数学建模试题数学建模队员的选拔
- 格式:doc
- 大小:652.00 KB
- 文档页数:12
数学建模竞赛队员的选拔和组队问题摘要该模型解决了选拔参赛队员及确定最佳组队的问题。
该问题涉及面很广,是我们身边经常会遇到的。
本文主要采用了层次分析法,综合考虑个人的指标以及整队的技术水平,最终从15名队员中选出9名优秀队员组成三队,并建立了最佳组队的方案。
问题二:在选拔队员时,我们全面考察了队员的七项指标,并按照相应的权重 得到15名队员的综合排名,最后淘汰掉排名靠后的6 名队员,依次为:9S , 13S ,15S , 12S ,5S ,3S 。
为了组成3个队,使得这三个队整体技术水平最高,我们首先引入了刻画每个队竞赛技术水平的函数:(),,v x y z M =1ω本问题就可以转化为寻找该函数的最大值。
根据题目要求,为使三名队员的技术水平可以互补,参赛学生最好来自不同专业,我们算得此种情况下有11S 和13S 。
比较分析前面的综合排名,11S 的综合能力排第七,而13S 的综合能力排第十一。
可见这种选拔方式,有可能影响队伍的总体水平,所以不可取。
问题四:根据有违规记录的学生X 所在的位置来确定其对组队后整体技术水平的影响。
经分析可得:如果X 被选入组队,对组队后三队整体水平有影响,三队整体水平降低。
关键词:层次分析法;技术水平指标;最佳组队一、问题重述一年一度的全国大学生数学建模竞赛是全国所有高校的重要赛事,如何选拔最优秀的队员和科学合理组队问题是一个首先需要解决的数学模型问题。
由于竞赛场地、后勤服务、经费设施等原因,需要选拔出优秀的同学代表学校参加全国大学生数学建模竞赛,以减少参赛成员因放弃、不遵守规则、合作不默契等造成的数学建模成绩的影响和学院资源的浪费。
以数学建模选修课的笔试成绩,数学竞赛获奖记录,数学建模培训课签到记录,成绩的班级排名,上机操作与软件编程能力,思维敏捷程度以及知识面宽广为依据从15名学生中选拔出9名学生,分为3小组,每个学生的基本条件如表(见附录)需要解决的问题如下:1.根据所了解的数学建模知识,明确选拔数学建模队员主要考察的相应素质以及考察方法。
数学建模参赛队员组队的选拔一、摘要本文是一个如何选拔最优秀的队员和科学合理组队问题的数学模型。
此模型我们主要采用的是层次分析法,综合考虑每个学生的相关信息和整队的技术水平,最后将三十名已经选拔出来的学生组成十队,每队三人,并达到所要求的目的。
对于问题一,综合考虑每位参赛人员的相关信息,包括:编程、想法、写作、数学能力等,并考虑到各项指标之间的互补性(最好是不同专业、年级),使得每队的竞技水平达到平均值,以实现十队实力相当。
将三十人的数据通过模型假问题二是要是得本次比赛的参赛队获奖达到最大化,即将三十人按综合能力高低组队使得该队竞技水平尽量高,已达到获奖最大化。
我们设计了队伍的竞技水平函数0T ( ) , 12...10i f i ωω=⋅=,,问题就转化为求f 的最大值。
找出权重较大.关键词:层次分析法,权重,记权型法,Excel 分析数据,MATLAB 计算数据,LINDO 线性规划,逐次优选.二、问题重述全国大学生数学建模比赛是由教育部发起的18项大学生创新训练项目之一,目前已为广大大学生所熟悉。
目的在于激励学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力,鼓励广大学生踊跃参加课外科技活动,开拓知识面,培养创造精神及合作意识,推动大学数学教学体系、教学内容和方法的改革。
河海大学常州校区每年都会有一定数量的学生参加此项赛事,并取得了一定的成绩。
为此,数理部每年暑期将会对学生进行培训,最后选拔出参赛的队员。
选拔条件为:思维活跃、编程能力强、熟练的写作技巧、良好团队合作意识。
附件里给出了某年的已经选拔出来的学生相关信息,包括:编程、想法、写作、数学能力等。
根据根据所给的信息,进行组队,每队三人,组队原则如下:1)尽可能地不同学院、不同性别2)如果同一学院,尽可能地不同专业3)每个队伍中,至少一个人能胜任编程、想法、写作中的一项。
根据如下要求,完成下面的问题: 1.如何组队,使得每队的实力相当; 2.如果考虑到获奖最大化,如何组队;3.数据中没有给出团队合作意识的量化数据,问,如果考虑团队合作意识这一因素,如何建立模型。
数学建模队员的选拔摘要一年一度的全国大学生数学建模竞赛是高等院校的重要赛事。
但在对参赛队员进行选拔时,往往会遇到很多难题,以致有时并不能选出真正优秀的队员代表学校参加全国竞赛。
本文通过对学生自身具备的与数学建模有关的素质的考察,解决了选拔参赛队员及确定最佳组队的问题。
本文主要采用层次分析法,通过对建模队员的综合能力以及专项能力的考察,综合考虑个人的指标以及整队的技术水平,给出了选拔队员的模型,并最终从15名队员中选出9名优秀队员组成三队,建立了最佳的组队方案。
问题一,我们给出了选拔队员时应考察的情况,并针对数学建模应具备的关键素质,给出了相关素质的权重。
问题二,我们全面考察了15名队员的六项指标,并利用层次分析法及matlab 编程求出了各指标的权重,然后根据权重得到15名队员的的综合排名,最后剔除后六名,得到前九名队员,依次是:2S ,1S ,14S ,8S ,11S ,4S 10S ,6S ,13S 。
为了组成3个队,使得这3队的整体水平最高,我们建立了求每个队竞赛水平的模型,根据题目要求,为使三名队员的技术水平可以互补,参赛学生最好来自不同专业,我们在多种组合方式下经计算比较后得到最佳组合方案。
如下表:问题三,我们如果只考察计算机而不考察其它能力,选出最佳队员S11和S13,其成绩分别为第五和第九,并非特别拔尖。
而且通过对计算机编程能力在关键素质中所占的比例24.9%分析(1/4不到),这种直接录用的选拔方式,有可能影响队伍的总体水平,而且有失公平,所以不可取。
问题四,我们在前几问的基础上,综合数学建模的关键素质所占的权重分析,给出了对数学建模教练组在选拔队员时的建议。
关键词:最佳组队;层次分析法;matlab 编程,权重一、问题重述由于竞赛场地、经费等原因,不是所有想参加竞赛的人都能被录用。
为了能够选拔出真正优秀的同学代表学校参加全国竞赛,数学建模教练组需要投入大量的精力,但是每年在参赛的时候还是有很多不如意之处:有的学生言过其实,有的队员之间合作不默契,影响了数学建模的成绩。
数学建模队员选拔和组队问题摘要组队问题是历来数学建模的一大难题。
本次建模中要解决的就是参赛队员的选拔与组队的问题,在本次建立的模型中主要用到的是层次分析法,以及求权重的方法从而确定主成分因素。
并且用Excel分析数据,Matlab编程,得到所需数据。
在问题一中,对于队员选拔的问题,就模型一而言,按照队员各项能力在综合评价中地位等同,按择优录取原则在Excel中用记权型法得到25名队员的综合排名,自然淘汰最后7名这两位队员。
在模型二中,它采用的是层次分析法,将18个要选出参赛的队员作为目标层O,7个条件作为准则层C,20个队员作为方案层P. 再由成对比矩阵用Matlab计算确定各条件C1,C2,…,C6对上层因素的权重,最后求出组合权向量.在问题二上,在队员组队时,要使获奖机率最大,就模型一而言,按照队员的各能力素质在数学建模竞赛中的重要性排序。
在考虑重要性排序的情况下,给出问题1中18名队员的组队方案。
关键词:层次分析法权重记权型法Excel分析数据MATLAB计算数据.一、问题重述全国大学生数学建模比赛是由教育部发起的18项大学生创新训练项目之一,目前已为广大大学生所熟悉。
目的在于激励学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力,鼓励广大学生踊跃参加课外科技活动,开拓知识面,培养创造精神及合作意识,推动大学数学教学体系、教学内容和方法的改革。
我校每年都会有一定数量的学生参加此项赛事,并取得了一定的成绩。
在一年一度的竞赛活动中,任何一个参赛院校都会遇到如何选拔最优秀的队员和科学合理地组队问题,这本身就是一个最实际而且是首先需要解决的数学模型问题。
表1里给出了某年的已经选拔出来的学生相关信息,包括:校数学建模公选课成绩、数学建模校内赛名次、编程、创新、写作、专业能力的等级等。
根据所给的信息,进行组队,每队三人,组队原则如下:1)尽可能地三人中的善长项不要重复。
2)每个队伍中,如果善长项重复,至少一个人能胜任编程、创新、写作中的一项。
数学建模队员的选拔一.摘要该模型解决了选拔参赛队员及确定最佳组队的问题。
该问题涉及面很广,是我们身边经常会遇到的。
本文综合考虑个人的指标以及整队的技术水平,最终从15名队员中选出9名优秀队员,并使得这三个对具有良好知识结构。
问题:1.根据你们所了解的数学建模知识,选拔数学建模队员要考察学生的哪些情况?哪些素质是数学建模的关键素质,如何进行考察?2.根据上表中信息,建立建模队员选拔的数学模型,从中选出9位同学,并组成3个队,使得这三个队具有良好的知识机构。
在选拔队员时,全面考察了队员的六个指标,并按照相应的权重最后得出15名队员的综合排名,自然最后淘汰掉排名靠后的六名队员,然后在组队。
3.有的指导老师在对学生机试的时候发现一个计算机编程高手,然后直接录用,不再考察其它情况,这种做法是否可取。
4.为数学建模教练组写1份1000-1500字的报告,提出建模队员选拔机制建议,帮助教练组提高建模队员选拔的效率和质量。
关键词:层次分析法;技术水平;逐次选优一、问题的重述现有18名队员准备参加竞赛,根据队员的能力和水平要选出9名优秀队员分别组成3个队,每个队3名队员去参加比赛。
选拔队员主要考虑的条件依次为:笔试成绩、听课次数、思维敏捷、知识面和机试方面的能力以及其他方面的情况。
每个队员的基本条件量化后如表。
假设所有队员的外部环境相同,竞赛中不考虑其它的随机因素,竞赛水平的发挥只取决于表中所给的各项条件,并且参赛队员都能正常的发挥自己的水平。
现在的问题是:1、在18名队员中选择9名优秀队员参加竞赛;2、确定三个组队有较好的知识结构;二、模型的假设1、假设所有队员的外部环境相同,竞赛中不考虑其它的随机因素。
2、假设笔试成绩、听课次数、思维敏捷、知识面和机试方面的能力以及其他方面的情况,这六项对队员对影响是占主要的。
且影响程度是有所不同。
3、假设竞赛水平的发挥只取决于表中所给的各项条件,且认为表中测量的数据都是客观公正的。
队员选拔与组队模型摘要队员的选拔问题,是一个抽象而难以量化求解的问题,本文问了队员的选拔标准直观化,采用了「L.seaty教授提出的定量和定性的系统分析法,以经验判断为基础,参照APH的成对比较标度,构造判断矩阵,求出各个单项因素影响队员综合实力的权向量。
结合层次分析法,求出各个队员的综合能力。
依照队员的综合能力的大小,初略分成n1个参赛队,并按能力大到依次排序。
将教练的评定结果量化,结合层次分析,将评定结果用数值表示出来。
将n1个参赛队再次排序。
比较两次排序方法造成的机会损失,对机会损失大的队伍重新排序,并删除一些能力差的队伍,组成n2最终参赛队伍。
用计算机模拟20个人的个人信息表,求出每个人的综合能力,按大小排序后,删除2名综合能力差的队员。
构成n仁6支队伍。
用计算机依据置硬币的原理模拟教练对学生的评价结果,结合以选定的n1支队伍,并假设学校要求5支队伍参加比赛,最终确定被选定的5支队伍为:关键字:层次分析法判断矩阵的成对比较标度权向量机会损失一. 问题重述面对每年一次的全国大学生数学建模竞赛及美国大学生数学建模竞赛, 学校需要花费较多的人力以及财力从报名的学生中选拔出优秀的学生并组成具有竞争力的参赛队, 期望获得最好的成绩.数学建模竞赛的每一个参赛队由3 名同学组成, 要求在三天的时间内完成一个实际问题的求解, 包括问题描述、问题分析、建立模型、模型求解算法设计、编写程序求得结果、模型以及算法改进、模型稳定性分析、优缺点分析,最后撰写论文等。
竞赛过程中仅允许本队队员之间讨论,并可以利用图书馆中的图书资料以及网上的正确可靠资源。
为最终组成有竞争力的参赛队, 计划分两步来挑选队员, 具体如下: 第一步依据报名表中的信息挑选出优秀的学生,并3人一组组成n1个培训队。
报名表(附件4)。
第二步对挑选出的队员进行培训。
在培训期间要经过3 至6次的模拟竞赛,m 个教练对每一个培训队的每一次竞赛都有一个综合评价和单项评价,单项评价包括写作水平、模型的正确性和简洁性、算法的正确性和复杂度、创新点共四项,评价成绩分为:优秀、优良、一般。
数学建模竞赛参赛队员的选拔与组队摘要如何选拔最优秀的队员并科学合理的组队,是一个非常具有实际意义的数学模型问题。
本篇文章根据实际数据,综合考虑各方面因素的影响,给出了可以判断队员组队情况好坏的一般规律,并联系实际,运用所得规律进行科学的预测。
为了给出可以判断队员组队情况好坏的一般规律,本文综合考虑队员的性别、所属学院类型、在校期间的成绩。
为了分析前两者的影响,本文对三类(获国家奖、获省奖、没获奖)队伍的性别分布及所属学院类型分布进行了对比。
发现:规律1:队员不同的性别组合对数学建模成绩没有显著影响。
规律2:三个队员中至少有两个来自理工类学院时,组队效果好。
三个队员都来自文科类学院,组队效果不好。
在分析成绩的影响时,首先,联合使用计算机筛选(以课程开设学院为筛选依据,仅筛选出统计与数学学院、计算机与信息工程学院、人文学院、马克思学院开设的课程)与人工筛选,选出每个人学过的能反映数学建模能力的所有课程。
根据实际经验,数学建模是数学能力、计算机能力和写作能力的综合运用,利用筛选出的成绩可以对每个人的各项能力进行量化。
而后,为了得到衡量数学建模综合能力的指标,本文利用层次分析法求解出数学能力、计算机能力、写作能力对数学建模综合能力的权重分别为0.5396、0.2969、0.1634。
文中使用了两种方法确定了两个综合能力指标,其一为队伍能发挥的最大综合能力,该指标下每个队伍的单项能力为三个队员该项能力的最大值;其二为平均综合能力,该指标下每个队伍的单项能力为三个队员该项能力的平均值。
经过对比,得到如下规律:规律3:队伍能发挥的最大综合能力越高,组队效果越好。
队伍能发挥的最大综合能力低于80.6时,组队效果不好,高于90.69时,组队效果非常好。
规律4:队伍能发挥的平均综合能力越高,组队效果越好。
队伍能发挥的平均综合能力低于75.32时,组队效果不好,高于88.48时,组队效果非常好。
根据以上规律对问题二的5支队伍进行预测,发现:这5支队伍都有很大的几率获奖(国家奖或省奖),X1很有可能获得国家奖,X5最好成绩应该为省奖。
数学建模队员选拔摘要针对题目的要求,我们建立了两个模型,分别用于选拔队员与编队,来实现团队获奖最大化。
为了选出最合适的18名队员,已知不同指标在不同成员里波动不同,于是我们计算出各个指标所代表的数值的标准差,根据标准差的大小来确定各项能力的离散程度即重要性,然后将加权的综合能力定义为各个能力与其标准差之积平均值,并将总加权能力值排序取前18名同学。
为了将18名队员最合理的分成6组,建立差值模型,确定每个队员的相对优势。
队员按综合能力排名分成3组:优、中、劣。
每次分别从优、中、劣选出一人,组成新的一组,以此选出6组。
此时为使6组的实力尽可能大且接近,建立总偏差函数模型与最大能力值函数,该函数值越大表明相对队员总体水平越高。
关键词:离散程度加权平均数差值相对优势总偏差函数目录数学建模队员选拔摘要 (1)一、问题描述 (3)二、问题分析 (4)三、基本假设 (5)四、符号说明 (5)五、模型建立与求解 (6)5.1建立加权指标模型并排序 (6)5.1.1 求解权重系数 (6)5.1.2对所有队员的综合能力进行由强到弱的排序可得 (8)5.2.1对剩余队员重新编排号码 (8)5.2.2建立差值模型 (8)5.2.3.1组队方案的选取过程 (10)5.2.3.2对各指标下队员进行分组 (10)5.2.3.3建立模型构造函数 (10)5.2.3.4选择方案 (11)六、模型的优缺点 (12)一、问题描述全国大学生数学建模竞赛是由教育部发起的18项大学生创新训练项目之一,是高等院校的重要赛事。
我校每年都会有一定数量的学生参加此项赛事,并取得了一定的成绩。
在一年一度的竞赛活动中,任何一个参赛院校都会遇到如何选拔最优秀的队员和科学合理地组队问题,这本身就是一个最实际而且是首先需要解决的数学模型问题。
假设我校选拔队员主要参考如下三个环节:(1)校数学建模公选课成绩;(2)校内数学建模竞赛成绩;(3)按照一定的准则,教师组对每个学生的某些能力和素质给出一个等级评分。
数学建模混合泳接力队选拔摘要本文研究的是体育赛事中混合泳队员的选拔问题。
结合运筹学中的指派问题及应用线性规划理论,我们建立0-1整数规划数学模型,运用MATLAB软件对模型进行求解,得出了较为科学的选拔方案。
为了从5名候选人中选出4名队员组成接力队,参加4×100米混合泳比赛,我们以5位候选人的平时游泳成绩的数据为基础,运用0-1整数规划建立相关的数学模型,求解出乙进行蝶泳→丙进行仰泳→丁进行蛙泳→甲进行自由泳的比赛方案。
此比赛方案下的比赛最佳总得分为z=251.4s。
混合泳的比赛成绩除了和团队的配合及一些外部因素相关外,更与队员在不同时期内的比赛发挥相关。
因此,当候选人的在成绩发生变化时,我们应依据具体情况,优化游泳队的选拔方案。
当然我们的模型也存在不足之处,在模型的改进中提出了改进方法。
关键字:混合泳队员选拔指派问题线性规划理论 0-1规划模型一、问题重述现拟从5名候选人中选出4名队员组成接力队,参加4100 米混合泳比赛。
5名队员的4种泳姿的百米平均成绩如下表:5名队员的4种泳姿的米平均成绩(表一)1.如何选择队员进行接力队才能获得最佳成绩?2.若队员丁的蛙泳成绩退步到1’15”2,戊的自由泳成绩进步到57”5,组成接力队的方案又当如何?二、问题分析混合泳队员的选拔问题中,主要有以下几个难点:①每个队员比赛成绩数据的分析;②每个队员进行哪个项目才能使团队混合泳成绩最佳;③当有队员的一些项目比赛成绩发生变化时,接力队方案如何选择。
因此,在怎样的选拔机制下,如何处理搜集的数据,建立何种数学模型,是我们首先要解决的问题。
对于问题一,如何选择队员进行接力赛才能使团队获得最佳成绩。
根据5名队员4种泳姿的百米平均成绩,由穷举法我们可以计算出最多有120种选拔方案。
假设队员在比赛现场发挥的成绩与其平均成绩一致。
我们结合0-1规划的思想,以混合泳 甲 乙 丙 丁 戊 蝶泳 1’06”8 57”2 1’18’ 1’10” 1’07”6 仰泳 1’15”6 1’06” 1’07”8 1’14”2 1’11” 蛙泳 1’27” 1’06”4 1’24”6 1’09”6 1’23”8 自由泳 58”6 53” 59”4 57”2 1’02”4总成绩最佳为目标函数,依据其各泳姿的百米平均成绩,建立合理的数学模型,由MATLAB 迅速求解选拔方案。
数学建模比赛的选拔问题卢艳阳 王伟 朱亮亮(黄河科技学院通信系,)摘要本文是关于全国大学生数学建模竞赛选拔的问题,依据数学建模组队的要求,每队应具备较好的数学基础和必要的数学建模知识、良好的编程能力和熟练使用数学软件等的综合实力,在此前提下合理的分配队员,利用层次分析法,建立合理分配队员的数学模型,利用MATLAB ,LONGO 工具求出最优解。
、问题一:依据建模组队的要求,合理分配每个队员是关键,主要由团队精神、建模能力、编程能力、论文写作能力、思维敏捷以及数学知识等等,经过讨论分析,确定良好的数学基础、建模能力,编程能力为主要参考因素。
问题二:根据表中所给15人的可参考信息,我们对每个队员的每一项素质进行加权,利用层次分析法选出综合素质好的前9名同学,然后利用0-1规划的相关知识对这9人进行合理分组,利用MATLAB 、LINGO 得到其中一个如下的分组:'1s 、10s 、4s ;2s 、11s 、14s ;6s 、13s 、8s问题三:我们将所选出的这9名同学和这个计算机编程高手的素质进行量化加权,然后根据层次分析法,利用MATLAB 工具进行求解,得出了最佳解。
由于我们选取队员参考的是这个人的综合素质,而不是这个人的某项素质,并由解出的数据可以看出这个计算机编程高手不能被直接录用。
所以说只考虑某项素质,而不考虑其他的素质的同学是不能被直接录用的。
问题四:根据前面三问中的分组的思路,我们通过层次分析法先从所有人中依据一种量化标准选出符合要求的高质量的同学,然后利用0-1变量进行规划,在根据实际问题的约束,对问题进行分析,然后可以得出高效率的分组。
关键字:层次分析法加权量化0-1变量LINDO MATLAB问题重述一年一度的全国大学生数学建模竞赛是高等院校的重要赛事。
由于竞赛场地、经费等原因,不是所有想参加竞赛的人都能被录用。
为了能够选拔出真正优秀的同学代表学校参加全国竞赛,数学建模教练组需要投入大量的精力,但是每年在参赛的时候还是有很多不如意之处:有的学生言过其实,有的队员之间合作不默契,影响了数学建模的成绩。
数学建模队员的选拔摘要本文考虑的是选拔数学建模队员的问题。
我们从笔试、听课次数、思维敏捷、机试、知识面等五方面综合研究了它们对于选拔队员这个目标的权重。
在建立模型前,我们首先在影响选拔队员的因素中根据实际情况分析出主要因素,并对其两两之间的影响程度进行了比较,为建模时构建合理的判断矩阵提供了合理的数据,有利于解决问题。
对于问题一:我们结合实际,并根据表中的数据我们发现影响队员选拔的因素有很多,如团队精神、建模能力、编程能力、论文写作能力、思维敏捷等等,经过讨论分析,确定团队合作能力、建模能力,编程能力及论文写作能力是我们选拔队员主要考虑因素,对于这三方面的考察,我们会分别进行不同种类的测试。
对于问题二:首先我们利用层次分析法从15名队员选出综合素质较强的九名队员,他们分别是S1、S2、S3、S4、S6、S8、S11、S13、S14。
从队员各方面的能力的成绩记录我们发现,除了S1、S2各方面都较好之外,其他人都只是某个或几个方面较好,我们必须对已选的队员进行合理的搭配。
我们首先根据各队员的笔试成绩进行分类,A类:S1、S2、S3;B类:S4、S6、S8;C类:S11、S13、S14。
再根据机试、思维敏捷、知识面来综合考虑,我们最后得出了较合理的组合:S1-S6-S14、S2-S4-S11、S3-S8-S13。
对于问题三:我们认为直接录取编程高手的做法是可取的。
首先,我们从表中数据发现计算机强的队员比较少,而其他方面优秀的队员也不缺乏;其次、在该队员其它方面都不合格的情况下能够较易到找到合理的搭配队友,而且编程技术是我们数学建模中的重要工具。
综合以上分析,我们认为这种做法是可取的。
对于问题四:我们建议教练组应考察队员的团队合作能力,应该适当破格录取以让各队的知识结构良好,队员之间能够互补。
关键字层次分析法综合考虑判断矩阵建模队员的选拔一、问题的重述数学建模需要学生具有较好的数学基础和必要的数学建模知识、良好的编程能力和熟练使用数学软件的能力、较强的语言表达能力和写作能力、良好的团队合作精神,同时还要求思维敏捷,对建立数学模型有较好的悟性。
数学建模竞赛参赛队员的选拔与组队摘要如何选拔最优秀的队员并科学合理的组队,是一个非常具有实际意义的数学模型问题。
本篇文章根据实际数据,综合考虑各方面因素的影响,给出了可以判断队员组队情况好坏的一般规律,并联系实际,运用所得规律进行科学的预测。
为了给出可以判断队员组队情况好坏的一般规律,本文综合考虑队员的性别、所属学院类型、在校期间的成绩。
为了分析前两者的影响,本文对三类(获国家奖、获省奖、没获奖)队伍的性别分布及所属学院类型分布进行了对比。
发现:规律1:队员不同的性别组合对数学建模成绩没有显著影响。
规律2:三个队员中至少有两个来自理工类学院时,组队效果好。
三个队员都来自文科类学院,组队效果不好。
在分析成绩的影响时,首先,联合使用计算机筛选(以课程开设学院为筛选依据,仅筛选出统计与数学学院、计算机与信息工程学院、人文学院、马克思学院开设的课程)与人工筛选,选出每个人学过的能反映数学建模能力的所有课程。
根据实际经验,数学建模是数学能力、计算机能力和写作能力的综合运用,利用筛选出的成绩可以对每个人的各项能力进行量化。
而后,为了得到衡量数学建模综合能力的指标,本文利用层次分析法求解出数学能力、计算机能力、写作能力对数学建模综合能力的权重分别为0.5396、0.2969、0.1634。
文中使用了两种方法确定了两个综合能力指标,其一为队伍能发挥的最大综合能力,该指标下每个队伍的单项能力为三个队员该项能力的最大值;其二为平均综合能力,该指标下每个队伍的单项能力为三个队员该项能力的平均值。
经过对比,得到如下规律:规律3:队伍能发挥的最大综合能力越高,组队效果越好。
队伍能发挥的最大综合能力低于80.6时,组队效果不好,高于90.69时,组队效果非常好。
规律4:队伍能发挥的平均综合能力越高,组队效果越好。
队伍能发挥的平均综合能力低于75.32时,组队效果不好,高于88.48时,组队效果非常好。
根据以上规律对问题二的5支队伍进行预测,发现:这5支队伍都有很大的几率获奖(国家奖或省奖),X1很有可能获得国家奖,X5最好成绩应该为省奖。
数学建模选拔赛及题目
数学建模选拔赛通常是为了选拔具有数学建模能力和创新思维的参赛者。
每年举办的数学建模比赛都会提供一系列的题目,涉及不同领域和难度级别。
以下是一些可能出现在数学建模选拔赛中的题目类型:
1. 综合评价题:要求参赛者综合运用多个数学概念和方法,解决一个现实生活或工程问题。
这类题目鼓励参赛者灵活应用数学知识,并提供全面的解决方案。
2. 数据分析题:提供一组数据集,要求参赛者进行数据处理、统计分析和模型建立,从中发现规律、做出预测或提供决策支持。
3. 优化问题:给定一个特定的目标函数和约束条件,要求参赛者找到使目标函数最优化的变量取值或参数设定。
4. 模型建立题:要求参赛者根据所给的问题描述,构建一个适当的数学模型,并应用这个模型解决问题。
5. 算法设计题:考察参赛者对于算法设计和优化的能
力,要求设计一个高效的算法来解决一个特定问题。
注意,具体的数学建模选拔赛题目会根据不同比赛的组织者和年份而有所不同。
如果您对某个具体比赛的题目感兴趣,建议您参考该比赛的官方网站或相关资料,以获取最新的题目信息。
数学建模竞赛参赛的队员选拔与组队问题【摘要】本文根据竞赛队员的选拔和组队问题的基本要求,制定合理假设并求解。
依据各种能力的权重,建立能力加权值图表,由能力加权值排名进行参赛队员的选拔。
在确定最佳组队的问题上,首先以综合加权能力为依据选择,再根据相对优势制定调整方案。
为参赛队员组队的方案参照了最佳组队的方法并进行了推广,使所有队伍之间能力相差降低。
最后,建立与最大值及差值相关的目标函数,将队员组队,并将模型进行推广和改进。
关键词:加权相对优势差值一、问题描述问题描述:在参加数学建模竞赛活动中,各院校都会遇到如何选拔最优秀的队员和科学合理的组队问题。
今假设有20名队员准备参赛,根据队员的能力和水平要选出18名优秀队员分别组成6个队,选拔和评价队员主要考虑的条件依次为有关的学科成绩(平均成绩)、智力水平(反映思维能力、分析和解决问题的能力等)、动手能力(计算机的使用及其他方面的实际操作能力)、写作能力、外语水平、协作能力(组织、协调)和其它特长,每个队员的基本条件量化后如下表(略):(1)在20名队员中选择18名优秀的队员参加竞赛;(2)确定一个最佳的组队使得竞赛技术水平最高;(3)给出由18名队员组成6个队的组队方案,使整体竞赛技术水平最高;并给出每个队的竞技水平。
二、问题分析:队员选择上,关于队员的选取,要从20名队员中淘汰两人。
可采取排名然后去除后两名的方法。
根据原表格的数据,队员的评估指标分为了7项。
这7项指标的平均值、波动程度都不同。
因此,每种能力的权重不一致,因此采用表示差距的方差和原始指标的积来表示该队员在这项能力上的加权指标。
组队原则上:为了组成一个最强的组队方案,首先从综合加权能力的排名入手,再让每位队员的劣势得以补充。
综合所有的18名队员进行分组,可以根据以下原则进行分组强弱队员结合,综合实力较差的队员要有加权能力较强的队员给予补充;强弱能力结合,某一项能力较差的队员要有在该项能力较强的队员给予补充;不可以存在弱项,表现在模型里即为,各指标的最大值均非负。
1.某班准备从5名游泳队员中选4人组成接力队,参加学校的4×100m混合泳接力比赛,5名队员4种泳姿的百米平均成绩如下表所示,问应如何选拔队员组成接力队?如果最近队员丁的蛙泳成绩有较大的退步,只有1′15"2;而队员戊经过艰苦训练自由泳成绩有所进步,达到57"5,组成接力队的方案是否应该调整?名队员4种泳姿的百米平均成绩解:设x(1-甲;2-乙;3-丙;4-丁)(1-蝶泳;2-仰泳;3-蛙泳;4-自由泳)(1)目标函数:MIN 66.8x11+75.6x12+87x13+58.6x14+… …+67.4x51+71x52+83.8x53+62.4x54约束条件:x11+x12+x13+x14<=1;… …x41+x42+x43+x44<=1;x11+x21+x31+x41+x51=1;… …x14+x24+x34+x44+x54=1;lingo程序:结果:组队方案为,x14(甲-自由泳),x21(乙-蝶泳),x32(丙-仰泳),x43(丁-蛙泳)。
(2)若丁的蛙泳成绩为1′15"2;戊自由泳成绩为57"5,方案改变为:x21(乙-蝶泳),x32(丙-仰泳),x43(丁-蛙泳),x54(戊-自由泳)。
2.某工厂用A1,A2两台机床加工B1,B2,B3三种不同零件,已知在一个生产周期内A1只能工作80机时,A2只能工作100机时。
一个生产周期内加工B1为70件,B2为50件,B3为20件。
两台机床加工每个零件的时间和加工每个零件的成本,分别如下所示加工每个零件时间表(单位:机时/个)加工每个零件成本表(单位:元/个)问怎样安排两台车床一个周期的加工任务,才能使加工成本最低?解:设A1加工的B1,B2,B3数为X1,Y1,Z1, A2加工的B1,B2,B3数为X2,Y2,Z2, 则目标函数:MIN=2X1+3Y1+5Z1+3X2+3Y2+6Z2,约束条件:X1+2Y1+3Z1<=80;X2+Y2+3Z2<=100;X1+X2>=70;Y1+Y2>=50;Z1+Z2>=20;Lingo程序:结果:所以,成本最低的方案为:最低成本408。
数学建模队员的选拔研究问题2010-06-08 09:28摘要:本文研究的是数学建模队员的选拔问题,为了解决该问题本文运用了Excle 表格中的几项功能,如:Excle的函数计算和排序。
本文还用了平均值的方法求解。
综合考虑个人平均能力指标以及团体的技术水平,最终从15名学生中挑选出9名优秀的学生并组成3队,建立最佳的组队方案,使得这3组队员具有良好的知识结构。
组队时运用了最高分和最低分在一组,较高分和和较低分一组,然后中间分数相似的在一组,也就是让他们每个组的平均分都近似,并且三组中每组的最大值和最小值的差近似的思想。
做出了最佳的组队方案第一组第二组第三组本篇论文的优点在于运用了Excle表格,对各队员的选拔具有了较高的公平性。
本文还建立了各队竞赛技术水平平均值的指标函数图,形象地说明了各队的优劣状况。
而且,在考虑组队的过程中尽量使问题简单化,只是在剩余的队员中组成最佳组,让问题明了化,简单化思路清晰。
数学建模队员选拔问题涉及面很广,我们身边经常会遇到类似的问题,在解决了本问题的同时我们也解决了相关的类似问题。
例如:公司应聘员工问题、球队选拔队员问题等。
关键词:Excle函数计算Excle排序最优排序技术水平一、问题的重述与分析一年一度的全国大学生数学建模竞赛是全国大学生四大竞赛之一,在全国各高校中都受到高度的重视和广泛的关注。
有许多学生希望参加,但由于竞赛场地、经费等原因,并不是所有希望参加竞赛的学生都能被录取。
因此,数学建模教练组需要花费较多的人力以及财力从报名的学生中选拔出优秀的学生并组成具有竞争力的参赛队期望获得最好的成绩。
本文通过运用数学建模的方法来解决这个问题。
数学建模竞赛的每一个参赛队由3名同学组成,要求在三天的时间内完成一个实际问题的求解,包括问题描述、问题分析、建立模型、模型求解算法设计、编写程序求得结果、模型以及算法改进、模型稳定性分析、优缺点分析,最后撰写论文等。
所以,如果想在全国数学建模竞赛中取得优异的成绩,需要一个建模团队具有一定的数学基础和必要的数学建模知识、熟练使用数学软件的能力、较强的语言表达和写作能力、良好的团队合作精神,同时还要求思维敏捷,对建立数学模型有较好的悟性等方面的素质。
数学建模队员的选拔摘要针对数学建模如何才能选拔出真正优秀的同学代表学校参加竞赛,文章对数学建模队员的选拔与组合作出探究。
对于问题一,运用层次分析法,利用AHP层次分析法软件,得出数学成绩、写作能力、编程能力、团队合作精神、创新能力的判断矩阵,从而得出这五个方面对于选拔队员这个目标的权重。
对写作能力、团队精神、创新能力进行无量纲化处理,对编程能力、写作能力、数学成绩、团队精神、创新能力的权重采用每隔五分为一级定量化,通过层次分析法建立模型筛选出综合权重大的前9名的同学,他们分别是S1,S2,S3 ,S5, S6 ,S8 ,S9, S10 ,S11。
首先选出数学成绩最好的三位学生为一组,再从剩下的六位选出创新能力强的三位一组,最后剩下的三位一组,从而列成矩阵,取斜线分组。
最后得出的最佳分组是S1,S5,S8 ;S10,S11,S2;S9,S3,S6。
对于问题二,通过对问题一的结果分析,得出直接录取一个计算机编程高手学生,不再考察其它情况,这种做法是不可取的。
首先,选拔队员是根据他们的综合素质而考虑的,因此应从多方面考虑。
其次是最为看重数学成绩和创新能力,若直接录取这位编程高手,会出现编程很好,但其他方面欠缺,从而影响该队数学建模竞赛成绩。
综合以上分析,最终得出这种做法不可取。
关键词: AHP层次分析法软件;综合考虑;判断矩阵;数学建模队员的选拔;权重一、问题重述一年一度的全国大学生数学建模竞赛是高等院校的重要赛事。
由于竞赛场地、经费等原因,不是所有想参加竞赛的人都能被录用。
为了能够选拔出真正优秀的同学代表学校参加竞赛,数学建模指导教师需要投入大量的精力,但是每年在参赛的时候还是有很多不如意之处:有的学生言过其实,有的队员之间合作不默契,影响了数学建模的成绩。
数学建模需要学生具有较好的数学基础知识、良好的编程能力、较强的写作能力、良好的团队合作精神,同时还要求具有一定的创新能力。
1.根据上表中信息,建立建模队员选拔的数学模型,要求从15名同学中选择9名组成3队参加竞赛,使得这三个参赛队有较好的竞技水平,要求模型具有可推广性。
数学建模竞赛队员的选拔和组队问题摘要该模型解决了选拔参赛队员及确定最佳组队的问题。
该问题涉及面很广,是我们身边经常会遇到的。
本文主要采用了层次分析法,综合考虑个人的指标以及整队的技术水平,最终从15名队员中选出9名优秀队员组成三队,并建立了最佳组队的方案。
问题二:在选拔队员时,我们全面考察了队员的七项指标,并按照相应的权重 得到15名队员的综合排名,最后淘汰掉排名靠后的6 名队员,依次为:9S , 13S ,15S , 12S ,5S ,3S 。
为了组成3个队,使得这三个队整体技术水平最高,我们首先引入了刻画每个队竞赛技术水平的函数:(),,v x y z M =1ω本问题就可以转化为寻找该函数的最大值。
根据题目要求,为使三名队员的技术水平可以互补,参赛学生最好来自不同专业,我们算得此种情况下有11S 和13S 。
比较分析前面的综合排名,11S 的综合能力排第七,而13S 的综合能力排第十一。
可见这种选拔方式,有可能影响队伍的总体水平,所以不可取。
问题四:根据有违规记录的学生X 所在的位置来确定其对组队后整体技术水平的影响。
经分析可得:如果X 被选入组队,对组队后三队整体水平有影响,三队整体水平降低。
关键词:层次分析法;技术水平指标;最佳组队一、问题重述一年一度的全国大学生数学建模竞赛是全国所有高校的重要赛事,如何选拔最优秀的队员和科学合理组队问题是一个首先需要解决的数学模型问题。
由于竞赛场地、后勤服务、经费设施等原因,需要选拔出优秀的同学代表学校参加全国大学生数学建模竞赛,以减少参赛成员因放弃、不遵守规则、合作不默契等造成的数学建模成绩的影响和学院资源的浪费。
以数学建模选修课的笔试成绩,数学竞赛获奖记录,数学建模培训课签到记录,成绩的班级排名,上机操作与软件编程能力,思维敏捷程度以及知识面宽广为依据从15名学生中选拔出9名学生,分为3小组,每个学生的基本条件如表(见附录)需要解决的问题如下:1.根据所了解的数学建模知识,明确选拔数学建模队员主要考察的相应素质以及考察方法。
2.根据基本条件表的信息,建立建模队员选拔的数学模型,从中选出9位同学,并组成3个队,使得这三个队具有良好的知识机构。
3.判断直接录用一个计算机编程高手,而不再考察其它情况这种选拔方式是否可取。
4.建立有一个学生有违规记录(如晚提交论文或引用他人文献没有给出出处等)的危害模型。
二、问题分析2.1问题一分析根据我们所了解的数学建模知识,在选拔数学建模队员时应考察学生的数学基础以及必要的数学建模的知识、良好的编程能力以及熟练地使用数学软件的能力、较强的语言表述能力和写作能力、良好的团队合作精神。
同时还要求队员思维敏捷、不怕苦不怕累、对数学模型有较好的悟性。
数学和计算机能力是建模的关键,组队时,我们应该优先考虑有这方面才能的人。
数学以及数学建模的知识可以通过学生的数学建模笔试成绩和数学竞赛获奖情况来考察,而计算机能力主要通过上机测试成绩来考察。
2.2问题二分析问题二就是在15名学生中剔除6名实力最弱的。
由题意可知,该问题是半定量半定性、多因素的综合选优排序问题,是一个多目标决策问题,我们主要利用层次分析法,分别算出各指标对选择队员的权重,以及各队员对各指标的权重,然后综合考察每个队员的权重进行排名,最后剔除排名落后的六名学生。
2.3问题三分析问题三我们在前一问的基础上进行假设,假设计算机是队员选拔的关键因素,选拔出几名队员,与问题二的综合排名进行对比。
通过结果确定直接录取而不考虑其他方面的做法是否可取。
2.4问题四分析画出有违规记录学生X所在的位置,分析他对组队后三队整体水平的影响。
三、模型假设1、假设参赛队员的外部环境相同,竞赛中不考虑其它的随机因素。
在正式比赛对过程中队员都能正常的发挥自己的水平。
2、假设竞赛水平的发挥只取决于表中所给的各项条件,且认为表中测量的数据都是客观公正的。
3、假设数学建模选修成绩,机试成绩,数学竞赛获奖情况,思维敏捷程度,知识面宽广程度,数学建模选修课听课次数以及其他计算机应用情况,这7项对学生数学建模综合能力的影响占主要地位,且影响程度是依次递减的。
4、假设在组队后各队的发挥是相互独立对,不受其他组的影响。
5、假设组队后的整体水平由该队每项的最佳队员的指标表征。
四、符号说明五、模型的建立与求解5.1问题二模型的建立及求解5.1.1参赛队员的选取:由每个学生的基本条件表可知,该问题是半定量半定性、多因素的综合选优排序问题,是一个多目标决策问题。
为了从15名队员中选出9名参赛者,我们主要利用层次分析法,分别算出各指标对选择队员的权重,以及各队员对各指标的权重,然后综合考察每个队员的权重进行排名。
根据题目给出的八项指标,我们首先将各指标量化,为了区分各项条件中的档次差异,确定量化原则如下:选修笔试成绩按照满分10分计;思维敏捷、机试和知识面的A、B、C、D 等级分别按4分、3分、2分、1分计算;数学竞赛没获奖按1分来计算,获三等奖1次为2分,获三等奖2次为3分,获二等奖2次为5分,获一等奖1次为6分,获一等奖2次为7分;听课次数按一次1分计;其他情况如考过程序员,学过MATLAB的各加1分,过计算机三级的加2分;班级排名情况由于统计的不是很全,所以不好进行量化,因此这项指标可以不用考虑。
运用层次分析法:将从15名学生中选拔9名优秀队员看作一个目标,作为目标层。
将刻画队员的7个指标作为标准层。
将15名学生作为方案层。
如图(1)图(1):层次结构图由题目已知及假设可得,准则层的七项指标依次递减,并认为相邻两项的差距不大,且都假设是相等的,这里都认为相差为1,于是两两对比得如下比较矩阵:1 2 3 4 5 6 71/2 1 2 3 4 5 61/3 1/2 1 2 3 4 51/4 1/3 1/2 1 2 3 41/5 1/4 1/3 1/2 1 2 31/6 1/5 1/4 1/3 1/2 1 21/7 1/6 1/5 1/4 1/3 1/2 1⎡⎣A =⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎦这里我们用和法来计算,以下为步骤: ①将A 的每一列向量归一化得1/(1,2,...,);nij ij iji a aj n ω===∑②将ij ω按行求和得1(1,2,...,);ni ij j i n ωω===∑③将i ω归一化得1/,nii i i ωωω==∑ 112(,,...,)T n ωωω=ω为近似特征向量;④计算最大特征值1max1()1n i i in λω==∑A ω;由以上公式计算可得最大特征值max7.1973λ≈。
特征向量[]10.3504,0.2375,0.1590,0.1056,0.0696,0.0462,0.0318T=ω根据一致性指标公式max (1)1nCI n λ-=- 可得:一致性指标(1)0.0329CI = 随机一致性指标可根据表(2)查得:(1) 1.3200RI =。
根据公式得到随机一致性比率:(1)0.02490.1(1)CR RI ==<,我们认为成对比较矩阵A 具有满意的一致性,所以通过一致性检验。
我们也可以用MATLAB 编程计算得到(见附录程序1)。
根据问题的条件和模型的假设,对每个人各项条件的量化指标能够充分反映出每个人的综合实力。
由此可以分别构造P 层对准则K C 的比较矩阵: (),()k i j N N b ⨯=K B其中, ()(),()(,1,2,...,7)k k ii j k jT b i j T == 。
显然,所有的 (1,2,...,7)k =k B 均为一致阵。
由一致阵的性质可知:k B 的最大特征值()maxk N λ=,20k CR =,其任一列向量都是()max k λ的特征向量。
将其归一化可得P 对k C 的权重向量。
记作()()()12(,,...,)k k k TN ωωω=k ω(1,2,...,7)k =,记2(1)(2)(7)7(,,...,)N ωωω⨯=ω为P 层对C 层的权重,且一致性比率指标为7()21(2)0k k CR CR===∑,表(3)为P C -层的特征向量:表(3):P C -层的特征向量由于标准层C 对目标层O 的权重为1ω,方案层P 对标准层C 权重为2ω,则P 对O 的权重为:(1)(2)(7)()()()12(,,...,)(,,...,)k k k TN ωωωωωω===211ωωωωg g其组合一致性比率指标为:(2)(1)00.02490.02490.1CR CR CR =+=+=<因此,组合权重ω可作为目标决策的依据。
根据权重,得到15人的排序结果见表(4)。
由表可以作队员的权重图 见图(2):图(2)15名队员权重图根据题目要求,在15名学生中选取9名参赛队员,即选取权重排前9名的学生。
由图表可知,依次为:S1, S6, S7, S4, S2, S8, S11, S10, S14。
5.1.2最佳组队方案的确定:第二小问是确定最佳的组队,使竞赛技术水平最高。
显然是要考虑队员之间各项指标的互补性,找到三人让其各项权重达到最大值。
组队原则:三名队员的技术水平可以互补(最好来自不同专业),技术水平最高则为该队的水平指标。
任取3名队员组合,求出相应的技术水平指标之和的最佳组队方案对分组的影响主要取决于前四项指标:数学建模选修成绩,机试成绩,数学竞赛获奖情况,思维敏捷程度。
9名学生分为3组,总共有3984C =种组队方式。
按照不同专业学生分在不同组的原则,有36种组队方式。
(),,x y z :,,x y z 三名队员组成的一个队。
()i m x :队员x 的第i 项水平指标。
(),,i M x y z :队员,,x y z 组队(),,x y z 的第i项水平指标(),,v x y z :技术水平指标()()()127[,,,,,,...,,,]M M x y z M x y z M x y z ====(),,max{(),(),()},1,2,...,7i i i i M x y z m x m y m z i ==(),,v x y z M =1ω。
经计算得出组队结果:第二组 6S 11S 4S 0.0914192 第三组2S7S8S0.09141925.2 问题三解答直接录用编程高手而不考虑其他情况,这种做法是不可取的。
根据我们所建立的上述选取模型可知,我们是根据学生综合情况来选取的,而不是考虑某一项。
如果只考虑计算机能力这一点,可得到11S 与13S 的计算机能力最强。
但是,11S 的综合能力排第七,而13S 的综合能力排第十一,如果老师直接录取,有可能影响队伍的总体水平,而且也有失公平选拔这一原则。