2020浅谈中考数学普遍存在的问题及相应的对策
- 格式:docx
- 大小:18.70 KB
- 文档页数:4
2020中考数学:学生数学普遍存在的问题及对策一、基础知识不扎实。
数学科目的很多知识仍然要求学生熟练记忆,而这往往是学生容易忽视的,认为没有必要记忆,多数学生的基础不扎实与这有很大关系。
只有在这些基础都打得非常牢固的前提下,才能在数学学习上争取更大的提高。
二、看题不清,审题不准。
审题是做对题的基础和前提,一旦审错题,后面的工作就白做了,出力不讨好!所以一定要重视审题环节。
建议:读题的过程要慢,不放过任何一个条件,任何一个字,要将重要的字眼做好标记!在平时的练习中就要有意识地培养这种习惯。
但做题要快,争取用最少的时间得到更多的分数。
三、考虑不周,漏解的现象较多。
一般情况下,填空题中会有一个题目涉及到多解的情况,后面的大题中也会存在分类讨论的问题,所以要心中有数。
凡是题目中涉及到点或者线段的运动,产生线段的相等(如等腰三角形、平行四边形)时,往往会出现两种甚至多种情况。
四、抄错题的现象也很常见。
有些学生在草稿纸上做的是对的,写在答题纸上就抄错了;有的学生在计算过程中,上一步是对的,到下一步就抄错了,结果连锁反映,一错到底。
建议:眼睛看准,做出了某一道题时不要太激动。
考试时,最好内紧外松,控制心跳速度,始终以一种平和的心态面对考试。
计算中要注意前后对照检查,及时发现问题;算出很复杂的结果时,更要引起注意,很可能是中间过程出错了,这时要自行检查。
五、做综合题缺少思路和方法。
这是很多学生存在的问题,遇到综合题就不知道怎么去分析,找不到切入点,只好说一句“我不会”。
建议:眼、脑、手并用,静下心来,仔细读题,边看题边画草图,或在原图上标出条件(如相等的线段、相等的角等等),要确实肯动脑去思考,相信自己,勇于探索。
但如果在5分钟之内没有任何思路,建议跳过,去思考其它的试题,以防浪费了宝贵的时间。
考试是在规定的时间里完成特定的试题,所以其实每一刻都是在跟时间赛跑,既比速度,又要保证做题准确率,两者同样重要。
以上是我个人对学生所存在问题的一些总结,希望存在以上问题的同学能从中得到一些启发!解决了以上的问题,每个人至少能提高10分,所以每位同学都要引起足够的重视。
中考数学易错点及解决方案中考数学是学生们普遍比较头疼的一门科目,很多同学在备考过程中容易犯一些常见的易错点。
下面将介绍中考数学易错点及解决方案,希望能够帮助同学们在备考中避免一些常见的错误。
一、基础知识掌握不牢固1. 乘除法错位:在计算过程中容易出现乘除法错位的情况,导致计算结果错误。
解决方案是复习乘除法的基本运算规则,多做相关练习题来加强记忆。
2. 计算符号混淆:在复杂的计算中,很多同学容易混淆加法和减法的符号,导致计算结果错误。
解决方案是在计算过程中留心符号,并且可以通过画图或列式的方式,将计算过程更加清晰地展示出来,避免混淆。
3. 单位换算错误:在涉及到单位换算的问题中,很多同学容易搞混不同的转换关系,导致计算结果错误。
解决方案是复习常见的单位换算关系,例如长度单位之间的换算、时间单位之间的换算等,掌握基本的转换公式,并通过实例练习来加深理解。
4. 公式记忆混淆:在应用公式解题时,很多同学容易记忆混淆,或者对公式的条件和限制不清楚,导致在运用公式时出错。
解决方案是理解和记忆常用公式的推导过程,理解公式的适用范围和条件,并通过练习来熟练掌握公式的运用。
二、解题方法选择不当1. 正确分析问题:在解题过程中,很多同学容易直接套用公式或者模板,而没有仔细分析问题的关键点,导致解题错误。
解决方案是在解题时先仔细阅读题目,理清题目的要求,确定解题思路,并根据题目的特点选择合适的解题方法。
2. 缺乏图形辅助:在几何题和图形题中,很多同学容易缺乏画图或者图形辅助的思维习惯,导致解题思路不清晰,解题错误。
解决方案是在几何题和图形题中,根据题目要求合理地画图,帮助自己更好地理解题目并确定解题思路。
3. 解题步骤混淆:在复杂的解题过程中,很多同学容易顺序混淆,导致解题错误。
解决方案是在解题过程中,将复杂的解题过程进行分步拆解,并按照合理的步骤进行解题,确保每一步的结果都正确,从而避免混淆和错误。
三、注意思维方式和答题技巧1. 定义层次不清:在解题过程中,很多同学容易将不同问题的定义概念混为一谈,导致解题思路错误。
2020中考专题16——存在性问题之45°角或等角班级姓名.【方法解读】这里所说的角的存在性问题主要涉及45°角(或135°角)、两角相等的存在性问题.45°角是一个非常特殊的角,它不仅是直角的一半,也是等腰直角三角形的底角,解决此类问题的一般策略是构造等腰直角三角形(见下图);角的相等问题常借助相似(全等)或等腰三角形求解.【例题分析】例1.如图,已知反比例函数y =(x >0)的图象经过点E (3,4),在该图象上面找一点P ,使∠POE =45°,则点P 的坐标为.例2.如图,在平面直角坐标系中,反比例函数)0(2>=x x y 的图象与正比例函数y=kx,y=k1x(k>1)的图象分别交于点A,B.若∠AOB=45°,则△AOB 的面积是.例3.如图,抛物线y =2ax +bx +c经过A (-1,0),B (4,0),C (0,3)三点,D 为直线BC 上方抛物线上一动点,DE ⊥BC 于E .(1)求抛物线的函数表达式;(2)如图1,求线段DE 长度的最大值;(3)如图2,设AB 的中点为F ,连接CD ,CF ,是否存在点D ,使得△CDE 中有一个角与∠CFO 相等?若存在,求点D 的横坐标;若不存在,请说明理由.【巩固训练】1.如图,在平面直角坐标系中,OA=AB,∠OAB=90°,反比例函数y=(x>0)的图象经过A,B两点.若点A的坐标为(n,1),则k的值为.2.如图,在平面直角坐标系xOy中,直线y=﹣x+m分别交x轴,y轴于A,B两点,已知点C(2,0).(1)当直线AB经过点C时,点O到直线AB的距离是;(2)设点P为线段OB的中点,连结PA,PC,若∠CPA=∠ABO,则m的值是.3.如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,且经过点C(0,2)、D(3,),点P是y轴右侧的抛物线上一动点,当∠PCD=45°时,求点P的坐标.4.如图,直线y=3x和双曲线y=(x>0)交于点A,点P为双曲线上一点,且∠POA=∠1+∠2,求点P的坐标.5..如图,二次函数y=mx2+(m2﹣m)x﹣2m+1的图象与x轴交于点A、B,与y轴交于点C,顶点D的横坐标为1.(1)求二次函数的表达式及A、B的坐标;(2)若P(0,t)(t<﹣1)是y轴上一点,Q(﹣5,0),将点Q绕着点P顺时针方向旋转90°得到点E.当点E恰好在该二次函数的图象上时,求t的值;(3)在(2)的条件下,连接AD、AE.若M是该二次函数图象上一点,且∠DAE=∠MCB,求点M的坐标.6.如图,抛物线y=ax2+bx﹣3a经过A(﹣1,0)、C(0,3)两点,与x轴交于另一点B.(1)求此抛物线的解析式;(2)已知点D(m,m+1)在第一象限的抛物线上,求点D关于直线BC对称的点D′的坐标;(3)在(2)的条件下,连接BD,问在抛物线上是否存在点P,使∠DBP=45°?若存在,请求出P点的坐标;若不存在,请说明理由.7.如图,已知抛物线y=﹣x2+bx+c经过点A(0,3),C(3,0);过A作AB∥x轴交抛物线于点B,连接AC、BC,点P为抛物线上动点.(1)求抛物线解析式;(2)当∠PAB=∠BCA时,求点P的坐标;(3)当点P在抛物线上BC两点之间移动时,点Q为x轴上一动点,连接AP、AQ,使得tan∠PAQ=2,且AP交BC于点G,过G作GH⊥AQ交AQ于点H,设点H的坐标为(m,n),求n关于m的函数关系式.8.如图,在平面直角坐标系xOy中,顶点为M的抛物线是由抛物线y=x2﹣3向右平移一个单位后得到的,它与y轴负半轴交于点A,点B在该抛物线上,且横坐标为3.(1)求点M、A、B坐标;(2)连接AB、AM、BM,求∠ABM的正切值;(3)点P是顶点为M的抛物线上一点,且位于对称轴的右侧,设PO与x正半轴的夹角为α,当α=∠ABM时,求P点坐标.2020中考专题16——存在性问题之45°角或等角参考答案例1.解:方法一、过点E作EA⊥x轴于点A,过点P作PB⊥x轴于点B,如图所示.∵点E(3,4)在函数y=的图象上,∴k=3×4=12,∴设点P的坐标为(n,),则点A(3,0),点B(n,0),S四边形OBPE=S△OAE+S梯形PBAE=|k|+(PB+EA)•AB=6+(+4)(n﹣3)=2n﹣+6.S△OEP=S四边形OBPE﹣S△OBP=2n﹣+6﹣|k|=2n﹣.由两点间的距离公式可知:OE==5,OP=,S△OEP=OE•OP•sin∠EOP==2n﹣,即7n4﹣576n2﹣1008=0,解得:n2=84或n2=﹣84(舍去),∴n1=2,n2=﹣2(舍去).∴点P的坐标为(2,);方法二、如图,过点E作EF⊥OE交OP于点F,过点E作EN⊥y轴,垂足为N,过点F作FM ⊥NE于点M,∴∠ONE=∠EMF=90°,∴∠NOE+∠OEN=90°,∵∠OEF=90°,∴∠OEN+∠FEM=90°,∴∠NOE=∠MEF,若∠POE=45°,则OE=EF,在△ONE和△MEF中,∵,∴△ONE≌△MEF(AAS),∴EM=ON=4、MF=NE=3,则点F的坐标为(7,1),∴直线OF的解析式为y=x,由,解得x=2或x=﹣2(舍),当x=2时,y====,即点P(2,),故答案为:(2,).例2.【答案】2【解析】过点O 作OC ⊥AB ,垂足为C .过点A 作AM ⊥y 轴,垂足为M ,过点B 作BN ⊥x 轴,垂足为N .设点A 的横坐标为a ,则点A 的纵坐标为a 2.∵点A 在一次函数数y =kx 上,∴a 2=ka .k =22a .∴OB 所在直线的解析式为y =22a x .令22a x =x 2.得x =a 2.∴y =a .∴OA =OB ,△OAM ≌△OBN .∵∠AOB =45°,∴∠AOC =∠AOM .∴△OAM ≌△OAC .∴S △OAB =2S OAM =2.故填2.BO A xy CN M 例3.解:(1)由题意得,016403a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得,34943a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩.∴y =23944x x -++3.(2)设直线BC 的解析式为y =kx +b ,∴403k b b +=⎧⎨=⎩,解得343k b ⎧=-⎪⎨⎪=⎩,∴y =﹣34x +3.设D (a ,23944a a -++3)(0<a <4).过点D 作DM ⊥x 轴交BC 于M .∴M (a ,﹣34a +3).∴DM =239333444a a a ⎛⎫⎛⎫-++--+ ⎪ ⎪⎝⎭⎝⎭=2334a a -+.∵∠DME =∠OCB ,∠DEM =∠COB ,∴△DEM ∽△BOC ,∴DE DM =OB BC.∵OB =4,OC =3,∴BC =5,∴DE =45DM .∴DE =231255a a -+=()2312255a --+.当a =2时,DE 取最大值,最大值是125.(3)假设存在这样的点D ,使得△CDE 中有一个角与∠CFO 相等.∵F 是AB 的中点,∴OF =32,tan∠CFO =OC OF=2.过点B 作BG ⊥BC 交CD 的延长线于G ,过点G 作GH ⊥x 轴,垂足为H .∵DE ⊥BC ,故∠CED =90°,则只存在另外两个角与∠CFO 相等.①若∠DCE =∠CFO ,∴tan∠DCE =OC OF =2,∴BG =10.∵△GBH ∽△BCO ,∴GH BO =HB OC =GB BC.∴GH =8,BH =6.∴G (10,8).设直线CG 的解析式为y =kx +b ,∴3108b k b =⎧⎨+=⎩,解得123k b ⎧=⎪⎨⎪=⎩,∴y =12x +3.依题意得,213239344y x y x x ⎧=+⎪⎪⎨⎪=-++⎪⎩,解得x =73,或x =0(舍).②若∠CDE =∠CFO ,同理可得,BG =52,GH =2,BH =32,∴G (112,2).同理可得,直线CG 的解析式为y =-211x +3.依题意得,2231139344y x y x x ⎧=-+⎪⎪⎨⎪=-++⎪⎩,解得x =10733,或x =0(舍).综上所述,存在D 使得△CDE 中有一个角与∠CFO 相等,其横坐标为73或10733.【巩固训练】答案1.解:作AE ⊥x 轴于E ,BF ⊥x 轴于F ,过B 点作BC ⊥y 轴于C ,交AE 于G ,如图所示:则AG ⊥BC ,∵∠OAB =90°,∴∠OAE +∠BAG =90°,∵∠OAE +∠AOE =90°,∴∠AOE =∠GAB ,在△AOE 和△BAG 中,,∴△AOE ≌△BAG (AAS ),∴OE =AG ,AE =BG ,∵点A (n ,1),∴AG =OE =n ,BG =AE =1,∴B (n +1,1﹣n ),∴k =n ×1=(n +1)(1﹣n ),整理得:n 2+n ﹣1=0,解得:n =(负值舍去),∴n=,∴k =;故答案为:.2.(1)当直线AB经过点C时,点A与点C重合,当x=2时,y=﹣2+m=0,即m=2,所以直线AB的解析式为y=﹣x+2,则B(0,2).∴OB=OA=2,AB=2.设点O到直线AB的距离为d,=OA2=AB•d,得由S△OAB4=2d,则d=.故答案是:.(2)作OD=OC=2,连接CD.则∠PDC=45°,如图,由y=﹣x+m可得A(m,0),B(0,m).所以OA=OB,则∠OBA=∠OAB=45°.当m<0时,∠APC>∠OBA=45°,所以,此时∠CPA>45°,故不合题意.所以m>0.因为∠CPA=∠ABO=45°,所以∠BPA+∠OPC=∠BAP+∠BPA=135°,即∠OPC=∠BAP,则△PCD∽△APB,所以=,即=,解得m=12.故答案是:12.3.解:∵点C(0,2)、D(3,)在抛物线y=﹣x2+bx+c上,∴,解得b=,c=2,∴抛物线的解析式为:y=﹣x2+x+2.(3)存在.理由:设点P的横坐标为m,则P(m,﹣m2+m+2),F(m,m+2).如答图2所示,过点C作CM⊥PE于点M,则CM=m,EM=2,∴FM=y F﹣EM=m,∴tan∠CFM=2.在Rt△CFM中,由勾股定理得:CF=m.过点P作PN⊥CD于点N,则PN=FN•tan∠PFN=FN•tan∠CFM=2FN.∵∠PCF=45°,∴PN=CN,而PN=2FN,∴FN=CF=m,PN=2FN=m,在Rt△PFN中,由勾股定理得:PF==m.∵PF=y P﹣y F=(﹣m2+m+2)﹣(m+2)=﹣m2+3m,∴﹣m2+3m=m,整理得:m2﹣m=0,解得m=0(舍去)或m=,∴P(,);同理求得,另一点为P(,).∴符合条件的点P的坐标为(,)或(,).4.解:过点A作x平行线交y轴于点E,过点P作y轴的平行线交x轴于点F,交EA于点B,连接AP.如图所示.将一次函数解析式y=3x代入到反比例函数解析式y=(x>0)中,3x=,即3x2=3,解得:x=1,或x=﹣1(舍去).当x=1时,y==3,∴点A的坐标为(1,3).设点P的坐标为(n,)(n>0),则OF=n,OE=3,BP=3﹣,AB=n﹣1,OA==,OP=.∵∠POA=∠1+∠2,且∠POA+∠1+∠2=90°,∴∠POA=45°.S POA=S矩形OFBE﹣S△OAE﹣S△OPF﹣S△ABP=3n﹣﹣﹣(3﹣)(n﹣1)=(1+)(n﹣1)=(n﹣).又∵S POA=OA•OP•sin∠POA==(n﹣),即4n4﹣18n2﹣36=0,解得:n2=6,或n2=﹣(舍去).∵n>0,∴n=,∴点P的坐标为(,).5..解:(1)∵抛物线的顶点坐标的横坐标为1,∴,解得,m1=﹣1,m2=0(舍去)∴二次函数的表达式为y=﹣x2+2x+3,当y=0时,﹣x2+2x+3=0,解得,x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),(2)如图1,过点E作EH⊥y轴于点H,∵∠PQO+∠OPQ=90°,∠OPQ+∠HPE=90°,∴∠HPE=∠PQO,由旋转知,PQ=PE,在△EPH和△PQO中,,∴△EPH≌△PQO,∴EH=OP=﹣t,HP=OQ=5∴E(﹣t,5+t)当点E恰好在该二次函数的图象上时,有5+t=﹣t2﹣2t+3解得t1=﹣2,t2=﹣1(由于t<﹣1所以舍去),(3)设点M(a,﹣a2+2a+3)①若点M在x轴上方,如图2,过点M作MN⊥y轴于点N,过点D作DF⊥x轴于点F.∵∠EAB=∠OCB=45°,∠DAE=∠MCB∴∠MCN=∠DAF∴△MCN∽△DAF,∴,即∴,a2=0(舍去)∴,②若点M在x轴下方,如图3,过点M作MN⊥y轴于点N,过点D作DF⊥x轴于点F.∵∠EAB=∠OCB=45°,∠DAE=∠MCB∴∠MCN=∠ADF∴△MCN∽△ADF∴,即∴a1=4,a2=0(舍去)∴M(4,﹣5)综上所述,或M(4,﹣5).6.解:(1)∵抛物线y=ax2+bx﹣3a经过A(﹣1,0)、C(0,3)两点,∴代入A,C点坐标得:,解得:a=﹣1,b=2,∴y=﹣x2+2x+3;(2)将D点代入抛物线解析式得:m+1=﹣m2+2m+3,解得:m1=2,m2=﹣1(不符合题意,舍去)∴D点坐标(2,3);∴AB∥DC,∴∠DCB=∠ABC=45°=∠BCO,∴点D关于BC的对称点D'落在OC上,∴CD=CD'=2,∴D'坐标(0,1);(3)假设存在点P使得∠DBP=45°交y轴于点F,作D关于BC对称点D',连接DD'交BC于点E,连接BD,AC,BF,∵﹣x2+2x+3=0时,x=﹣1或3,∴点B坐标(3,0),∴BC=3,∵CD=2,CD'=2,∴DD'=2,CE=,BE=BC﹣CE=2,∵∠CBO=∠DBF=45°,∴∠DBE=∠ABF,∵∠DBP=∠ABC=45°,∠DBE=∠ABF,∠DEB=∠FOB=90°,∴△FOB∽△DEB,∴=,即=,∴FO=,∴F(0,),∵B(3,0),设直线BF解析式为y=kx+b,代入B,F点坐标得:直线BF解析式为y=﹣x+,设直线BF与抛物线交点坐标为(x,y),则,解得:,(不符合题意,舍去),∴存在P点坐标为(﹣,).7.(1)将A(0,3),C(3,0)代入得:,解得b=2,c=3.∴抛物线的解析式为y=﹣x2+2x+3;(2)如图1中,当点P在抛物线上BC两点之间时,连接PA交BC于E,作BM⊥OC于M,EN⊥BM于N.∵∠PAB=∠ACB,∠ABE=∠ABC,∴△ABE∽△CBA,∴=,∴AB2=BE•BC,∴BE•BC=4,∵BC=,∴BE=,∵EN∥MC,∴==,∴==,∴BN=,EN=,∴E(,),∵A(0,3),∴直线AE的解析式为y=﹣x+3,由解得或,∵A(0,3),∴P(,),根据对称性直线AP关于直线AB的对称的直线AP′的解析式为y=x+3,由解得或,∴P′(,),综上所述,满足条件的点P坐标为P(,)或(,);(3)如图2中,作HM⊥OA于M,GN⊥MH于N.∵AH⊥GH,∴∠AHG=90°,由△AHM∽△HGN,∴==,∵tan∠GAH==2,H(m,n),∴==,∴HN=6﹣2n,GN=2m,∴G(6﹣﹣2n+m,2m+n),∵直线BC的解析式为y=﹣3x+9,∵点G在直线BC上,∴2m+n=﹣3(6﹣2n+m)+9,∴n=m+.8.(1)抛物线y=x2﹣3向右平移一个单位后得到的函数解析式为y=(x﹣1)2﹣3,顶点M(1,﹣3),令x=0,则y=(0﹣1)2﹣3=﹣2,点A(0,﹣2),x=3时,y=(3﹣1)2﹣3=4﹣3=1,点B(3,1);(2)过点B作BE⊥AO于E,过点M作MF⊥AO于M,∵EB=EA=3,∴∠EAB=∠EBA=45°,同理可求∠FAM=∠FMA=45°,∴△ABE∽△AMF,∴==,又∵∠BAM=180°﹣45°×2=90°,∴tan∠ABM==;(3)过点P作PH⊥x轴于H,∵y=(x﹣1)2﹣3=x2﹣2x﹣2,∴设点P(x,x2﹣2x﹣2),①点P在x轴的上方时,=,整理得,3x2﹣7x﹣6=0,解得x1=﹣(舍去),x2=3,∴点P的坐标为(3,1);②点P在x轴下方时,=,整理得,3x2﹣5x﹣6=0,解得x1=(舍去),x2=,x=时,x2﹣2x﹣2=﹣×=﹣,∴点P的坐标为(,﹣),综上所述,点P的坐标为(3,1)或(,﹣).。
2020中考专题17——存在性问题之特殊三角形姓名____________ . 【方法解读】特殊二和形存化件问题L婪足指寻找符介条件的点使之构成等腰二角形、江用三角形、全第一;角形等特殊二用形.解决此类问题的美犍在于恰当地分类4M避免M籽.【例题分析】例L如图,直线产3x-3交x轴例点A,交y轴J点B,过A, B两点的他物线交x例J另一点C(3, 0).(1)求点A,B的坐标.(2)求旭物线对应的函数表认式.(3)在附物线的对称轴上是否存在点Q,使△ABQ皓笔腰三角形?若存在,求出符合条件的点Q的坐标: 若不存在.请说明毋山.例2.如凰tl知直线.kx 6与抛物线y』x'b乂,c相交十A, 3两点,口点A(l,⑷为抛物段的顶点, 点B 在x轴上.⑴求旭利线对应的函数及辽揖⑵任⑴中:次函数的第.拿限的图象上是否存在•点P,便△FOB与APOC全等?若存在,求出点P 的%标:若不存在,请说明理由.(3)若点Q是y轴上…点,HAABQ为直角三角形,求点Q的坐标.D.【巩固训练】1.(2019•止宾〉已刈抛物纹y = x'-l,j轴文于点A.。
宜纹/=代内为任总实数)出文于S , C两点.则下列结论不正确的是()A.存在实数使得448C为等腰三角形民存在实数A ,使得&46C的内角中仃两角分别为3伊和60)C.任意实数A,伐得部为血角三角形D.存在实数4,使得M8c为等边三处形2. M图.在平行四边形ABCD中,AB 7 cm, BC 4 c0 NA-30' .点P从点A出发沿着AB边向燃B运劭, 速度为I cm/.连结印,若以运动时间为则当〔二 w时,AADP为等小」角形.3.(2019 •泰安)已知次函数】七公十)的图象。
反比例函数y =巴的图象大丁点T,与x他交丁x 点用 5.U).若 08 二4 8, H.S^=y .(1)求反比例函数与一次函数的表达式,<2)苦点P为x粕上一点,是等股三角形.求点「的坐乐.1. (2D18・ F州)如图,池物线y = a/+bx-4经过,4(-3.0).£(5.-4)两点, I j•地文于点C ,性接力&•4C. RC.(1)求抛物线的表达式,(2)求证,.48平分NO6(3)抛物线的对称轴卜.是否存在点M,使得M8W是以48为宜用边的汽角H角形,若存在,求山点M的坐标:苍不存在,请说刚理由.5.(2019•的卅)如图I.在平面直用坐标系中•点。
中考数学备考普遍存在的问题及对策中考数学备考是每位中学生必须面对的重要任务。
然而,在备考过程中,我们常常会遇到各种各样的问题,这些问题可能会对我们的备考效果产生负面影响。
本文将探讨中考数学备考普遍存在的问题,并提出相关对策,以帮助同学们更好地备考。
一、对基础知识掌握不牢固在中考数学备考过程中,许多同学面临的最大问题是基础知识掌握不牢固。
这主要体现在对于一些重要概念和公式的理解不够深刻,记忆不牢固。
针对这个问题,同学们可以采取以下对策。
首先,要充分理解每个知识点的含义,尽量避免死记硬背。
其次,可以通过做大量的练习题提高对知识点的掌握程度。
此外,及时与老师请教,在有难题时寻求帮助,也是一个有效的解决办法。
二、对题型特点不了解中考数学试卷的题型丰富多样,而不同的题型往往有自己的解题思路和方法。
因此,对于试题的类型和解题方法不了解,会导致备考效果不佳。
为了解决这一问题,同学们可以采取以下对策。
首先,要认真研读教材,掌握不同题型的解题方法和策略。
其次,多做模拟试题和历年真题,熟悉不同题型的出题特点。
还可以结合补习班或教辅材料,系统学习各类题型的解题技巧。
三、应试心态不平衡考试紧张是大部分同学备考过程中普遍存在的问题。
有的同学因紧张而脑子一片空白,导致答题失误。
而有的同学在备考过程中只关注分数,过分焦虑,影响自己的发挥。
为了应对这一问题,同学们可以采取以下对策。
首先,要树立正确的学习观念,将复习过程视为提升自己知识水平的机会,而不是以追求完美成绩为唯一目标。
其次,要通过参加模拟考试等实践活动来增强实战经验,适应考试环境,提升应试技巧。
同时,保持良好的作息和饮食习惯,保持良好的身心状态,也是保证备考效果的重要因素。
四、时间管理不当合理的时间管理对于备考的成功与否至关重要。
有的同学在备考过程中容易陷入时间浪费的陷阱,导致复习不充分或者临场发挥不佳。
为了解决这个问题,同学们可以采取以下对策。
首先,要制定详细的学习计划,按照计划合理分配时间进行复习。
中考数学常见问题汇总及解决方案整理自信,是成功的一半;平澹,是成功的驿站;努力,是成功的积淀;祝福,是成功的先决条件。
自信的你,定会在中考中摘取桂冠。
下面是小编给大家带来的中考数学常见问题汇总及解决方案,欢迎大家阅读参考,我们一起来看看吧!初中数学要学会解题套路老师一讲就明白,自己一做就不会我们先来说说“老师一讲马上就明白,自己一做就不会”的情况。
该怎么办呢?解题关键:要学会找题目的套路,一是从题眼抓做题点,二是总结题目类型。
这句话你应该也听过很多遍了吧,可你依旧不明白该怎么入手。
老师举个例子,你就一目了然了。
下面是关于圆的题目。
【例1】先不用看题,直接看图,当我们看到这个图的时候如果你总结过,你会发现①△ABC和△DBE相似;②∠ABC和∠DBE相等,代表着这两个角的三角函数值是相等的。
那么这就已经给我们两种思路了。
再看题目,求DE的长,无论是用①相似三角形的相似比来求,还是用②的三角函数值相等都可以。
再看第二问,问题是求一个三角形是等腰三角形,那么对于该问的考法有①腰底不定,分类讨论哪条线为底或腰,②三角形是等腰三角形,需要证角相等再证腰相等。
如果你做求等腰三角形的题目时分析过解题过程,这两个考法是你看一眼立马就闪现在脑子里的东西。
再看条件,题目告诉我们EF是圆O的切线,也就代表着OE垂直于EF,不管你有没有想法,都可以去考虑连接OE了。
题眼说了句是切线,就要想到连接圆心和切点了,不然告诉你这句话还有什么用呢!听题眼的话。
在这道题目里,我们分析了题眼和解题过程,总结了题眼的隐含条件,总结了问题的考法,这个过程就是我们题型总结的过程。
总结了一道题,当你看到类似的题目时,自然知道怎么做了。
再来看我们的第二题。
第一问,求相切,自然你知道是求DF⊥AB,怎么求呢?题目说了BD是平分线,对于平分线来说有两个特点:①角相等;②角平分线上点到角的两边距离相等;这两个条件都是题目中“BD平分∠ABC”告诉我们的。
探究中考数学复习中培养优等生的方法和对策作者:耿精媛来源:《学习周报·教与学》2020年第32期摘 ;要:中考关系着每个学生的前途和命运,初中数学涉及的内容繁多、知识分散,初三数学更是提高学生中考数学成绩的生命线,此时,需要教师分析学生在数学学习上的特征、个性,找出学生学习数学中存在的问题、困难,从而帮助学生在考前数学复习过程中,提升学生的数学能力。
教师如何能够采用正确的复习指导策略培养初中数学优等生,是本文的重点探讨问题。
关键词:中考数学;优等生;培养方法中考年年进行,成绩却不是年年都行!要使学生在中考中取得好成绩,并且使整班的数学成绩优秀率都高,这些成绩都离不开教师平时对学生的了解,及时分析所有学生在学习上的特征,找出学生在学习数学时有哪些问题的存在。
同时,教师在考前能够采用正确的复习指导方法和对策,从而培养更多的数学优等生,下面就具体的做法做一下总结。
一、分析学生的学习特性(一)培养学生对学习数学浓厚的兴趣三年的初中数学学习过程是艰苦的,想要在中考数学复习中培养优等生,就需要学生对于复习的知识产生兴趣。
浓厚的数学学习兴趣不仅可以激发他们学习数学的热情,还能够对他们学习的积极性和主动性进行充分调动,学习数学始终不是教师“要我学”,而是学生“我要学”。
对于初三的学生,他们有好奇心强、好强心强、开放性强的特性,教师要激励学生奋进,努力提高和升华他们自身的综合能力[1]。
(二)重视学生能力的提高,激励学生善于思考一般来说,优等生的理科思维普遍较好,他们在复习数学知识的过程中,对于记忆一些数学概念、公式都不能满足于他们的需求了,他们更加重视的是如何分析和解决数学问题的能力,他们喜欢搜集数学问题进行转化和变化而收到举一反三效果的喜悦。
所以在中考数学复习中培养优等生,就需要教师在复习过程中重视学生的能力,激励学生们对于数学问题的主动思考和探究。
(三)有坚强的学习数学意志,注重全面发展学生在学习数学时要有明确的学习动机,教师要鼓励他们敢于进行学习竞争,激励学生不畏惧挫折,要有很强的自觉性和自控力,有着学习数学的坚强意志,才能在中考压力下培养出数学优等生。
2020年中考数学易错点及解决方案2019年中考数学易错点及解决方案一、学习方法方面的问题1.做几何题时候不会做辅助线原因:对于几何模型认识不充分解决方案:每一种基本的几何模型都有定义、性质和判定三方面,要将这三方面知识熟记于心。
一般来说应用的过程是:判定是哪种模型→此模型有何性质→此性质能不能直接用→若不能,则作辅助线体现其性质。
例如:平行四边形模型→对角线互相平分,对边平行且相等,对角相等。
等腰三角形模型→三线合一。
倍长中线模型→有三角形一边中点,可以考虑倍长中线构造全等。
还有梯形的三类辅助线,都应该熟记。
2.考虑问题不全面,不会进行分类讨论原因:(1)对于题型本身掌握不好,没思路;(2)有些想法,不知道是否正确,不敢动笔;(3)不会写过程;(4)会做,懒得写。
解决方案:(1)注意几种经常需要分类讨论的知识点,就函数自变量取值的范围,一次函数的k,b的正负性,平方根的双重性,直角坐标系中点的坐标与线段长度的转化等。
(2)学会讨论方法,把每一种情况都写下来,然后分别解出每种情况下的结果。
(3)注意分类之后的取舍,并不是所有情况都是正确答案,尤其是解分式方程和根式方程的时候,会出现增根,一定要检验。
3.自信心不足,不敢下手二、学习习惯方面的问题1.喜欢用铅笔后果:过于依赖铅笔,习惯于没想好就下笔,导致考试时多次使用修改,卷面凌乱,当没有可涂改工具时不敢下笔写。
解决方案:除了画图,其他一律使用签字笔书写。
除了笔误,由于思路不清或是方法错误导致的失误尽量不要用涂改带修改,标明错误,在一旁写下正确答案。
一来,养成“慢想快写”的好习惯;二来,可以保留错误作为警戒;三来,强制自己的行文工整,否则会一团糟。
2.几何题用签字笔或圆珠笔在图上标注后果:原图被涂改的一团糟,什么都看不清。
解决方案:改用铅笔画图,学会科学地标注相等的线段,相等的角,辅助线用虚线等。
3.看见题目,急于下手,结果思考不出来后果:耗费了大量时间仍然没有做出题。
2020浅谈中考数学普遍存在的问题及相应的对策
一、基础知识不扎实。
数学科目的很多知识仍然要求学生熟练记忆,而这往往是学生容易忽视的,认为没有必要记忆,多数学生的基础不扎实与这有很大关系。
只有在这些基础都打得非常牢固的前提下,才能在数学学习上争取更大的提高。
二、看题不清,审题不准。
审题是做对题的基础和前提,一旦审错题,后面的工作就白做了,出力不讨好!所以一定要重视审题环节。
建议:读题的过程要慢,不放过任何一个条件,任何
一个字,要将重要的字眼做好标记!在平时的练习中就要有意识地培养这种习惯。
但做题要快,争取用最少的时间得到更多的分数。
三、考虑不周,漏解的现象较多。
一般情况下,填空题中会有一个题目涉及到多解的情况,后面的大题中也会存在分类讨论的问题,所以要心中有数。
凡是题目中涉及到点或者线段的运动,产生线段的相等(如等腰三角形、平行四边形)时,往往会出现两种甚至多种情况。
四、抄错题的现象也很常见。
有些学生在草稿纸上做的是对的,写在答题纸上就抄
错了;有的学生在计算过程中,上一步是对的,到下一步就抄错了,结果连锁反映,一错到底。
建议:眼睛看准,做出了某一道题时不要太激动。
考试时,最好内紧外松,控制心跳速度,始终以一种平和的心态面对考试。
计算中要注意前后对照检查,及时发现问题;算出很复杂的结果时,更要引起注意,很可能是中间过程出错了,这时要自行检查。
五、做综合题缺少思路和方法。
这是很多学生存在的问题,遇到综合题就不知道怎么去分析,找不到切入点,只好说一句“我不会”。
建议:眼、脑、手并用,静下心来,仔细读题,边看
题边画草图,或在原图上标出条件(如相等的线段、相等的角等等),要确实肯动脑去思考,相信自己,勇于探索。
但如果在5分钟之内没有任何思路,建议跳过,去思考其它的试题,以防浪费了宝贵的时间。
考试是在规定的时间里完成特定的试题,所以其实每一刻都是在跟时间赛跑,既比速度,又要保证做题准确率,两者同样重要。
以上是我个人对学生所存在问题的一些总结,希望存在以上问题的同学能从中得到一些启发!解决了以上的问题,每个人至少能提高10分,所以每位同学都要引起足够的重视。