻输入态,必须在程序中将这些口设置为双向口或强推挽模式才可正常输出波形端口模式设置相关特殊功能寄存器端口模式设置若需要正常使用与PWM相关的端口,则需要将相应的端口设置为准双向口或强推挽输出口例如将端口均设置为准双向口的汇编代码如下:MOV P0M0,#00HMOV P0M1,#00HMOV P1M0,#00HMOV P1M1,#00HMOV P2M0,#00HMOV P2M1,#00HMOV P3M0,#00HMOV P3M1,#00HMOV P4M0,#00HMOV P4M1,#00H增强型PWM波形发生器相关的特殊功能寄存器端口配置寄存器P_SW2地址:BAH 初始值:0000,0000BEAXSFR:扩展SFR访问控制使能0:MOVX A,@DPTR/MOVX @DPTR,A指令的操作对象为扩展RAM(XRAM)1:MOVX A,@DPTR/MOVX @DPTR,A指令的操作对象为扩展SFR(XSFR)注意:若要访问PWM在扩展RAM区的特殊功能寄存器,必须先将EAXSFR位置为1BIT6,BIT5,BIT4为内部测试使用,用户必须填0PWM配置寄存器PWMCFG地址:F1H 初始值:0000,0000BCBTADC:PWM计数器归零时(CBIF==1时)触发ADC转换0:PWM计数器归零时不触发ADC转换1:PWM计数器归零时自动触发ADC转换。
基于单片机的PWM波发生器(双路)目录1. 题目理解 (1)1.1. 技术要求 (1)1.2. 工作要求 (1)1.3. 调压 (1)1.4. 变流 (1)2. 整体框图 (1)3. 工作原理 (1)3.1. PWM原理 (2)3.2. 系统主要构成 (2)4. 工作过程 (3)5. 程序流程简图 (3)6. 主要模块说明 (5)6.1. ADC0809 (5)6.2. 74HC138 (5)6.3. ULN2803 (6)6.4. 74HC573 (7)6.5. Digitron (8)6.6. 晶振和复位 (8)6.7. AT89C52 (9)7. 原理图 (10)8. PCB图 (11)9. 系统程序 (12)9.1. 逐点比较法 (12)9.2. 面积等效法 (17)9.3. 两个子函数 (23)10. 总结 (26)基于单片机的PWM波形发生器(双路)1.题目理解1.1.技术要求(1)输出两路PWM波;(2)PWM波参数可以通过按键调整;(3)交互界面友好,布局合理大方;(4)五个功能按键。
1.2.工作要求(1)总体结构框图;(2)通过理论分析和计算选择电路参数;(3)根据功能要求,确定键盘控制功能;(4)根据原理图焊接电路板;(5)用Altium Desinger Winter 09画电路图与PCB图;(6)采用C语言编写检测程序和应用程序并通过调试;(7)撰写设计报告和答辩PPT。
PWM广泛应用于各行各业,两种典型代表分化出两种理解:1.3.调压。
通过调节占空比调压,占空比为,输出电压;占空比为,输出电压。
如直流斩波构成的直流脉宽调速系统。
1.4.变流。
其中,逆变是PWM最先应用的领域。
如用正弦信号调制出来的SPWM加在惯性环节上等效于正弦波,通俗来讲,就是调制一个正弦波。
本组实现变流调制。
2.整体框图3.工作原理3.1. PWM原理3.1.1. PWM最基本的理论基础:冲量相等而形状不同的窄脉冲加在惯性环节上,其效果基本相同。
前言脉冲宽度调制(Pulse Width Modulation.PWM)控制技术以其控制简单、灵活和动态响应好的优点而成为电力电子技术和模拟信号数字传输通信领域最广泛应用的控制方式,因此研究基于PWM技术的脉冲宽度及周期可调的信号发生器具有十分重要的现实意义。
本文主要讨论了脉冲占空比可调信号的产生方法,采用三种不同的方案使用VHDL语言编程实现了信号的产生。
其中方案一的原理是分频,即用计数器计算时钟脉冲的上升沿个数,再通过输出电平反复翻转得到计数个数(脉冲宽度)可控的PWM 信号;方案二的原理是锯齿波比较法,首先编程产生阶梯状的锯齿波,再通过锯齿波与输入占空比值(数值可控的直线)比较产生脉冲宽度随输入占空比数值变化的PWM 信号;方案三是用有限状态机产生有用信号,首先定义两个状态,再通过计数器值与输入占空比值比较控制状态的切换,产生PWM信号。
本文详细介绍方案二和方案三两种方法。
通过使用QuartusII9.0软件采用VHDL语言编程并用功能仿真证实了上文提到的三种PWM信号产生方案都是可行的,都能产生切实可用的PWM信号,三种方案中均可以通过修改输入端口占空比来控制产生信号的脉宽,且可以通过在程序中修改计数器的计数上限和分频模块的分频比改变信号的周期及频率,实现了多参数可调,使整体设计具有灵活的现场可更改性和较好的可移植性。
且实现功能的程序简单易懂,设计过程中思路阐述清晰,流程介绍明了,且程序易于修改,可读性好。
第一章设计要求1.1 研究课题PWM信号发生器的研制1.2设计要求用CPLD可编程模块产生下列信号(特殊芯片:EPM570T100C5)(1)采用VHDL编写相关程序,PWM信号的工作频率为500Hz(1000Hz);(2)时钟信号通过分频器后,由输入开关量控制占空比可调。
第二章系统组成及工作原理本次设计采用的是Altera公司开发的QuartusII设计平台,设计采用特殊芯片EPM570T100C5进行仿真,在原理设计方面,本设计采用自顶向下、层次化、模块化的基本程序设计思想,这种设计思想的优点符合人们先抽象后具体,先整体后局部的思维习惯,其设计出的模块修改方便,不影响其他模块,且可重复使用,利用率高。
第10期李建林等:基于FPGA的多路PwM波形发生器59图12逆变器A相输出电压波形及其频谱ng.120utputw8vefb珊&itsspect咖oftheinverter'phaseA图12(a)所示输出电压波形的频谱如图12(b)所示,可以看出最低次谐波发生在84附近,是开关频率的4倍与载波相移技术相吻合【9-121。
通过实验可以看出,波形发生器得到的24路删波形结果是正确的,并且修改参数也很方便,有效地解决了多电平变流器删通道需求数目多的问题。
6结论常用芯片中删发生器通道数目远远不能满足组合变流器和多电平变流器的需要,采用FPGA构成多路删发生器成为一个很好的选择。
基于DsP和FPGA的通用控制器可以方便地用于其他FAcTs装置的控制只要修改DsP的控制算法即可而FPGA脉冲发生器还可通用在变频器SVG等电力电子设备而不用改动硬件。
本文根据载波相移sPwM技术的原理,用FPGA构造了一个24路PWM发生器。
通过一个三相五电平逆变器实验,对所构造的24路PwM发生器进行了验证。
实验结果证明,错时采样SVM技术,也可用FPGA实现。
这对于组合变流器和多电平变流器的进一步推广应用有重要的实际意义。
参考文献[1】w趾gX’OoiBT.unityPFc删一sourcerectif!ierb勰edondynaInic仃ilogicPWM【J】.ⅢEETr孤sac虹ononPE,1993,8(3):288—294.【2】McGmmBEHolmesDGA∞恤parisonofmlll6carrierPwMs眦酎esforc船cadedandneu仃alpointcl锄pedmlll山eVelinverl翻rs[c】.PclwerElec咖icsSpecialistsCon妇nce,2000.PESC00.20()omEE31stA咖a1.2000,2:674—679.【3】TeodorescuRBl删e增F’PedersenJK盯口f.MlllmeVelc∞Vert哪吨survey【C】.EPE’99CDROM,1999.【4】压ang动ongcha0,B00n_1诎ooi.F哝捌commuta伽HⅥ)C衄dsVCb勰edonphse.shifted枷m—converters【J】.mEETr蛐.onPowerDelive啦!993,8(2):712—718.[5]W趾gCh锄gyong.Ma吐lematical柚alysis0ncurremsollrcemllld—modul盯converter[J].1h璐∞do岫ofChi越Elec仃ot∞hnicalS0c诘吼2伽0,15(6):18—22.【6】HolmesDGOpponIm砌esfbrh锄oIliccanceUadon谢mcarrier-ba∞dpwmfor撕o.1“el柚dmul砌evelc鹪cadedinverters[J】.ⅢEETrans.onⅫus时Applications,2001,37(2):574・582.[7】陈阿莲,何湘宁,赵荣祥.一种改进的级联型多电平变换器拓扑【J】.中国电机工程学报,2003,23(11):9.12.cb衄A】i柚,HeⅪ锄gnin吕2嫩oR伽鲥柚昏Animproyedc硒cadedmlllmevelinvertertopology[J】.noce。
pwm 信号发生器的设计
脉冲宽度调制(Pulse Width ModulaTIon.PWM)控制技术以其控制简
单、灵活和动态响应好的优点而成为电力电子技术和模拟信号数字传输通信领域最广泛应用的控制方式,因此研究基于PWM 技术的脉冲宽度及周期可
调的信号发生器具有十分重要的现实意义。
这篇文章主要就是说明计数器计算时钟脉冲的上升沿个数,再通过输出电平反复翻转得到计数个数(脉冲宽度)可控的PWM 信号。
为了使本次设计产生的PWM 信号能用于频率稳定度高的晶振,故在系统设计中添加了一个分频模块,因此PWM 信号发生器由分频器和信号发
生器两个部分组成。
其组成框图如图2.1 所示
PWM 信号发生器的总体设计流程图如图2.2 所示。
成绩评定表
课程实训任务书
摘要
脉冲宽度调制(PWM),是英文“Pulse Width Modulation”的缩写,简称脉宽调制,是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用在从测量、通信到功率控制与变换的许多领域中。
当然,脉冲宽度调制是一种模拟控制方式,其根据相应载荷的变化来调制晶体管栅极或基极的偏置,来实现开关稳压电源输出晶体管或晶体管导通时间的改变,这种方式能使电源的输出电压在工作条件变化时保持恒定,是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术。
随着电子技术的发展,出现了多种PWM 技术,其中包括:相电压控制PWM、脉宽PWM法、随机PWM、SPWM法、线电压控制PWM等,而在镍氢电池智能充电器中采用的脉宽PWM法,它是把每一脉冲宽度均相等的脉冲列作为PWM波形,通过改变脉冲列的周期可以调频,改变脉冲的宽度或占空比可以调压,采用适当控制方法即可使电压与频率协调变化。
关键字:脉宽调制、微处理器、波形
Pulse Width Modulation、 Microprocessor、 Wave pattern。