高数求极限的方法小结
- 格式:docx
- 大小:3.95 MB
- 文档页数:17
考研高数求极限的方法总结(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--考研高数求极限的方法总结这是一篇由网络搜集整理的关于2017考研高数求极限的方法总结的文档,希望对你能有帮助。
1、等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用,前提是必须证明拆分后极限依然存在,e的X次方-1或者(1+x)的a次方-1等价于Ax等等。
全部熟记(x趋近无穷的时候还原成无穷小)。
2、洛必达法则(大题目有时候会有暗示要你使用这个方法)。
首先他的使用有严格的使用前提!必须是X趋近而不是N趋近!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的,不可能是负无穷!)必须是函数的导数要存在!(假如告诉你g(x),没告诉你是否可导,直接用,无疑于找死!!)必须是0比0无穷大比无穷大!当然还要注意分母不能为0。
洛必达法则分为3种情况:0比0无穷比无穷时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。
通项之后这样就能变成第一种的形式了;0的0次方,1的无穷次方,无穷的0次方。
对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0,当他的幂移下来趋近于无穷的时候,LNX趋近于0)。
3、泰勒公式(含有e的x次方的时候,尤其是含有正余弦的加减的时候要特变注意!)E的x展开sina,展开cosa,展开ln1+x,对题目简化有很好帮助。
4、面对无穷大比上无穷大形式的解决办法,取大头原则最大项除分子分母!!!看上去复杂,处理很简单!5、无穷小于有界函数的处理办法,面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。
高数中求极限的16种方法——好东西首先对极限的总结如下:极限的保号性很重要,就是说在一定区间内,函数的正负与极限一致一、极限分为一般极限,还有数列极限,(区别在于数列极限发散,是一般极限的一种)二、求极限的方法如下:1 .等价无穷小的转化,(一般只能在乘除时候使用,在加减时候用必须证明拆分后极限依然存在) e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。
全部熟记(x趋近无穷的时候还原成无穷小)2.罗比达法则(大题目有时候会有暗示,要你使用这个方法)首先他的使用有严格的使用前提,必须是 X趋近而不是N趋近!所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!必须是函数的导数要存在!必须是 0比0 无穷大比无穷大!当然还要注意分母不能为0注意:罗比达法则分为3种情况0比0,无穷比无穷的时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。
通项之后这样就能变成1中的形式了;0的0次方,1的无穷次方,无穷的0次方;对于(指数幂数)方程,方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候LNX趋近于0)3.泰勒公式(含有e的x次方的时候,尤其是含有正余弦的加减的时候要特别注意!!!!)E的x展开,sina 展开,cos 展开,ln1+x展开,对题目简化有很好帮助4.面对无穷大比上无穷大形式的解决办法取大头原则,最大项除分子分母!!!!!!!!!!!5.无穷小于有界函数的处理办法面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。
面对非常复杂的函数可能只需要知道它的范围结果就出来了!!!6.夹逼定理(主要对付数列极限!)这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。
高等数学求极限的14种方法高等数学求极限的14种方法一、极限的定义极限的保号性很重要。
设$x\to x_0$,$limf(x)=A$,则有以下两种情况:1)若$A>0$,则有$\delta>0$,使得当$00$;2)若有$\delta>0$,使得当$0<|x-x_0|<\delta$时,$f(x)\geq 0$,则$A\geq 0$。
极限分为函数极限和数列极限,其中函数极限又分为$x\to\infty$时函数的极限和$x\to x_0$的极限。
要特别注意判定极限是否存在,收敛于$a$的充要条件是它的所有子数列均收敛于$a$。
常用的是其推论,即“一个数列收敛于$a$的充要条件是其奇子列和偶子列都收敛于$a$”。
二、解决极限的方法如下:1.等价无穷小代换。
只能在乘除时候使用。
2.XXX(L'Hospital)法则。
它的使用有严格的使用前提。
首先必须是$x$趋近,而不是$n$趋近,所以面对数列极限时候先要转化成求$x$趋近情况下的极限,数列极限的$n$当然是趋近于正无穷的,不可能是负无穷。
其次,必须是函数的导数要存在,假如只告诉$f(x)$、$g(x)$,而没有告诉是否可导,不可直接用洛必达法则。
另外,必须是“比”或“无穷大比无穷大”,并且注意导数分母不能为$0$。
洛必达法则分为三种情况:1)$\infty/\infty$时,直接用$\infty$;2)$0\cdot\infty$、$\infty-\infty$、$0^0$、$\infty^0$时,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。
通分之后,就能变成(1)中的形式了。
即$f(x)g(x)=\frac{f(x)}{g(x)}$或$f(x)g(x)=\frac{g(x)}{f(x)}$;3)$1^\infty$、$0^0$、$1^{\infty-\infty}$、$\infty^0$对于幂指函数,方法主要是取指数还取对数的方法,即$e^{f(x)g(x)}=e^{g(x)lnf(x)}$,这样就能把幂上的函数移下来了,变成$0/0$型未定式。
高数_数学极限总结
数学极限旨在研究一个变量值接近但未达到一个特定数值时整个表达式的行为。
在极
限理论中,经常被称为“触及极限”(tending to limit)。
极限有两种类型:极限和无穷大。
极限是指表达式越来越接近某个特定的数值的状态,而无穷大则表示表达式几乎接近于一个特定的无限大的数值。
求极限的各种方法:
原函数法:根据变量趋向特定值时函数展开时形成的多项式推导其极限值。
变量迭代法:针对变量求值,当自变量变化时,函数值变化相同。
导数法:根据定义对变量取导数,把导数置零,得到方程和变量取值。
分母重置法:当表达式中存在分式且分母可变,则把它变为分母的重置形式,来求极限。
泰勒公式法:利用泰勒公式求函数展开式的极限。
洛必达斯平方和定理法:用变量求和,然后把求和结果代入平方和定理,求解方程,
进而求极限的值。
三角函数法:利用三角函数的展开式,求三角函数的极限值。
极限也可以作为形函数理论的有用工具,比如求最大值和最小值、极限点、局部极小
点和全局极小点。
极限还可以用于分析函数不可导性、曲线不可娶群及曲线是否对称等问题。
极限在数学中运用广泛,它常常可以把复杂的问题变得容易理解;它也可以解决无法
用解析的方法解决的问题。
极限的概念也可以帮助我们更清晰的理解经典数学中的很多概念,比如微分、积分等。
高等数学中函数极限的求法技巧解析函数极限是高等数学中的一个重要概念,常常用于研究各种复杂的数学问题。
在求解函数极限的过程中,有一些常用的技巧,可以使计算更加简洁、高效。
下面简要介绍一些常用的函数极限求法技巧。
一、分子分母同除分子分母同除是一种常用的技巧,可以化简分式,便于计算。
具体操作如下:假设要求的函数极限为:lim f(x) / g(x)当分子和分母都含有相同的项时,可以将它们同除以这个公共项,得到新的分式。
例如:将分子和分母都除以 (x+1) ,得到:这样就将原问题化简成了一个更简单的问题。
二、恒等式变形在计算函数极限时,可以通过运用一些基本恒等式进行变形,以使计算更加简单。
例如:1、三角函数的基本恒等式:sin^2 x + cos^2 x = 1这些恒等式可以用于化简三角函数的表达式,使计算更加简便。
2、指数运算的恒等式:a^x / a^y = a^(x-y)三、用等价无穷小代替函数极限中经常会涉及到等价无穷小的概念。
如果 lim f(x) = 0,lim g(x) = 0,且lim f(x) / g(x) = 1,那么就可以将 f(x) 用 g(x) 的等价无穷小代替,求解新的函数极限。
例如:可以用等价无穷小代替 sin x,得到:lim 1 / x = 0四、洛必达法则洛必达法则是一种用于求解 0/0 或∞/∞ 型无穷小的极限的方法,也是求导数时的基本工具。
该法则的核心思想是将原问题转化成一个求导数的问题,并通过对导数的求解来解决原问题。
具体操作如下:且在极限点 x0 处,f(x0) = 0,g(x0) = 0。
1、求出 f'(x0) 和 g'(x0),如果两者都存在且g'(x0) ≠ 0,则原极限等于 f'(x0) / g'(x0)。
f(x) = f(x0) + f'(x0)(x-x0) + o(x-x0)其中 o(x-x0) 表示 x -> x0 时比 (x-x0) 高阶的无穷小量。
高等数学中几种求极限的方法一、直接代入法这种方法超级简单,就是当函数在某一点连续的时候,直接把那个点的值代入函数里就好啦。
比如说啊,对于函数f(x)=x+1,当我们求x趋近于1的极限的时候,直接把1代入函数,就得到极限是2啦。
就像你走在路上,看到一个敞开的门,直接就可以走进去一样轻松。
二、因式分解法有时候函数看起来很复杂,但是我们可以对它进行因式分解呢。
比如说求lim(x→1)(x² - 1)/(x - 1),这个时候我们可以把分子因式分解成(x + 1)(x - 1),然后和分母的(x - 1)约掉,就变成了求lim(x→1)(x + 1),再用直接代入法就得到极限是2啦。
这就好比整理杂乱的房间,把东西整理好了,就很容易找到我们想要的啦。
三、有理化法当函数里有根式的时候,这个方法就很有用啦。
例如求lim(x→0)(√(1 + x)- 1)/x,我们可以把分子有理化,分子分母同时乘以(√(1 + x)+ 1),这样分子就变成了1 + x - 1 = x,然后和分母的x约掉,就得到极限是1/2啦。
这就像是给一个不太好看的东西化个妆,让它变得好看又好处理。
四、两个重要极限法1. 第一个重要极限是lim(x→0)sinx/x = 1。
这个极限超级重要哦。
比如说求lim(x→0)sin3x/x,我们可以把它变成3lim(x→0)sin3x/3x,根据第一个重要极限,就得到极限是3啦。
2. 第二个重要极限是lim(x→∞)(1 + 1/x)^x = e。
要是遇到类似lim(x→∞)(1+ 2/x)^x这种的,我们可以把它变形为lim(x→∞)[(1 + 2/x)^(x/2)]²,就等于e²啦。
这两个重要极限就像是数学世界里的宝藏,掌握了就能解决好多问题呢。
五、等价无穷小替换法当x趋近于0的时候,有好多等价无穷小的关系。
比如sinx和x是等价无穷小,tanx和x也是等价无穷小,ln(1 + x)和x也是等价无穷小等等。
函数极限的求法及技巧总结函数极限是高等数学的一个重要概念,它在微积分、实分析等许多领域都有着广泛的应用。
在计算函数极限时,需要掌握一些求法和技巧。
本篇文章将对此进行总结。
1. 直接代入法直接代入法是最基本也是最简单的一种方法,它适用于可以直接将自变量代入函数中计算得到结果的情况。
例如,当求函数f(x) = x² + 3x + 2在x = 1处的极限时,我们可以直接将x = 1代入函数中,得到f(1) = 1² + 3×1 + 2 = 6。
因此,f(x)在x = 1处的极限为6。
2. 分式化简法分式化简法是一种常用的求极限的方法,它适用于形如“分式”的函数。
3. 夹逼定理夹逼定理是一种常用的求极限的方法,它适用于当我们无法通过代入或化简等方法直接求出函数极限时。
夹逼定理的思想是:若存在函数g(x)和h(x),满足 g(x) ≤ f(x) ≤ h(x)且limx→a g(x) = limx→a h(x) = L,那么limx→a f(x) = L。
4. 洛必达法则其中,f'(x)和g'(x)分别表示f(x)和g(x)的导数。
例如,当求函数f(x) = (e^x - 1) / x在x = 0处的极限时,我们可以将f(x)表达为g(x) / h(x)的形式,即g(x) = e^x - 1,h(x) = x,然后计算g'(x)和h'(x),得到 g'(x) = e^x,h'(x) = 1。
因此,根据洛必达法则,我们得到limx→0 f(x) = limx→0 [e^x / 1] = 1。
5. 泰勒展开法泰勒展开法是一种常用的求函数极限的方法,它适用于当函数在极限点左右存在二阶及以上的导数时。
泰勒展开法的思想是:当limx→a f(x)存在时,可以将函数f(x)在a附近进行泰勒展开,得到f(x) = f(a) + f'(a)×(x - a) + f''(a)×(x - a)² / 2 + …… + Rn(x),其中Rn(x)为余项。
高等数学极限求法总结本站小编为你整理了多篇相关的《高等数学极限求法总结》,但愿对你工作学习有帮助,当然你在本站还可以找到更多《高等数学极限求法总结》。
第一篇:6利用函数连续性(就是直接将趋向值带出函数自变量中,此时要要求分母不能为0)描述函数的一种连绵不断变化的状态,即自变量的微小变动只会引起函数值的微小变动的情况。
确切说来,函数在某点连续是指:当自变量趋于该点时,函数值的极限与函数在该点所取的值一致。
例1设 f(x)=xsin 1/x + a,x<0,b+1,x=0,x^2-1,x<0,试求:当a,b为何值时,f(x)在x=0处的极限存在?当a,b为何值时,f(x)在x=0处连续?注:f(x)=xsin 1/x +a, x< 0b+1, x=0X^2-1, x>0解:f(0)=b+1左极限:lim(x→0-) f(x)=lim(x→0-) (xsin(1/x)+a)=0+a=a左极限:lim(x→0+) f(x)=lim(x→0+) (x^2-1)=0-1=-1f(x)在x=0处连续,则lim(x→0-) f(x)=lim(x→0+) f(x)=f(0),所以a=-1=b+1,所以a=-1,b=-2第二篇:函数极限的四则运算法则学案课题:§13-3函数极限的四则运算法则(一)学习目标:掌握函数极限的运算法则,并会求简单的函数的极限学习重点:运用函数极限的运算法则求极限学习难点:函数极限法则的运用学习过程一、知识复习1.复习数列极限的四则运算法则(包括乘方的极限的法则).2.复习几个简单函数的极限.即:二、课堂学习1.指导对上述定理的证明作简要说明.2.探究问题1 根据函数极限定义和函数的图象,说出下列极限,并验证所给结论.(其中f(x)为有理分函数).所以,若f(x)为有理整函数,则有解:因为当x→x0时,分子、分母皆有极限且分母的极限不为零,因此有判断下列各极限是否存在?如果存在,求其极限;如果不存在,说明理由.三、检测1.求下列极限:2.求下列极限:四、学习小结第三篇:2利用洛必达法则洛必达(L Hopital)法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法.简单讲就是,在求一个含分式的函数的极限时,分别对分子和分母求导,在求极限,和原函数的极限是一样的。
大一高数求极限的方法总结极限是高数学中一个重要的概念。
学习高数,理解和计算极限是大学生必须掌握的能力之一。
极限不仅可以用于理论推导,而且还可以帮助学生更好地应用极限,来解决实际数学问题。
极限有两种计算方法:一种是柱状法,一种是流程。
柱状法指的是使用微积分的方法来解决问题;而流程指的是通过分析函数的特征,从而求取极限的方法。
第一,柱状法。
柱状法是基于极限定义的,在求取极限的时候,可以利用定义,来确定极限的值。
例如求函数$y=frac{2x^{2}+5x+1}{(x-1)}$的极限,首先我们需要将函数分成上下两部分:$y_1=2x^{2}+5x+1$,$y_2=x-1$,分别给出它们的极限:$lim_{x to 1^{+}}y_1=6$,$lim_{x to 1^{-}}y_2=2$,然后将它们带入极限定义:$lim_{x to 1}y=lim_{x to1}frac{y_1}{y_2}=frac{lim_{x to 1^{+}}y_1}{lim_{x to1^{-}}y_2}=frac{6}{2}=3$,即得出极限值为$3$。
第二,流程。
流程是使用分析函数特征来求取极限的方法,常用于求一元函数(如指数函数、对数函数等)的极限。
例如求函数$y={frac{sqrt{x+2}-2}{x-3}}$的极限,在求这个函数的极限之前,我们可以先分析函数的特征,此函数在$x=3$处发生拐点,因此可以推测函数在$x=3$处的极限值应该为无穷大。
然后,我们可以使用流程法,将函数中的分子除以分母,将形式变成$frac{k_1}{0}$的形式,从而得到极限值无穷大。
最后,我们总结柱状法和流程法的不同之处。
在求取极限的时候,柱状法是依据定义求取极限的,而流程法则是利用函数的特征来求解极限。
因此,建议大家在学习高数的时候,还是要了解柱状法和流程法,将两种方法结合起来,更好地求取极限,并能够更好地应用到实际数学问题中去。
以上就是有关极限的求解方法总结。
高数求极限的方法总结
1、利用定义求极限。
2、利用柯西准则来求。
柯西准则:必须并使{xn}存有音速的充要条件官任给ε>0,存有自然数n,使当n>n 时,对于
任意的自然数m有|xn-xm|<ε.
3、利用音速的运算性质及未知的音速xi。
如:lim(x+x^0.5)^0.5/(x+1)^0.5
=lim(x^0.5)(1+1/x^0.5)^0.5/(x^0.5)(1+1/x)^0.5
=1.
4、利用不等式即为:夹挤定理。
5、利用变量替换求极限。
比如lim (x^1/m-1)/(x^1/n-1)
可令x=y^mn
得:=n/
6、利用两个重要极限来求极限。
(1)lim sinx/x=1
x->0
(2)lim (1+1/n)^n=e
n->∞
7、利用单调有界必存有音速xi。
8、利用函数连续得性质求极限。
9、用洛必达法则谋,这就是改得最少的。
10、用泰勒公式来求,这用得也很经常。
高数求极限的方法小结 The document was finally revised on 2021高等数学中求极限的方法小结2.求极限的常用方法 利用等价无穷小求极限#这种方法的理论基础主要包括:(1)有限个无穷小的和、差、积仍是无穷小.(2)有界函数与无穷小的乘积是无穷小.(3)非零无穷小与无穷大互为倒数.(4)等价无穷小代换(当求两个无穷小之比的极限时,分子与分母都可用等价无穷小代替).[3]设αα'~、~ββ'且lim lim ββαα'=;则:β与α是等价无穷小的充分必要条件为:0()βαα=+.常用等价无穷小:当变量0x →时,21sin ~,tan ~,arcsin ~,arctan ~,1~,ln(1)~,1cos ~,2x x x x x x x x x e x x x x x -+-~,(1)1~x x x αα+-.例1 求01cos limarctan x xx x→-.解 210,1cos ~,arctan ~2x x x x x →-时,故,原式220112lim 2x xx →==例2 求1230(1)1limcos 1x x x →+--.解 12223110,(1)1~,1cos ~32x x x x x →+--时,因此:原式202123lim 132x xx→==-.例3 求1limtan x x→-. 解 0,x →时11~,tan ~3x x x ,故:原式=0113lim 3x xx →=.例4 求()21lim2ln(1)xx ex x →-+.解 0,1~,ln(1)~x x e x x x →-+时,故:原式2201lim 22x x x →==.例5 试确定常数a 与n ,使得当0x →时,n ax 与33ln(1)x x -+为等价无穷小.解 330ln(1)lim 1n x x x ax →-+= 而左边225311003331lim lim n n x x x x x x nax nax--→→-+--=, 故 15n -=即6n = 0331lim 11662x a a a →--∴=∴=∴=-.利用洛必达法则求极限#利用这一法则的前提是:函数的导数要存在;为0比0型或者∞∞型等未定式类型.洛必达法则分为3种情况:(1)0比0,无穷比无穷的时候直接用.(2)0乘以无穷,无穷减去无穷(无穷大与无穷小成倒数关系时)通常无穷大都写成无穷小的倒数形式,通项之后,就能变成(1)中形式了.(3)0的0次方,1的无穷次方,无穷的0次方,对于(指数,幂函数)形式的方法主要是取指数的方法,这样就能把幂函数指数位置的函数移下来了,就是写成0与无穷的形式了.洛必达法则中还有一个定理:当x a →时,函数()f x 及()F x 都趋于0;在点a 的某去心邻域内,()f x ﹑()F x 的导数都存在且()F x 的导数不等于0;()lim()x af x F x →''存在,那么()()limlim ()()x ax a f x f x F x F x →→'=' . [1]求极限有很多种方法如洛必达法则,夹逼定理求极限的秘诀是:强行代入,先定型后定法. [3]例6 求22201cos lim()sin x xx x→-. 分析 秘诀强行代入,先定型后定法.22224431100(00)(00)0000000000-+--+-===(此为强行代入以定型). ()00-可能是比()00+高阶的无穷小,倘若不这样,或422(00)(00)0000000+--+= 或43(00)(00)0000000+-+-=. 解2222222240001cos sin cos (sin cos )(sin cos )lim()lim lim sin sin x x x x x x x x x x x x x x x x x x→→→--+-== 3300sin cos sin cos sin cos limlim 2limx x x x x x x x x x x xx x x →→→-+-==, 由洛必达法则的22222001cos sin 4sin 42,2limlim 333x x x x x x x →→-+==有:上式=. 例7 求201lim x x e x x→--.解 22000(1)1lim lim 1lim 1()21x x x x x x e e e x x x x x→→→'--==-∴=-'--- .例8 求332132lim 1x x x x x x →-+--+.解 原式22113363lim lim 321622x x x x x x x →→-===---.(二次使用洛必达法则). 例9 求02lim sin x x x e e xx x-→---.解 原式0002limlim lim 21cos sin cos x x x x x xx x x e e e e e e x x x ---→→→----====-. 例10 求22143lim 21x x x x x →-+-+.解 原式1112422lim limlim02211x x x x x x x x x →→→---===∴---原式=∞. 例11 求0tan lim sin arcsin x x xx x x→-.解 原式222222220000111(1cos)tan 1cos 1cos 2lim lim lim lim 33cos 3cos 3x x x x x x x x x xxx x x x x x →→→→-+--=====. 例12 求0cot lim ln x xx+→.解 原式22200sin cos 1limlim sin 2sin cos x x x x x x x x ++→→---===-∞. 例13 求22201cos lim()sin x xx x→-. 解 原式22222400sin cos (sin cos )(sin cos )lim lim sin x x x x x x x x x x x xx x →→--+==223320000sin cos sin cos sin cos 1cos sin 4lim lim 2lim 2lim 33x x x x x x x x x x x x x x x x x x x →→→→-+--+====“0⨯∞”型:例14 求lim (arctan )2x x x π→+∞-.解 原式2221arctan 112lim lim lim 11111x x x x x xx xπ→+∞→+∞→+∞-+====+. “∞-∞”型:例15 求 ()2lim sec tan x x x π→-.解 1sin 1sin sec tan cos cos cos x xx x x x x--=-=, 故原式221sin cos limlim 0cos sin x x x x x x ππ→→--===-.“00”型: 例16 求0lim x x x +→.解 原式ln 0lim ln ln 0lim lim 1x xxx e x x xx x e e e+→++→→====.“1∞”型:例17 求lim 1xx e x →∞⎛⎫+ ⎪⎝⎭.解 原式lim 1x e ee x e e x →∞⎛⎫=+= ⎪⎝⎭.“0∞”型:例18 求tan 01lim ()x x x+→. 解 原式tan ln tan 01lim ln()tan ln 0lim lim x xxx e x xxx x e e e-+→++-→→===,而tan ~0lim(tan ln )lim(ln )0x x x x x x x x ++→→-−−−→-=,因此:原式=1. 泰勒公式(含有e 的x 次方的时候,尤其是含有正、余弦的加减的时候要特别注意) 泰勒中值定理定理:如果函数()f x 在含有n 的某个开区间(,)a b 内具有直到(1)n +阶的导数,则对任一(,)x a b -∈,有()f x =0()f x +0()f x '(x -0x )+0()2!f x ''(x -0x )2+……+()0()!n f x n (x -0x )n +n R (x ) 其中()()()(1)10()1!n n n f R x x x n ξ++=-+,这里ξ是x 与0x 之间的某个值. [1]例19 利用带有佩亚诺型余项的麦克劳林公式,求极限30sin cos limsin x x x xx→-.解 由于公式的分母33sin ~(0)x x x →,我们只需将分子中的3333sin 0(),cos 0()3!2!x x x x x x x x x =-+=-+代入计算,于是 3333331sin cos 0()0()0()3!2!3x x x x x x x x x x x -=-+-++=+,对上式做运算时,把两个3x 高阶的无穷小的代数和还是记作30()x .例20 323322314334lim lim 3211211x x x x x x x x x x x x →∞→∞++++==++++++, 2222111lim lim 121(1)1x x n n n n n→∞→∞++==--+, ()121(2)313limlim (2)332233nn nn n n x x ++→∞→∞⎛⎫-+ ⎪-+⎝⎭==-+⎛⎫--+ ⎪⎝⎭.无穷小与有界函数的处理方法面对复杂函数,尤其是正、余弦的复杂函数与其它函数相乘的时候,一定要注意这个方法.[3]例21 求 sin limx x xx→∞+.解 原式sin 1lim(1)lim(1sin )1x x x x x x→∞→∞=+=+=.夹逼定理主要介绍的是如何用之求数列极限,这个主要是看见极限中的通项是方式和的形式,对之放缩或扩大.[1]例22 求2sin sin sin lim ...1112n n n n n n n πππ→∞⎛⎫ ⎪+++ ⎪+ ⎪++⎝⎭. 解 111sin sin sin11n n n i i i i i i n n n n n o n iπππ===≤≤+++∑∑∑, 1011sin 12lim lim sin nn n n i i i i n n x dx n o n nππππ→∞→∞====⋅=+∑∑⎰,1011sin 112lim lim 1sin 11nn n n i i i i n x dx n n n nππππ→∞→∞==⎫⎛=⋅=⋅⋅= ⎪++⎝⎭∑∑⎰, 根据夹逼定理 1sin2lim 1nx i i n n iππ→∞==+∑. 等比等差数列公式(δ的绝对值要小于1) [1]例23 设1||<δ,证等比数列1,δ,2δ1n δ-,…的极限为0.证 任取01δ<<,为使n x a ε-<,而n n x a δ-=,使nδε<,即ln ln ln ,ln n n εδεδ<>,当ln ln N εδ⎡⎤=⎢⎥⎣⎦,当n N >时,即ln ln 11ln ln n N εεδδ⎡⎤≥+=+>⎢⎥⎣⎦, ln ln nn δεδε<⇒<即n x a ε-<, 由定义知()lim 10n δδ<=()()22......lim ...11n n n δδδδδδδδδ→∞++=++=<-.因此,很显然有:()0.99...lim 0.99...1n n→∞==.各项以拆分相加[3]将待求的和式子的各项拆分相加来消除中间的大多数,主要应用于数列极限,可以使用待定系数来拆分简化函数.例24 求()111lim 1...2*33*41n n n →∞⎛⎫++++ ⎪ ⎪+⎝⎭. 解 原式111111lim 1...23341n n n →∞⎛⎫=+-+-++- ⎪+⎝⎭11lim 121n n →∞⎛⎫=+- ⎪+⎝⎭31lim 21n n →∞⎛⎫=- ⎪+⎝⎭=32. 求左右极限的方式例25 求函数⎪⎩⎪⎨⎧>+=<-=0,10,00,1)(x x x x x x f ,求0x →时,()f x 的极限.解 ()()0lim lim 11x x f x x --→→=-=-,()()0lim lim 11x x f x x ++→→=+=, 因为()()0lim lim x x f x f x ++→→≠,所以,当0→x 时,)(x f 的极限不存在. 例26 ()0lim0x x x xαα→>.解 0)(lim )(lim 00=-=---→→ααx x x x x x ,0lim lim 00==++→→ααx x x x x x , 因为0lim )(lim 00==-+-→→xxx x x x x x αα,所以,原式=0. 应用两个重要极限1sin lim 0=→x x x ,1lim 1xx e x →∞⎛⎫+= ⎪⎝⎭ 例27 求xe x x 1lim 0-→.解 记()ln 1x t =+ 1x e t -=,则原式=1001limlim 111ln 1t t t tt t →→==+⎛⎫+ ⎪⎝⎭()1lim 1x x x e →∞⎛⎫+= ⎪⎝⎭因为. 例28 求1lim 11nn n →∞⎛⎫+ ⎪+⎝⎭. 解 原式=()111lim 11n n n +-→∞⎛⎫+ ⎪+⎝⎭=e .例29 求1lim 1-1nn n →∞⎛⎫+ ⎪⎝⎭.解 原式=()111lim 1-1n n n -+→∞⎛⎫+ ⎪⎝⎭=e .根据增长速度 )(ln ∞→<<x e x x xn λ例30 求()lim 0nx x x n e λλ→∞>为正整数,.解 原式=1lim n x x nx e λ-→∞=()221!limlim0n xn xx x n n x n e e λλλλ-→∞→∞-==.例31 求()ln lim0nx xn x →∞>.解 01lim lim ln lim 11===∞→-∞→∞→n x n x x n x nxnx x x .同函数趋近于无穷的速度是不一样的,x 的x 次方快于!x (x 的阶乘)快于指数函数,快于幂函数,快于对数函数.所以增长速度: )(ln ∞→<<x e x x xn λ.故以后上述结论可直接在极限计算中运用. 换元法例32 1lim (1)x x x→-∞+.解 令x t =-,则原式=1lim 1t t t -→+∞⎛⎫- ⎪⎝⎭1lim t t t t -→+∞-⎛⎫= ⎪⎝⎭111lim 1111t t t t -→+∞⎛⎫⎛⎫=+⋅+ ⎪ ⎪--⎝⎭⎝⎭=e 利用极限的运算法则[1]利用如下的极限运算法则来求极限: (1)如果()()lim ,lim ,f x A g x B ==那么B A x g x f x g x f ±=±=±)(lim )(lim )]()(lim[()()()()lim lim lim f x g x f x g x A B ⋅=⋅=⋅⎡⎤⎣⎦ 若又有0≠B ,则BAx g x f x g x f ==)(lim )(lim )()(lim(2)如果)(lim x f 存在,而c 为常数,则)(lim )](lim[x f c x cf = (3)如果)(lim x f 存在,而n 为正整数,则n n x f x f )]([lim )](lim [= (4)如果)()(x x ϕδ≥,而b x a x ==)(lim ,)(lim ϕδ,则b a ≥ (5)设有数列{}n x 和{}n y ,如果()lim ;n n n x y A B →∞+=+那么,()lim ;n n n x y A B →∞+=+lim n n n x y A B →∞=⋅当()01,2,...n y n ≠=且0b ≠时,limn n n x A y B→∞= 求数列极限的时候可以将其转化为定积分[1]例33 已知()f x = ,在区间[]0,1上求()01lim ni i i f x λξ→=∆∑(其中将[]0,1分为n 个小区间[]1,i i x x -,1i i i x x ξ-≤≤,λ为i x ∆中的最大值).解 由已知得: ()()11lim ni i i f x f x dx λξ→=∆=∑⎰dx =⎰4π=.(注释:由已知可以清楚的知道,该极限的求解可以转化为定积分,求函数()f x 在区间[]0,1上的面积).在有的极限的计算中,需要利用到如下的一些结论、概念和方法:(1)定积分中值定理:如果函数()f x 在积分区间[],a b 上连续,则在[],a b 上至少有一个点,使下列公式成立:()()()ba f x dx xb a ϕ=-⎰ ()a b ϕ≤≤;(2)设函数()f x 在区间[],a +∞上连续,取t a >,如果极限()lim tat f x dx →+∞⎰存在,则称此极限为函数()f x 在无穷区间[],a +∞上的反常积分,记作⎰∞+0)(dx x f ,即⎰⎰+∞→∞+=tat adx x f dx x f )(lim)(;设()f x 在区间[],a b 上连续且()0f x ≥,求以曲线()y f x =为曲线,底为[],a b 的曲边梯形的面积A ,把这个面积A 表示为定积分:()b=a A f x dx ⎰ 的步骤是:首先,用任意一组的点把区间[],a b 分成长度为(1,2,...)i x i n ∆=的n 个小区间,相应地把曲线梯形分成n 个窄曲边梯形,第i 个窄曲边梯形的面积设为i A ∆,于是有1ni i A A ==∆∑;其次,计算i A ∆的近似值 ()()1i i i i i i A f x x x ϕϕ-∆≈∆≤≤; 然后,求和,得A 的近似值 ()1ni i i A f x ϕ=≈∆∑;最后,求极限,得⎰∑=∆==→bai ni i dx x f x f A )()(lim 1ϕλ.例34 设函数()f x 连续,且()00f ≠,求极限 ()()()[]2lim .xx x x t f t dt x f x t dt→--⎰⎰. 解 ()()()0limxx x x t f t dtx f x t dt→--⎰⎰ =()()()0lim,xxxx xf t dt tf t dtx f u du→-⎰⎰⎰()()()()()0+limxx x f t dt xf x xf x f u du xf x →-+⎰⎰由洛必达得:,()()(),,,f x t dx u x t f u du -=-⎰x其中令得()()()()0lim0x x xf xf xf x ϕφϕ→+再由积分中值定理得:在到之间 ()()()()()()001lim002x f f f f x f f ϕϕ→===++.例35 计算反常积分: 21dxx +∞-∞+⎰.解 21dx x +∞-∞+⎰=[]arctan x +∞-∞=-lim arctan lim arctan x x x x →+∞→∞-=()22πππ--=. 利用函数有界原理证明极限的存在性,利用数列的逆推求极限(1)单调有界数列必有极限;(2)单调递增且有上界的数列必有极限,单调递减且有下界的数列必有极限.[3]例36 数列{}n x :2…….极限存在吗?解 由已知可得{}n x 单调递增且有界,由单调有界原理,知lim n n x →∞存在.又n x,lim n n n x →∞=记lim =t,n n x t →∞=则即可证2n x <,得到 2=t . 直接使用求导的定义求极限当题目中告诉你0)0(=F 时,)(x F 的导数等于0的时候,就是暗示你一定要用导数定义:(1)设函数()y f x =在点0x 的某个领域内有定义,当自变量x 在0x 处取得增量x ∆(点0x x ∆+仍在该领域内)时,相应的函数取得增量()()00y f x x f x ∆=∆+-;如果y ∆与x ∆之比0x ∆→时的极限存在,则称函数()y f x =在点0x 处可导,并称这个极限为函数()y f x =在点0x 处可导,并称这个极限为函数()y f x =在点0x 处的导数,记作()0f x ',即()()()00000limlim x x f x x f x yf x x x∆→∆→∆+-∆'==∆∆;(2)在某点处可导的充分必要条件是左右导数都存在且相等. 例36 ()()()()1f x x x e x π=---,求()'f π. 解 ()'f π ()()()()()()=limlim 11x x f x f x x e x x e x ππππ→→-=--=---. 例37 若函数()f x 有连续二阶导数且()0=0f ,()'0=1f ,()''0=-2f , 则 ()()2limx f x xx→-=.A:不存在 B :0 C :-1 D :-2 解 ()20limx f x x x →-=()()()'''00101lim lim 220x x f x f x f x x →→--=-()''1012f ==-. 所以,答案为D.例38 若()(1)(2).....(2010)f x x x x x =++++,求(0)f '. 解 0()(0)(0)limx f x f f x→-'=(1)(2) (2010)limx x x x x x→++++=lim (1)(2).....(2010)x x x x x →=++++2010!=. 利用连续性求极限[1]例39 设()f x 在1x =处有连续的一阶导数,且(1)2f '=,求1lim x ddx+→+.解 原式1lim sin x f +→'=-11lim 2x f +→'=-11lim 2x f +→'=-11(lim 2x f +→'=- 1(1)2f '=-1=-.数列极限转为函数极限求解数列极限中是n 趋近,而不是x 趋近.面对数列极限时,先要转化成求x 趋近情况下的极限,当然n 趋近是x 趋近的一种情况而已,是必要条件.(还有数列极限的n 当然是趋于正无穷的).[1]例40 求21lim (1sin )n n n n →∞-.解 令1t n =,则原式2320001sin sin 1cos lim (1)lim lim 3t t t t t t tt t t t →→→--=-==,所以在0t →时,1cos t -与212t 等价,因此,原式20212lim13t tt→=16=.。