上海敬业中学圆锥曲线复习资料
- 格式:doc
- 大小:429.50 KB
- 文档页数:9
高二上期末复习资料—圆锥曲线椭圆1. 椭圆的定义(1) 椭圆第一定义:平面内与两个定点12F F 的距离的和等于常数2a (122||a F F >)的点的轨迹叫椭圆,定点12,F F 叫椭圆焦点,12||F F 叫做椭圆的焦距.(2) 椭圆第二定义:平面内的动点与一个定点F 和一定直线l 的距离比是常数e ,当01e <<时的动点轨迹叫椭圆,定点F 叫椭圆的焦点,定直线l 叫椭圆的准线.例1:已知定点(3,0),(3,0)A B -,动点P 满足||||10PA PB +=,求动点P 的轨迹方程.例2:已知定点(4,0)A ,定直线254x =,动点P 到点(4,0)A 的距离与动点P 到直线254x =的距离比是45,求动点P 的轨迹方程. 注意:涉及焦点三角形可考虑第一定义,第二定义常用作圆锥曲线上的点到焦点距离与到准线距离的转化例1:过椭圆12422=+y x 的一个焦点1F 的直线与椭圆相交与A 、B 两点,则A 、B 与椭圆的另一个焦点2F 构成的2ABF ∆的周长等于? 例2:椭圆192522=+y x 上有一点P ,它到左准线的距离等于2.5,那么它到右焦点的距离为?2. 椭圆方程(1) 标准方程:焦点在x 轴上:22221(0)x y a b a b+=>> 焦点在y 轴上:22221(0)y x a b a b+=>> 一般式:221(0,0)mx ny m n m n +=>>≠且(2) 参数方程:cos (sin x a y b θθθ=⎧⎨=⎩为参数)注意:对有关椭圆上的动点问题,常用其参数方程表示其上的点的坐标,这样使问题化为三角问题,与椭圆有关的最值问题,常使用参数方程,其形式较简便.例1:已知(,)P x y 是椭圆22114425x y +=上的点,则u x y =+的取值X 围? []13,13- 例2:已知椭圆为22169144x y +=,直线为250x y -+=,求椭圆上到直线最远和最近的点?(3) 求椭圆的方法:(1)定义法,(2)待定系数法:① 当焦点位置不定时设:221(0,0)mx ny m n m n +=>>≠且; ② 与22221x y a b +=有相同焦点的椭圆设:22221x y a m b m+=++; ③ 与22221x y a b +=有相同离心率的椭圆设:2222(0)x y m m a b+=>; 例:根据下列条件求椭圆标准方程:(1) 两个焦点坐标为(0,5),(0,5)-,椭圆上的点到两焦点的距离和为26;221169144y x +=(2) 经过点35(,),(2,223A B -; 222211148371352x y x y +=+=或 (3) 与椭圆224936x y +=有相同焦点,且过点(3,2)-;225330x y +=3. 椭圆的几何性质 以椭圆22221(0)x y a b a b+=>>为例 (1) X 围:||,||x a y b ≤≤(2) 对称性:关于x 轴、y 轴、原点都对称,长轴长—2a 。
圆锥曲线与方程 知识要点一、椭圆方程. 1、椭圆的定义:平面内与两个定点F 1、F 2,点P 满足21212F F a PF PF >=+,则点P 的轨迹是 平面内与两个定点F 1、F 2,点P 满足21212F F a PF PF ==+,则点P 的轨迹是 平面内与两个定点F 1、F 2,点P 满足21212F F a PF PF <=+,则点P 的轨迹是 2若P 是椭圆:12222=+by a x 上的点.21,F F 为焦点,若θ=∠21PF F ,则21F PF ∆的面积为3、点与椭圆、直线与椭圆的位置关系(1)点P (x 0,y 0)与椭圆x 2a 2+y 2b 2=1(a >b >0)的位置关系:①点P 在椭圆上⇔ ;②点P 在椭圆内部⇔ ; ③点P 在椭圆外部⇔ .(2)直线y =kx +m 与椭圆x 2a 2+y 2b2=1(a >b >0)的位置关系判断方法:先联立⎩⎪⎨⎪⎧y =kx +m ,x 2a 2+y 2b 2=1.消y 得一个一元二次方程是:(3)弦长公式:设直线方程为y =kx +m (k ≠0),椭圆方程为x 2a 2+y 2b 2=1(a >b >0)或y 2a 2+x 2b 2=1(a >b >0),直线与椭圆的两个交点为A (x 1,y 1),B (x 2,y 2),则|AB |=(x 1-x 2)2+(y 1-y 2)2, ∴|AB |=(x 1-x 2)2+(kx 1-kx 2)2=1+k 2·(x 1-x 2)2=1+k 2·(x 1+x 2)2-4x 1x 2, 或|AB |=⎝⎛⎭⎫1ky 1-1k y 22+(y 1-y 2)2=1+1k 2·(y 1-y 2)2=1+1k2×(y 1+y 2)2-4y 1y 2. 其中,x 1+x 2,x 1x 2或y 1+y 2,y 1y 2的值,可通过由直线方程与椭圆方程联立消去y 或x 后得到关于x 或y 的一元二次方程得到.(4)直线l :y =kx +m 与椭圆:()012222>>=+b a by a x 的两个交点为A (x 1,y 1),B (x 2,y 2),弦AB 的中点M (x 0,y 0),则k = (用x 0,y 0表示) 二、双曲线方程. 1、双曲线的定义:平面内与两个定点F 1、F 2,点P 满足21212F F a PF PF <=-,则点P 的轨迹是 平面内与两个定点F 1、F 2,点P 满足21212F F a PF PF >=-,则点P 的轨迹是 平面内与两个定点F 1、F 2,点P 满足21212F F a PF PF ==-,则点P 的轨迹是 2(1)等轴双曲线:双曲线a y x ±=-称为等轴双曲线,其渐近线方程为 ,离心率(2)共渐近线的双曲线系方程:)0(2222≠=-λλby a x 的渐近线方程为如果双曲线的渐近线为0=±bya x 时,它的双曲线方程可设为 .(3)从双曲线一个焦点到一条渐近线的距离等于 . 3、直线与双曲线的位置关系(1)一般地,设直线l :y =kx +m ……① 双曲线C :x 2a 2-y 2b 2=1(a >0,b >0) ……②把①代入②得关于x 的一元二次方程为 . ①当b 2-a 2k 2=0时,直线l 与双曲线的渐近线 ,直线与双曲线C . ②当b 2-a 2k 2≠0时,Δ>0⇒直线与双曲线有 公共点,此时称直线与双曲线 ; Δ=0⇒直线与双曲线有 公共点,此时称直线与双曲线 ; Δ<0⇒直线与双曲线 公共点,此时称直线与双曲线 . 注意:直线和双曲线只有一个公共点时,直线不一定与双曲线相切,当直线与双曲线的渐近线平行时,直线与双曲线相交,只有一个交点.(2)直线l :y =kx +m 与双曲线:()0,012222>>=-b a by a x 的两个交点为A (x 1,y 1),B (x 2,y 2),弦AB 的中点M (x 0,y 0),则k = (用x 0,y 0表示) 三、抛物线方程. 1、抛物线的定义平面内与一个定点F 和一条定直线l (不经过点F ) 的点的轨迹叫做抛物线.点F 叫做抛物线的 ,直线l 叫做抛物线的 .思考1:平面内与一个定点F 和一条定直线l (l 经过点F ),点的轨迹是 2、抛物线的性质:3、抛物线的焦点弦的性质1.如图,AB 是抛物线y 2=2px (p >0)过焦点F 的一条弦,设A (x 1,y 1)、B (x 2,y 2), AB 的中点M (x 0,y 0),相应的准线为l .(1)以AB 为直径的圆必与准线l 的位置关系是 ; (2)|AB |= (焦点弦长用中点M 的坐标表示); (3)若直线AB 的倾斜角为α,则|AB |= (焦点弦长用倾斜角为α表示);如当α=90°时,AB 叫抛物线的通径,是焦点弦中最短的;抛物线的通径等于 . (4)求证A 、B 两点的横坐标之积、纵坐标之积为定值,即x 1·x 2= ,y 1·y 2= . 4、直线与抛物线的位置关系1.设直线l :y =kx +m ,抛物线:y 2=2px (p >0),将直线方程与抛物线方程联立整理成 关于x 的一元二次方程为 ,(1)若k =0,直线与抛物线有 个公共点,此时直线 于抛物线的对称轴或与对称轴 . 因此直线与抛物线有一个公共点是直线与抛物线相切的 条件. (2)若k ≠0, 当Δ>0时,直线与抛物线 ,有两个公共点;当Δ=0时,直线与抛物线 ,有一个公共点; 当Δ<0时,直线与抛物线 ,无公共点.2.直线l :y =kx +m 与抛物线:y 2=2px (p >0)的两个交点为A (x 1,y 1),B (x 2,y 2),弦AB 的中点M (x 0,y 0),则k = (用p 和x 0,y 0表示)3.抛物线:y 2=2px (p >0,y >0)在点A (x 0,02px )处的切线方程为 ,4.抛物线:x 2=2py (p >0)在点A (x 0,px 220)处的切线方程为 ,。
锥曲线专题一、求圆锥曲线的方程【复习要点】求指定的圆锥曲线的方程是高考命题的重点,主要考查识图、画图、数形结合、等价转化、分类讨论、逻辑推理、合理运算及创新思维能力,解决好这类问题,除要求熟练掌握好I员I锥曲线的定义、性质外,命题人还常常将它与对称问题、弦长问题、最值问题等综合在一起命制难度较大的题,解决这类问题常用定义法和待定系数法.-•般求已知曲线类型的曲线方程问题,可采用“先定形,后定式,再定量”的步骤.定形——指的是二次曲线的焦点位置与对称轴的位置.定式——根据“形”设方程的形式,注意曲线系方程的应用,如当椭圆的焦点不确定在哪个坐标轴上时,可设方程为/WA-2+/ly2= 1 (/n>0,/2>0).定量——由题设中的条件找到“式”中特定系数的等量关系,通过解方程得到量的大小. 【例题】2 9【例1】双曲线一-三=1(族N)的两个焦点几、F2, P为双曲线上一点,4 b2IOPIV5,IPF]l,IFiF2l,IPF2l成等比数列,则"=.【例2】已知圆G的方程为(》一2)2+侦-1)2=史,椭圆C2的方程为# +、= 1(。
>/7>0), C2的离心率为遮,如果C1与C2相交于4、B两点,旦线段他 / 人2 \f 2恰为圆G的直径,求直线AB的方程和椭圆C2的方程。
B【例3】过点(1, 0)的直线/与中心在原点,焦点在工轴上且离心率为亭的椭圆C 相交于A、加点,直线日,过线段"的中点,同时椭圆。
上存在-点与右焦点关于直线I对称,试求直线/与椭圆C的方程.77【例4】如图,已知△ Pg的面积为丁,P为线段P|P2的一个三等分点,求以4直线OP】、。
户2为渐近线n过点p的离心率为业的双曲线方程.- 2【例7】2 /[例5】过椭圆C:土 + 土 = 1(。
>8>0)上一动点P引圆0: X2 +/ =b2的两条切线/ b2PA、P8, A、8为切点,直线48与x轴,y轴分别交于M、N两点。
圆锥曲线复习讲义-学生版【基础知识】 一.椭圆与双曲线椭 圆双 曲 线定义 1212||||2(2||)PF PF a a F F +=>1212||||||2(2||)PF PF a a F F -=<方程22221x y a b += 22221x y b a+= 22221x y a b -= 22221y x a b -= 图形焦点 (,0)F c ± (0,)F c ±(,0)F c ± (0,)F c ±焦距 C F F 221=对称轴关于x .y 轴对称,关于原点成中心对称顶点长轴:(-a ,0),(a ,0) 短轴:(0,-b ),(0,b )长轴:(-b ,0),(b ,0) 短轴:(0,-a ),(0,a )实轴:(-a ,0),(a ,0) 虚轴:(0,-b ),(0,b )实轴:(-b ,0),(b ,0)虚轴:(0,-a ),(0,a )轴 长轴长2a ,短轴长2b实轴长2a ,虚轴长2b离心率 22222221(01)c c a b b e e a a a a-====-<< 22222221(1)c c a b be e a a a a+====+>渐进线无xab y ±= x ba y ±= a ,b ,c 2220c b a b a +=>>,2220b a c a c +=>>,M MPK K 1A A 2F F O yx二.抛物线的性质标准方程22(0)y px p => 22(0)y px p =->22(0)x py p => 22(0)x py p =-> 图形焦点坐标 (,0)2p(,0)2p-(0,)2p (0,)2p -准线方程 2p x =-2p x = 2p y =-2p y =范围 0x ≥ 0x ≤0y ≥ 0y ≤离心率1e = 1e = 1e = 1e = 三、弦长公式: ||14)(1||1||2212212212A k x x x x k x x k AB ∆⋅+=-+⋅+=-+= 其中,∆,A 分别是联立直线方程和圆锥曲线方程,消去 y 后所得关于x 的一元二次方程 的判别式和2x 的系数求弦长步骤:(1)求出或设出直线与圆锥曲线方程;(2)联立两方程,消去y,得关于x 的一元二次方程,02=++C Bx Ax 设),(11y x A ,),(22y x B ,由韦达定理求出AB x x -=+21,ACx x =21;(3)代入弦长公式计算。
圆锥曲线复习的必备资料每一门科目都有自己的学习方法,但其实都是万变不离其中的,数学作为最烧脑的科目之一,也是要记、要背、要讲技巧的。
下面是小编给大家整理的一些圆锥曲线复习的学习资料,希望对大家有所帮助。
高考数学圆锥曲线复习方法1、曲线与方程首先第一个问题,我们想到的就是曲线与方程的这部分内容了。
在学习圆锥曲线这部分内容之前,我们最早接触到的就是曲线与方程这部分内容。
在这部分呢,我们要注意到的是几种常见求轨迹方程的方法。
在这里呢,简单的说一下,一共有四种方法:1.直接法由题设所给(或通过分析图形的几何性质而得出)的动点所满足的几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫直接法.2、定义法利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件.3、相关点法若动点P(x,y)随已知曲线上的点Q(x0,y0)的变动而变动,且x0、y0可用x、y表示,则将Q点坐标表达式代入已知曲线方程,即得点P的轨迹方程.这种方法称为相关点法(或代换法).4、待定系数法求圆、椭圆、双曲线以及抛物线的方程常用待定系数法求(二)椭圆,双曲线,抛物线这部分就可以研究第二个问题了呢。
在椭圆,双曲线以及抛物线里,最最重要的就是他们的标准方程,因为我们可以从它们的标准方程中看到许多东西,包括顶点,焦点,图形的画法等等等等,所以这个呢是要求我们必须要会的。
(不会的通宵快去恶补~~~)在一般做题的时候,我们要首先要根据题意来画图,这点特别重要,我们要清楚题目要我们求什么才能继续做下去不是。
接下来就是根据题意来写过程了,我们的一般步骤呢都是建系,设点,联立方程,化简,判断△,韦达定理,列关系式,整理,作答。
在考试中,我们按照步骤一步一步的写,写到韦达定理至少8分有了。
考纲要求(1)圆锥曲线① 了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用;② 掌握椭圆、抛物线的定义、几何图形、标准方程及简单性质; ③ 了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质; ④ 了解圆锥曲线的简单应用; ⑤ 理解数形结合的思想。
(2)曲线与方程了解方程的曲线与曲线的方程的对应关系。
基本知识回顾(1)椭圆① 椭圆的定义设F1,F2是定点(称焦点),P 为动点,则满足|PF1|+|PF2|=2a (其中a 为定值,且2a >|F1F2|)的动点P 的轨迹称为椭圆,符号表示:|PF1|+|PF2|=2a (2a >| F1F2|)。
② 椭圆的标准方程和几何性质 焦点在x 轴上的椭圆焦点在y 轴上的椭圆标准方程22a x +22by =1(a >b >0)22a y +22bx =1(a >b >0)范围x [,][,]a a y b b ∈-∈-[,][,]x b b y a a ∈-∈-图形对称性 对称轴:x 轴、y 轴 对称中心:原点顶点1212(,0),(,0)(,0),(,0)A a A aB b B b --1212(0,),(0,)(0,),(0,)A a A aB b B b --轴 长轴A 1A 2的长为:2a 短轴B 1B 2的长为:2b焦距 F 1F 2=2c离心率e ,(0,1)ce a=∈ a,b,c 关系 222a b c =+例题例1:椭圆22192x y +=的焦点为12,F F ,点P 在椭圆上,若1||4PF =,则2||PF = ;12F PF ∠的大小为 。
变式1:已知12F 、F 是椭圆2222:1(0)x y C a b a b+=>>的两个焦点,p 为椭圆C 上的一点,且→→⊥21PF PF 。
若12PF F ∆的面积为9,则b = 。
例2:若点P 到点F (4,0)的距离比它到定直线x +5=0的距离小1,则P 点的轨迹方程是( )A .y 2=16-xB .y 2=32-xC .y 2=16xD .y 2=32x变式2:动圆与定圆A :(x +2)2+y 2=1外切,且与直线∶x =1相切,则动圆圆心P 的轨迹是( )A .直线B .椭圆C .双曲线D .抛物线变式3:抛物线的顶点在原点,焦点在y 轴上,其上的点)3,(-m P 到焦点的距离为5,则抛物线方程为( ) A .y x 82=B .y x 42=C .y x 42-=D . y x 82-=变式4:在抛物线y 2=2x 上有一点P ,若 P 到焦点F 与到点A (3,2)的距离之和最小,则点P 的坐标是 。
直线的倾斜角和斜率(一)一.知识清单1.以一个方程的解为坐标的点都是 ,反过来, ,这时,这个方程就叫做这条直线的方程,这条直线叫做这个方程的直线。
2.在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α,那么α就叫做直线的倾斜角。
3.直线的倾斜角为α,其取值范围是4. 叫做这条直线的斜率,直线的斜率常用k 表示,若直线的倾斜角为α()90α≠ ,则k = 5.直线上的向量12PP 及与它平行的向量都称为直线的 。
直线12PP 的方向向量12PP 的坐标是2121(,)x x y y --。
当直线12PP 与x 轴不垂直时,12x x ≠,此时,向量12211PP x x - 也是直线12PP 的方向向量,且它的坐标是 ,既 ,其中k 是直线12PP 的斜率。
二.强化训练直线的倾斜角和斜率的概念辨析直线的倾斜角与斜率的关系(1) 已知倾斜角α,求斜率k ;k ⎧=⎨⎩(2) 已知斜率k ,求倾斜角α;arctan (0)arctan (0)k k k k απ≥⎧=⎨+<⎩注:已知倾斜角求斜率时,应注意讨论倾斜角为90 时,斜率不存在;在已知直线斜率求其倾斜角时,应先由斜率正负判断倾斜角是锐角还是钝角,再用反正切(或特殊角)将其表示出来;而由斜率范围求倾斜角范围或由倾斜角范围求其斜率范围时,要结合正切函数的图象和其单调性,求相应量的范围。
1. 已知直线l 的倾斜角为α,并且203πα≤≤,则直线l 的斜率k 的范围是2. 已知直线l 的斜率k满足k ≤≤l 的倾斜角α的范围是3. 已知直线1l 的倾斜角130θ= ,直线12l l ⊥,求1l 和2l 的斜率4. 已知直线l 的方向向量2(1,1)a m =- 其中1m ≥,求直线l 的斜率k 和倾斜角α5. 过点(1,2)P -的直线l 与x 轴、y 轴分别交于点A 、B 。
圆锥曲线1.圆锥曲线的定义:定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹; 双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。
若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。
若去掉定义中的绝对值则轨迹仅表示双曲线的一支。
例1-1:方程8表示的曲线是_____(答:双曲线的左支)2.圆锥曲线的标准方程标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程:(1)椭圆:焦点在x 轴上时12222=+by a x (0a b >>)⇔{cos sin x a y b ϕϕ==(参数方程,其中ϕ为参数), 焦点在y 轴上时2222b x a y +=1(0a b >>)。
方程22Ax By C +=表示椭圆的充要条件是什ABC ≠0,且A ,B ,C 同号,A ≠B 。
例2-1:已知方程12322=-++ky k x 表示椭圆,则k 的取值范围为____(答:11(3,)(,2)22--- ); 2-2:若R y x ∈,,且62322=+y x ,则y x +的最大值是_________,22y x +的最小值是_________2)(2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:2222bx a y -=1(0,0a b >>)。
方程22Ax By C +=表示双曲线的充要条件是ABC ≠0,且A ,B 异号。
例2-3:12y x =是双曲线的一条渐近线,且与椭圆14922=+y x 有公共焦点,则该双曲线的方程_____________________(答:2214x y -=); (3)抛物线:开口向右时22(0)y px p =>,开口向左时22(0)y px p =->,开口向上时22(0)x py p =>,开口向下时22(0)x py p =->。
3.圆锥曲线焦点位置的判断首先化成标准方程,然后再判断:(1)椭圆:由x 2,y 2分母的大小决定,焦点在分母大的坐标轴上。
例3-1:已知方程12122=-+-my m x 表示焦点在y 轴上的椭圆,则m 的取值范围是__(答:)23,1()1,( --∞)(2)双曲线:由x 2,y 2项系数的正负决定,焦点在系数为正的坐标轴上;(3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。
特别提醒:(1)在求解椭圆、双曲线问题时,首先要判断焦点位置,焦点F 1,F 2的位置,是椭圆、双曲线的定位条件,它决定椭圆、双曲线标准方程的类型,而方程中的两个参数,a b ,确定椭圆、双曲线的形状和大小,是椭圆、双曲线的定形条件;在求解抛物线问题时,首先要判断开口方向;(2)在椭圆中,a 最大,222a b c =+,在双曲线中,c 最大,222c a b =+。
4.圆锥曲线的几何性质:(1)椭圆(以12222=+by a x (0a b >>)为例): ①范围:,a x a b y b -≤≤-≤≤②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点(,0),(0,)a b ±±,其中长轴长为2a ,短轴长为2b ;(2)双曲线(以22221x y a b-=(0,0a b >>)为例): ①范围:x a ≤-或,x a y R ≥∈;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),两个顶点(,0)a ±,其中实轴长为2a ,虚轴长为2b ,特别地,当实轴和虚轴的长相等时,称为等轴双曲线,其方程可设为22,0x y k k -=≠; ④两条渐近线:b y x a=±。
(3)抛物线(以22(0)y px p =>为例):①范围:0,x y R ≥∈; ②焦点:一个焦点(,0)2p , 其中p 的几何意义是:焦点到准线的距离;③对称性:一条对称轴0y =,没有对称中心,只有一个顶点(0,0); ④准线:一条准线2p x =-; 例4-1:设R a a ∈≠,0,则抛物线24ax y =的焦点坐标为_____(答:)161,0(a); 5、点00(,)P x y 和椭圆12222=+by a x (0a b >>)的关系: (1)点00(,)P x y 在椭圆外⇔2200221x y a b+>; (2)点00(,)P x y 在椭圆上⇔220220by a x +=1; (3)点00(,)P x y 在椭圆内⇔2200221x y a b+<6.直线与圆锥曲线的位置关系:(1)相交:0∆>⇔直线与椭圆相交;0∆>⇒直线与双曲线相交,但直线与双曲线相交不一定有0∆>,当直线与双曲线的渐近线平行时,直线与双曲线相交且只有一个交点,故0∆>是直线与双曲线相交的充分条件,但不是必要条件; 0∆>⇒直线与抛物线相交,但直线与抛物线相交不一定有0∆>,当直线与抛物线的对称轴平行时,直线与抛物线相交且只有一个交点,故0∆>也仅是直线与抛物线相交的充分条件,但不是必要条件。
例6-1:若直线y=kx+2与双曲线x 2-y 2=6的右支有两个不同的交点,则k 的取值范围是___________(答:(-315,-1)); 6-2:直线y ―kx ―1=0与椭圆2215x y m+=恒有公共点,则m 的取值范围是_______(答:[1,5)∪(5,+∞));6-3:过双曲线12122=-y x 的右焦点直线交双曲线于A 、B 两点,若│AB ︱=4,则这样的直线几条?(答:3);(2)相切:0∆=⇔直线与椭圆相切;0∆=⇔直线与双曲线相切;0∆=⇔直线与抛物线相切;(3)相离:0∆<⇔直线与椭圆相离;0∆<⇔直线与双曲线相离;0∆<⇔直线与抛物线相离。
例6-4:过点)4,2(作直线与抛物线x y 82=只有一个公共点,这样的直线有______6-5:过点(0,2)与双曲线116922=-y x 有且仅有一个公共点的直线的斜率的取值范围为______(答:4,3⎧⎪±⎨⎪⎪⎩⎭); 6-6:过双曲线1222=-y x 的右焦点作直线l 交双曲线于A 、B 两点,若=AB 4,则满足条件的直线l 有____条(答:3);6-7:求椭圆284722=+y x 上的点到直线01623=--y x 的最短距离); 6-8:直线1+=ax y 与双曲线1322=-y x 交于A 、B 两点。
①当a 为何值时,A 、B 分别在双曲线的两支上?②当a 为何值时,以AB 为直径的圆过坐标原点?(答:①(;②1a =±);6-9:抛物线x y 22=上的两点A 、B 到焦点的距离和是5,则线段AB 的中点到y 轴的距离为______7、抛物线中与焦点弦有关的一些几何图形的性质:(1) (2)(3) (4)8、弦长公式若直线y kx b =+与圆锥曲线相交于两点A 、B ,且12,x x 分别为A 、B 的横坐标,则AB=12x -,若12,y y 分别为A 、B 的纵坐标,则AB =21211y y k -+,若弦AB 所在直线方程设为x ky b =+,则AB12y -。
例8-1:过抛物线x y 22=焦点的直线交抛物线于A 、B 两点,已知|AB|=10,O 为坐标原点,则ΔABO 重心的横坐标为_______(答:3);9、圆锥曲线的中点弦问题:遇到中点弦问题常用“韦达定理”或“点差法”求解。
在椭圆12222=+b y a x 中,以00(,)P x y 为中点的弦所在直线的斜率k=-0202y a x b ; 在双曲线22221x y a b -=中,以00(,)P x y 为中点的弦所在直线的斜率k=0202y a x b ; 在抛物线22(0)y px p =>中,以00(,)P x y 为中点的弦所在直线的斜率k=0p y 。
例9-1:如果椭圆221369x y +=弦被点A (4,2)平分,那么这条弦所在的直线方程是(答:280x y +-=);9-2:试确定m 的取值范围,使得椭圆13422=+y x 上有不同的两点关于直线m x y +=4对称(答:⎛ ⎝⎭); 特别提醒:因为0∆>是直线与圆锥曲线相交于两点的必要条件,故在求解有关弦长、对称问题时,务必别忘了检验0∆>! 10、你了解下列结论吗?(1)双曲线12222=-b y a x 的渐近线方程为02222=-by a x ; (2)以x a b y ±=为渐近线(即与双曲线12222=-b y a x 共渐近线)的双曲线方程为λλ(2222=-b y a x 为参数,λ≠0)。
例10-1:与双曲线116922=-y x 有共同的渐近线,且过点)32,3(-的双曲线方程为_______(答:224194x y -=) (3)中心在原点,坐标轴为对称轴的椭圆、双曲线方程可设为221mx ny +=;(4)若抛物线22(0)y px p =>的焦点弦为AB ,1122(,),(,)A x y B x y ,则①12||AB x x p =++; ②221212,4p x x y y p ==- (5)若OA 、OB 是过抛物线22(0)y px p =>顶点O 的两条互相垂直的弦,则直线AB 恒经过定点(2,0)p 。
11、动点轨迹方程:(1)求轨迹方程的步骤:建系、设点、列式、化简、确定点的范围;(2)求轨迹方程的常用方法:①直接法:直接利用条件建立,x y 之间的关系(,)0F x y =;(答:212(4)(34)y x x =--≤≤或24(03)y x x =≤<);②待定系数法:已知所求曲线的类型,求曲线方程――先根据条件设出所求曲线的方程,再由条件确定其待定系数。
例11-2:线段AB 过x 轴正半轴上一点M (m ,0))0(>m ,端点A 、B 到x 轴距离之积为2m ,以x 轴为对称轴,过A 、O 、B 三点作抛物线,则此抛物线方程为(答:22y x =);③定义法:先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程; 例11-2:由动点P 向圆221x y +=作两条切线PA 、PB ,切点分别为A 、B ,∠APB=600,则动点P 的轨迹方程为(答:224x y +=);11-3:点M 与点F(4,0)的距离比它到直线05=+x l :的距离小于1,则点M 的轨迹方程是_______(答:216y x =);11-4:一动圆与两圆⊙M :122=+y x 和⊙N :012822=+-+x y x 都外切,则动圆圆心的轨迹为(答:双曲线的一支);④代入转移法:动点(,)P x y 依赖于另一动点00(,)Q x y 的变化而变化,并且00(,)Q x y 又在某已知曲线上,则可先用,x y 的代数式表示00,x y ,再将00,x y 代入已知曲线得要求的轨迹方程;例11-5:动点P 是抛物线122+=x y 上任一点,定点为)1,0(-A ,点M 分−→−PA 所成的比为2,则M 的轨迹方程为__________(答:3162-=x y ); ⑤参数法:当动点(,)P x y 坐标之间的关系不易直接找到,也没有相关动点可用时,可考虑将,x y 均用一中间变量(参数)表示,得参数方程,再消去参数得普通方程)。