等腰三角形
- 格式:doc
- 大小:216.69 KB
- 文档页数:8
等腰三角形计算公式
等腰三角形指至少有两边相等的三角形,等腰三角形中,相等的两条边称为这个三角形的腰,另一边叫做底边。
两腰的夹角叫做顶角,腰和底边的夹角叫做底角。
接下来给大家分享等腰三角形的公式。
等腰三角形的面积公式
(1)已知三角形底a,高h,则S=ah/2。
(2)已知三角形三边a,b,c,则(海伦公式)(p=(a+b+c)/2),
S=sqrt[p(p-a)(p-b)(p-c)]
=sqrt[(1/16)(a+b+c)(a+b-c)(a+c-b)(b+c-a)]
=1/4sqrt[(a+b+c)(a+b-c)(a+c-b)(b+c-a)]
(3)已知三角形两边a,b,这两边夹角C,则S=1/2absinC,即两夹边之积乘夹角的正弦值。
(4)设三角形三边分别为a、b、c,内切圆半径为r,则三角形面积=(a+b+c)r/2。
(5)设三角形三边分别为a、b、c,外接圆半径为R,则三角形面积=abc/4R。
等腰三角形的判定方法
(1)在同一三角形中,有两条边相等的三角形是等腰三角形。
(2)同一三角形中,如果两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。
(3)在一个三角形中,如果一个角的平分线与该角对边上的中线重合,那么这个三角形是等腰三角形,且该角为顶角。
(4)在一个三角形中,如果一个角的平分线与该角对边上的高重合,那么这个三角形是等腰三角形,且该角为顶角。
(5)在一个三角形中,如果一条边上的中线与该边上的高重合,那么这个三角形是等腰三角形,且该边为底边
(6)有两条角平分线(或中线,或高)相等的三角形是等腰三角形。
等腰三角形知识点总结等腰三角形是指有两条边相等的三角形。
在几何学中,等腰三角形具有很多特性和性质,下面将对等腰三角形的定义、性质以及相关的定理进行总结。
一、定义和性质等腰三角形的定义:拥有两条边相等的三角形被称为等腰三角形。
等腰三角形的性质:1. 两个底角(底边所对的两个角)是相等的。
2. 两条腰(与底边相等的两条边)相等。
3. 顶角(顶点所对的角)等于180度减去底角的一半。
二、等腰三角形的角度性质1. 顶角等于底角的两倍:在等腰三角形中,顶角是底角的两倍。
也就是说,当一个底角为x度时,顶角就是2x度。
2. 底角相等:在等腰三角形中,两个底角是相等的。
如果一个底角为x度,另一个底角也是x度。
3. 顶角对应的边相等:在等腰三角形中,顶角对应的两条边是相等的。
如果一个顶角对应的边长为a,另一个顶角对应的边长也是a。
三、等腰三角形的边长性质1. 两条腰相等:在等腰三角形中,两条腰是相等的。
如果一条腰的长度为a,另一条腰的长度也是a。
2. 底边对应的高相等:在等腰三角形中,底边对应的高是相等的。
如果一条底边的高为h1,另一条底边的高也是h1。
3. 高的长度:在等腰三角形中,可以通过勾股定理来计算高的长度。
如果底边的长度为b,腰的长度为a,则高的长度等于根号下(a^2 -b^2/4)。
四、等腰三角形的判定条件等腰三角形的判定条件:如果三角形的两边边长相等或两个角度相等,则该三角形为等腰三角形。
五、等腰三角形的定理1. 等腰三角形的高与底边垂直:在等腰三角形中,高线与底边垂直。
2. 角平分线等于高线:在等腰三角形中,底边上的角平分线等于高线。
3. 底边上的角平分线相等:在等腰三角形中,底边上的两条角平分线是相等的。
总结:等腰三角形是几何学中重要的概念,在很多问题中都有应用。
通过对等腰三角形的定义、性质以及相关的定理进行了解和掌握,可以帮助我们解决等腰三角形相关的问题,并在数学和几何学中运用到其他各种应用中。
第一讲 等腰三角形知识点:一、认识三角形 1、三角形的概念由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。
2、三角形中的主要线段(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做 三角形的角平分线。
(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。
(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线 3、三角形的稳定性三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。
需要稳定的东西 一般都制成三角形的形状。
4、三角形的分类三角形按边的关系分类如下: 不等边三角形三角形 底和腰不相等的等腰三角形 等腰三角形等边三角形 三角形按角的关系分类如下:直角三角形(有一个角为直角的三角形)三角形 锐角三角形(三个角都是锐角的三角形) 斜三角形钝角三角形(有一个角为钝角的三角形)把边和角联系在一起,有一种特殊的三角形:等腰直角三角形。
它是两条直角边相等 的直角三角形。
5、三角形的三边关系定理及推论(1)三角形三边关系定理:三角形的两边之和大于第三边。
推论:三角形的两边之差小于第三边。
(2)三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形 ②当已知两边时,可确定第三边的范围。
③证明线段不等关系。
6、三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°。
推论:①直角三角形的两个锐角互余。
②三角形的一个外角等于和它不相邻的来两个内角的和。
③三角形的一个外角大于任何一个和它不相邻的内角。
注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。
7、三角形的面积:三角形的面积=21×底×高 二、等腰三角形相关知识点 1、等腰三角形的性质(1)等腰三角形的性质定理及推论:定理:等腰三角形的两个底角相等(简称:等边对等角) 推论1:等腰三角形顶角平分线平分底边并且垂直于底边。
等腰三角形的性质与定理等腰三角形是指具有两条边长度相等的三角形。
在几何学中,等腰三角形具有一些独特的性质和定理。
本文将对等腰三角形的性质与定理进行详细的介绍。
一、等腰三角形的定义和性质等腰三角形的定义:等腰三角形是指具有两条边的长度相等的三角形。
在等腰三角形ABC中,若AB=AC,则∠B=∠C。
等腰三角形的性质:1. 等腰三角形的底角(底边上的角)两个相等。
证明:由等腰三角形的定义可知,AB=AC,再加上三角形内角和为180度的性质,可得∠A+∠B+∠C=180度。
由于∠A=∠B=∠C,所以∠B+∠B+∠B=180度,即3∠B=180度,所以∠B=∠C=60度。
2. 等腰三角形的高(从顶点到底边的垂直线段)和斜边的中线相等。
证明:作等腰三角形ABC的高AD和BC的中线DE。
首先证明AD=DE。
由于三角形ABC是等腰三角形,所以∠A=∠B=∠C=60度。
又因为∠DAB和∠DEC是等腰三角形的底角,所以∠DAB=∠DEC=60度。
因此,由三角形内角和为180度的性质可知,∠DAB+∠BAD+∠BDA=180度,即60度+∠BAD+90度=180度,解得∠BAD=30度。
同理,∠DCE=30度。
再考虑三角形ABD和DEC,由于∠BAD=∠DCE=30度,∠DAB=∠DEC=60度,所以根据AA相似性质可知,∠ABD=∠DEC,故两个三角形相似。
根据相似三角形的性质,可得AD/DE=BD/EC=AB/DC=1/2。
又已知BD=DC,所以AD=DE。
3. 等腰三角形的对顶角(顶点所对的两边的角)相等。
证明:在等腰三角形ABC中,已知∠B=∠C,∠BAC是三角形内角和,即∠BAC+∠CAB+∠ABC=180度,即2∠B+∠ABC=180度,解得∠ABC=180度-2∠B。
同理,∠ACB=180度-2∠C。
由于∠B=∠C,所以∠ABC=∠ACB。
因此,等腰三角形的对顶角相等。
二、等腰三角形的定理1. 等腰三角形底角的平分线是高和对称轴。
等腰三角形的一些定理
首先,等腰三角形是指两边长度相等的三角形。
在等腰三角形中,有一些重要的定理和性质:
1. 定理一,等腰三角形的底角(底边两侧的两个角)相等。
这个定理意味着,如果两条边的长度相等,那么它们所对应的角也是相等的。
这是等腰三角形的一个重要特征。
2. 定理二,等腰三角形的高(从顶点到底边的垂直线段)同时也是中线和角平分线。
这个定理表明,等腰三角形的高不仅是三角形的高,同时也是底边上某一点到顶点的距离,它同时也是底边的中点和顶角的平分线。
3. 定理三,等腰三角形的两底角(底边两侧的两个角)的角平分线重合且垂直于底边。
这个定理说明了等腰三角形的两底角的角平分线重合并且垂直
于底边,这也是等腰三角形的一个重要特征。
4. 定理四,等腰三角形的两边中点连线平行于底边,并且等于底边的一半。
这个定理表明了等腰三角形的两边中点连线平行于底边,并且等于底边的一半,这也是等腰三角形的一个重要性质。
总的来说,等腰三角形具有许多独特的性质和定理,这些定理在解题和证明过程中都具有重要的作用。
通过理解这些定理,我们可以更好地理解和运用等腰三角形的性质。
希望以上的回答能够满足你的需求。
等腰三角形的性质等腰三角形是指至少有两边相等的三角形,相等的两个边称为这个三角形的腰。
1等腰三角形性质1、等腰三角形的两个底角度数相等(等边对等角)。
2、等腰三角形的顶角平分线,底边上的中线,底边上的高相互重合(等腰三角形三线合一)。
3、等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。
4、等腰三角形底边上的垂直平分线到两条腰的距离相等。
5、等腰三角形的一腰上的高与底边的夹角等于顶角的一半。
6、等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。
7、一般的等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴。
但等边三角形(特殊的等腰三角形)有三条对称轴。
每个角的角平分线所在的直线,三条中线所在的直线,和高所在的直线就是等边三角形的对称轴。
8、等腰三角形中腰长的平方等于底边上高的平方加底的一半的平方(勾股定理)。
9、等腰三角形的腰与它的高的关系:腰大于高;腰的平方等于高的平方加底的一半的平方。
2等腰三角形定义至少有两边相等的三角形叫做等腰三角形。
等腰三角形中,相等的两条边称为这个三角形的腰,另一边叫做底边。
两腰的夹角叫做顶角,腰和底边的夹角叫做底角。
等腰三角形中,相等的两条边称为这个三角形的腰,另一边叫做底边。
两腰的夹角叫做顶角,腰和底边的夹角叫做底角。
等腰三角形的两个底角度数相等(简写成“等边对等角”)。
3等腰三角形判定方法定义法:在同一三角形中,有两条边相等的三角形是等腰三角形。
判定定理:在同一三角形中,如果两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。
除了以上两种基本方法以外,还有如下判定的方式:1、在一个三角形中,如果一个角的平分线与该角对边上的中线重合,那么这个三角形是等腰三角形,且该角为顶角。
2、在一个三角形中,如果一个角的平分线与该角对边上的高重合,那么这个三角形是等腰三角形,且该角为顶角。
3、在一个三角形中,如果一条边上的中线与该边上的高重合,那么这个三角形是等腰三角形,且该边为底边。
等腰三角形公式下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and soon,want to know different data formats andwriting methods,please pay attention!等腰三角形是指至少有两边相等的三角形,相等的两个边称为这个三角形的腰。
等腰三角形的性质和公式如下:1.等腰三角形的两个底角相等(简写成“等边对等角”)。
等腰三角形的五个判定一、等腰三角形的五个判定1、两条边相等:等腰三角形最典型的特点就是它的三条边长度都相等。
所以当我们有一个三角形,只需要找出它的三个边中有两个边长度相等的时候,就可以判定这个三角形为等腰三角形。
2、直角三角形:这个判定方式更为复杂,对于等腰三角形即解释为直角三角形,验证直角三角形充分必要条件是通过直角符号在三个角上标出一个直角,此时另外两边的斜边相等,即可判定这个三角形为等腰三角形。
3、边分两廓:另一种判定等腰三角形的方式也很常见,就是将一个等腰三角形从其中的一条边中间分成两块,然后另外两个边就会构成两个等边三角形,这种方式判定最为快捷。
4、两直角三角形:等腰三角形与两个直角三角形联系紧密,也就是一旦可以在等腰三角形中找到两个直角三角形,那么就可以判断这个三角形是等腰三角形。
5、其他外角相等:对于等腰三角形,可以判定它的其他外角是相等的,如果其他外角相等的话,那就可以判断这个三角形为等腰三角形。
二、等腰三角形的重要性等腰三角形既有美学价值又被广泛的应用于很多领域,它的出现让我们更加意识到规律性与美的存在,令我们对自然有更深刻的理解。
在运筹学中,等腰三角形被应用在路线规划中,不仅可以帮助人们快速计算出单位距离经过时间,还能帮助准确计算出距离,从而为物流事业或外出旅游带来便利。
此外,等腰三角形也是建筑工程中不可或缺的结构形式,能把结构力学中的重力集中起来支撑起桥梁和大楼,是以节省材料的形式帮助我们构筑物理环境的重要部分。
综上所述,可见等腰三角形的重要性不言而喻。
并且,由于各种判断等腰三角形的方法有了相应的技术支持,等腰三角形的应用在日益广泛,即使在精密的科技测量中也能。
等腰三角形1 , 21,2标分别为A 1(1,0),A 2(2,0),B 1(0,1),B 2(0,2),分别以A 1A 2B 1B 2其中的任意两点与点..O .为顶点作三角形,所作三角形是等腰三角形的概率是(A ) 3 4. (B) 1 3. (C) 23. (D) 12.3、(2013年武汉)如图,△ABC 中,AB =AC ,∠A =36°,BD 是AC 边上的高,则∠DBC 的度数是( )A .18°B .24°C .30°D .36° 4、(2013四川南充,3,3分) 如图,△ABC 中,AB=AC,∠B=70°,则∠A 的度数是( ) A.70° B. 55° C. 50° D. 40°5、(2013•攀枝花)如图,在△ABC 中,∠CAB=75°,在同一平面内,将△ABC 绕点A 旋转到△AB ′C ′的位置,使得CC ′∥AB ,则∠BAB′=( )7、(2013•莱芜)在平面直角坐标系中,O 为坐标原点,点A 的坐标为(1,),M 为坐标轴上一点,且使得△MOA 为等腰三角形,则满足条件的点M 的个数为( )第6题图DCBA()12、(2013成都市)如图,在△ABC中,,AB=5,则AC的长为()A.2B.3C.4D.513、(2013•毕节地区)已知等腰三角形的一边长为4,另一边长为8,则这个等腰三角形的15、(2013•雅安)若(a﹣1)+|b﹣2|=0,则以a、b为边长的等腰三角形的周长为.16、(2013•绍兴)如图钢架中,焊上等长的13根钢条来加固钢架,若AP1=P1P2=P2P3=…=P13P14=P14A,则∠A的度数是17、(2013•黄冈)已知△ABC为等边三角形,BD为中线,延长BC至E,使CE=CD=1,连接DE,则DE=.18、(2013•昆明)在平面直角坐标系xOy中,已知点A(2,3),在坐标轴上找一点P,使得△AOP是等腰三角形,则这样的点P共有个.19、(2013•荆门)若等腰三角形的一个角为50°,则它的顶角为.20、(2013凉山州)已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是.21、(2013•白银)等腰三角形的周长为16,其一边长为6,则另两边为.22、(2013•眉山)如图,∠BAC=∠DAF=90°,AB=AC,AD=AF,点D、E为BC边上的两点,且∠DAE=45°,连接EF、BF,则下列结论:①△AED≌△AEF;②△ABE∽△ACD;③BE+DC>DE;④BE2+DC2=DE2,其中正确的有()个.且CG=CD,DF=DE,则∠E=度.24、(2013•玉林)如图,在直角坐标系中,O是原点,已知A(4,3),P是坐标轴上的一点,若以O,A,P三点组成的三角形为等腰三角形,则满足条件的点P共有个,写出其中一个点P的坐标是.25、(2013•宁夏)如图,在Rt△ABC中,∠ACB=90°,∠A=α,将△ABC绕点C按顺时针方向旋转后得到△EDC,此时点D在AB边上,则旋转角的大小为.27、(2013•十堰)如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.29、(2013•益阳)如图1,在△ABC中,∠A=36°,AB=AC,∠ABC的平分线BE交AC于E.(1)求证:AE=BC;(2)如图(2),过点E作EF∥BC交AB于F,将△AEF绕点A逆时针旋转角α(0°<α<144°)得到△AE′F′,连结CE′,BF′,求证:CE′=BF′;(3)在(2)的旋转过程中是否存在CE′∥AB?若存在,求出相应的旋转角α;若不存在,请说明理由.30、(2013•荆门)如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:BE=CE;(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变.求证:△AEF≌△BCF.31、(2013哈尔滨)如图,在平面直角坐标系中,点0为坐标原点,A点的坐标为(3,0),以0A为边作等边三角形OAB,点B在第一象限,过点B作AB的垂线交x轴于点C.动点P 从0点出发沿0C向C点运动,动点Q从B点出发沿BA向A点运动,P,Q两点同时出发,速度均为1个单位/秒。
设运动时间为t秒.(1)求线段BC的长;(2)连接PQ交线段OB于点E,过点E作x轴的平行线交线段BC于点F。
设线段EF的长为m ,求m 与t 之间的函数关系式,并直接写出自变量t 的取值范围:(3)在(2)的条件下,将△BEF 绕点B 逆时针旋转得到△BE 1F 1,使点E 的对应点E 1落在线段AB 上,点F 的对应点是F 1,E 1F 1交x 轴于点G ,连接PF 、QG ,当t 为何值时,QG?32、(2013•牡丹江)已知∠ACD=90°,MN 是过点A 的直线,AC=DC ,DB ⊥MN 于点B ,如图(1).易证BD+AB=CB ,过程如下: 过点C 作CE ⊥CB 于点C ,与MN 交于点E∵∠ACB+∠BCD=90°,∠ACB+∠ACE=90°,∴∠BCD=∠ACE . ∵四边形ACDB 内角和为360°,∴∠BDC+∠CAB=180°. ∵∠EAC+∠CAB=180°,∴∠EAC=∠BDC .又∵AC=DC ,∴△ACE ≌△DCB ,∴AE=DB ,CE=CB ,∴△ECB 为等腰直角三角形,∴BE=CB .又∵BE=AE+AB ,∴BE=BD+AB ,∴BD+AB=CB .(1)当MN 绕A 旋转到如图(2)和图(3)两个位置时,BD 、AB 、CB 满足什么样关系式,请写出你的猜想,并对图(2)给予证明.(2)MN 在绕点A 旋转过程中,当∠BCD=30°,BD=时,则CD= ,CB= .一元一次不等式(组)的解法及其应用题1、不等式组30,32x x -⎧⎪⎨<⎪⎩≥的所有整数解之和是( )A 、9B 、12C 、13D 、152、不等式组⎩⎪⎨⎪⎧3-x >04x 3+32>- x 6 的最小整数解为( ). A.0 B.1 C.2 D.-1 3、求不等式组364213(1)x x x x -≥-⎧⎨+>-⎩的解集,并写出它的整数解.4、若不等式x <a 只有4个正整数解,则a 的取值范围是 .②已知关于x 的不等式x -2a <3的最大整数解-5,求a 的取值范围.5、关于x 的不等式组121,232,x x x a -+⎧-≤⎪⎨⎪->⎩只有3个整数解,求a 的取值范围.6、关于x 的不等式组2135,20,x x x a -<-⎧⎨-<⎩恰好有4个整数解,求a 的取值范围.7、 已知不等式13a x ->的每一个解都是21122x -<的解,求a 的取值范围; 8、若不等式132x a x a--->的解集与x <6的解集相同,求a 的取值范围.9、若不等式2x <4的解都能使关于x 的一次不等式(a ﹣1)x <a+5成立,则a 的取值范围是( )A .1<a≤7B .a≤7C .a <1或a≥7D .a=710、 ①关于x 的方程组12,2x x m -⎧>⎪⎨⎪>⎩的解集是x >5,求m 的取值范围.②关于x 的不等式组233(2),1,x x x m ->-⎧⎨->⎩有解,求m 的取值范围.11、关于x 的不等式组12,x x m -<≤⎧⎨>⎩有解,求m 的取值范围.12、如果不等式组213(1)x x x m->-⎧⎨<⎩的解集是x <2,那么m 的取值范围是( ).A 、m=2B 、m >2C 、m <2D 、m≥213、 如果关于x 的不等式组22,4,x a x a >-⎧⎨<-⎩有解,并且所有解都是不等式组-6<x ≤5的解,求a 的取值范围.14、若关于x ,y 的二元一次方程组⎩⎨⎧=++=+3313y x ay x 的解满足x+y <2,则a 的取值范围为 .15、 ①化简:|x -6|+|x +2|; ②.化简:|x +5|-|x -2|;③|x -2|+|x+4|.16、某工厂现有甲种原料194千克,乙种原料170千克,计划利用这两种原料生产A 、B 两种产品共30件。
已知生产一种A 种产品需要甲种原料7千克,乙种原料4千克;生产一件B 种产品需要甲种原料5千克,乙种原料9千克。
请你设计出所有符合题意的生产方案。
17、 为加强贫困地区的卫生医疗条件,北京和上海计划向外地支援先进的医疗设备,其中北京有40台,上海有100台,将运往贵州80台和四川60台,所需要费用如右表所示:有关部门计划用78000元运送这批医疗设备,请你设计一种方案,使贵州和四川能得到所需要的医疗设备,而且运费正好够用.7.在等边△ABC 的两边AB 、AC 所在直线上分别有两点M 、N ,D 为△ABC 外一点,且∠MDN=60°,∠BDC=120°,BD=DC .探究:当M 、N 分别在直线AB 、AC 上移动时,BM 、NC 、MN 之间的数量关系及运费表(单价:元/台)上海北京贵州四川终点起点800400500300△AMN的周长Q与等边△ABC的周长L的关系.(1)如图1,当点M、N边AB、AC上,且DM=DN时,BM、NC、MN之间的数量关系是;此时Q 分之L=( )(2)如图2,点M、N边AB、AC上,且当DM≠DN时,猜想(1)问的两个结论还成立吗?写出你的猜想并加以证明;(3)如图3,当M、N分别在边AB、CA的延长线上时,若AN=x,则Q= ()(用x、L表示).。