估计量的评价标准
- 格式:ppt
- 大小:572.50 KB
- 文档页数:23
第十八讲 估计量的评选标准及区间估计1. 估计量的评价标准判断估计量好坏的标准是:有无系统偏差;波动性的大小;伴随样本容量的增大是否是越来越精确,这就是估计的无偏性,有效性和相合性。
(1)无偏性设∧θ是未知参数θ的估计量,则∧θ是一个随机变量,对于不同的样本值就会得到不同的估计值,我们总希望估计值在θ的真实值左右徘徊,即其数学期望恰等于θ的真实值。
定义: 设∧∧=θθ(n X X X ,,,21 )是未知参数θ的估计量,若)(∧θE 存在,且对Θ∈∀θ有)(∧θE =θ,则称∧θ是θ的无偏估计量,称∧θ具有无偏性。
在科学技术中,)(∧θE -θ称为以∧θ作为θ的估计的系统误差,无偏估计的实际意义就是无系统误差。
例1:设总体X 的k 阶中心矩)(kk X E =μ)1(≥k 存在,),,,(21n X X X 是X 的一个样本,证明:不论X 服从什么分布,∑==n i ki k X n A 11是k μ的无偏估计量。
证明:n X X X ,,21与X 同分布,n i X E X E k k ki ,,2,1)()( ===∴μ第七章 参数估计第3节 估计量的评选标准从上一节得到:对于同一参数,用不同的估计方法求出的估计量可能不相同,用相同的方法也可能得到不同的估计量,也就是说,同一参数可能具有多种估计量,而且,原则上讲,其中任何统计量都可以作为未知参数的估计量,那么采用哪一个估计量为好呢?这就涉及到估计量的评价问题。
对定义的理解:设Θ∈θ是总体X 的分布参数,Θ∈∀θ,即服从某一分布形式的任意总体分布,参数θ的估计量∧∧=θθ(,,21X X n X , )(是简单随机样本的函数)的数学期望都等于θ。
k n i ki k X E n A E μ==∴∑=1)(1)(特别,不论X 服从什么分布,只要)(X E 存在,X 总是)(X E 的无偏估计。
例2:设总体X 的2)(,)(σμ==X D X E 都存在,且02>σ,若2,σμ均为未知,则2σ的估计量∑=-=ni i X X n 122)(1ˆσ是有偏的。
常用估计量的评价标准
常用估计量的评价标准有:
1. 偏差(Bias):估计量的期望值与真实值之间的差距。
偏差越小越好。
2. 方差(Variance):估计量的离散度,即估计量与其期望值之间的差异。
方差越小越好。
3. 平均绝对误差(MAE):估计量的绝对误差的平均值。
MAE越小越好。
4. 均方误差(MSE):估计量的误差的平方的平均值。
MSE越小越好。
5. 均方根误差(RMSE):MSE的平方根。
RMSE越小越好。
6. 相对误差(Relative Error):估计量的误差与真实值之间的比率。
相对误差越小越好。
7. 系数相关度(Correlation Coefficient):估计量与真实值之间的相关程度。
系数相关度越大越好。
8. 准确率(Accuracy):估计量正确的比率。
准确率越高越好。
9. 召回率(Recall):真实值中被正确估计量估计到的比率。
召回率越高越好。
10. F1得分(F1 Score):综合考虑准确率和召回率的得分。
F1得分越高越好。
评价估计量的标准
1.准确性:估计量应该尽可能接近真实值。
2.精确度:估计量应该具有足够的精度,以支持正确的决策。
3.一致性:估计量应该在相同的背景下多次测量所得到的结果是一致的。
4.可靠性:估计量应该具有足够的可靠性,以在不确定的环境中使用。
5.效度:估计量应该具有足够的效度,以反映所评估的属性或变量。
6.适用性:估计量应该适用于特定的变量或场景,并且在不同场景下使用时应该具有相似的表现。
7.可解释性:估计量应该能够被易于理解的方式解释并解释。
8.稳定性:估计量应该对于不同的操作者、时间和环境条件变化不敏感。
9.可比性:估计量应该具有足够的可比性,以支持不同实验结果的比较。