LMS Test.Lab
- 格式:pdf
- 大小:186.61 KB
- 文档页数:2
传递路径分析探究振动噪声问题的根源LMS b传递路径分析提供了基于工程试验方法的系统级振动噪声解决方案,对关键零部件进行工程分析。
作为一个全面理解振动噪声问题的方法,TPA有助于对振动噪声问题进行故障诊断,并对每个关键零部件进行性能目标设定。
在一个由多个子结构组成的复杂结构(诸如汽车、飞机或船舶)中,某一特定位置的振动噪声现象往往是由一个远处的振动源所引起的。
例如,能量可以通过不同的路径从汽车发动机传入驾驶室内:通过发动机悬置、排气系统连接点,甚至间接地通过传动轴和底盘悬架传入到驾驶室内。
进气和排气系统的空气传播也会对振动噪声问题有一定的影响。
强大的传递路径分析技术能够解决这类振动噪声问题,它可以帮助工程师在设计早期检测到问题产生的根源。
LMS b提供高效的解决方案,以识别振动噪声问题及其产生的根本原因,并能够快速地评价设计修改。
从故障诊断到根源分析传递路径分析(TPA)是用于识别和评价能量从激励源到某个接收位置的各个结构传播和声传播的传递路径。
一旦对这些激励源及传递路径建模并量化后,系统优化就成为一个相对容易的设计工作。
传递路径分析用于定量分析不同的激振源及其传递路径,并且计算出其中哪些是重要的,哪些对噪声问题有贡献,哪些会互相抵消。
激励源-路径-响应:系统级的方法LMS b传递路径分析是基于激励源-路径-响应的系统解决方案。
所有的振动噪声问题都是始于一个激励源,然后通过空气传播或结构传播传递到一个可被人感知的响应位置。
通过分析激励源及传递路径对响应的影响,并可以通过对其中的某几个因素进行调整,来解决振动噪声问题。
传递路径分析的目标是计算从源到响应的各条路径的矢量贡献量,识别出传递路径中各零部件的NVH特性,并通过对其调整来解决特定的问题。
最终,TPA通过合理选择各个零部件的特性以避免振动噪声问题,从而有助于产品优化设计。
完整的解决方案LMS b传递路径分析软件包包含各种分析功能,以帮助试验部门最大程度地节省时间和资源,是市场上最为广泛使用的TPA解决方案。
LMS TestLab帮助SAA 公司的TVC子系统的鉴定试验LMS 国际公司,比利时鲁文讯:S.A.B.C.A.公司采用LMS b为多项航空航天项目开发零部件和机械装配,其中包括ESA的新型发射器VEGA。
总部位于比利时Brussels的S.A.B.C.A. 公司多年来一直从事于飞机和飞行器部件、系统的设计、试验以及制造,包括Ariane 5和几款空中客车飞机。
S.A.B.C.A. 公司采用LMS b Environmental环境试验软件,在1~22GS,5~2000Hz振范围内,利用正弦轮廓、冲击和随机输入,进行试验台鉴定试验。
这些试验能够确保试验样机在火箭起飞和飞行过程中苛刻的振动环境中能够正常运行。
采集的数据通过LMS SCADAS III前端单元进行处理,每个单元具有24个输入通道。
这套系统还可以升级,使得S.A.B.C.A.能够通过增加输入通道和连接更多的LMS SCADAS前端来扩展系统的通道数。
在S.A.B.C.A. 公司工程项目中,通道数对于采集试验过程中产生的巨量数据来说至关重要。
S.A.B.C.A.公司需要特别高的精确度来鉴定由复杂电子控制系统和采用轻型材料的精密部件构成的新型机电系统。
S.A.B.C.A.公司的机电系统部门最近的创新之一是矢量喷管控制系统(TVC),其由机电作动器(系统)、集成的动力驱动控制电子系统、锂电池组和各种电缆组成。
这些TVC(推力矢量控制系统)将取代原来昂贵且笨重的液态系统,用于新的欧洲VEGA发射器。
电子作动系统控制发射器喷管的位置,因此,对于搭载设备的飞行轨迹和航天任务的成功性来说非常重要。
新的TVC设计采用轻型材料,并且配备了先进的控制电子系统。
因为这种新的TVC设计主要依赖于电子原件,所以试验必须能够对三个轴同时进行精确的振动控制,与以前的系统相比较,需要相当多的通道数。
S.A.B.C.A. 公司选择LMS b Environmental环境控制软件,是因为其高通道数、系统可扩展性以及高级试验任务所需的精确振动控制功能等特点。
LMS b中文操作指南— Signature信号特征测试分析比利时LMS国际公司北京代表处2009年2月LMS b中文操作指南— Signature信号特征测试分析目录---开启软件--- (2)第一步,通道设置(Channel Setup) (4)第二步,校准灵敏度(Calibration)—选做项 (8)第三步,跟踪设定(Tracking Setup) (9)第四步,示波/采集设定(Acquisition Setup) (14)第五步,在线分析设定(Online Processing) (17)第六步,开始测量(Measure) (20)第七步,频域后处理(Post Processing) (23)第八步,时域信号选择(Time Data Selection ) (24)第九步,时域信号后处理(Time Data Processing ) (24)---开启软件---1- 在 Windows 桌面上点击 Test Lab的快捷方式,然后点击进入b Signature文件夹,在快捷方式里选择打开 Signature Acquisition (只是采集,无后处理功能)或Signature testing (根据购买协议,有高级版和标准版之分,主体内容2者一致,都有Post processing频域后处理功能,高级版则多了时域信号后处理功能(time data processing)). 图标见下图:2- 下面以Signature Testing – Advanced 为例说明 Signature testing的操作说明,点击打开后出现软件界面如下:3- 开始软件操作,打开项目a) 点击 File键正下方的空白项目图标,新建一个软件默认空白设置的项目(Newproject);b) 也可以点击 File键,在下拉菜单里选择 New,弹出选择项目模板的界面如下在模板列表中选择点击一个以前存好的或者软件默认提供的模板(后缀为.tpl),然后点击Open打开一个新的项目,打开的新项目将套用模板里所有的设置(包括通道设置,采样频率,加什么窗函数等各种设置);c) 当然也可以点击图标来打开以前已经存在硬盘里的项目文件(后缀为.lms,路径在安装 Test Lab软件时已设定,存数据的文件夹叫LMSLocal9A(9A是版本号,如果8A 的话就是LMSLocal8A)路径假设设定成 E:\LMSLocal9A\,那么格式为*.lms的项目文件和与*同名的文件夹(存有全程时域信号Time date的TDF格式文件)存在路径E:\LMSLocal9A\电脑用户名\Data下)。
LMS b中文操作指南— Geometry几何建模比利时LMS国际公司北京代表处2009年2月LMS b中文操作指南— Geometry 几何建模目录第一步,软件启动 (3)第二步,界面及工作表流程 (4)1. Geometry界面 (4)2. Geometry工作表 (4)第三步,创建几何 (5)1. 创建组件 (6)2. 创建节点 (7)3. 创建线 (9)4. 创建面 (10)5. 创建从节点 (10)第四步,几何操作 (11)1. 平移、缩放及旋转 (11)2. 右键菜单操作 (11)3. 其他操作 (13)第五步,如何在柱坐标或球坐标下建立模态分析几何模型 (14)1. 坐标系的选择: (14)2. 关于整体坐标系和局部坐标系的说明 (16)3. 关于欧拉角的使用说明 (17)第六步,外部几何模型文件的导入 (18)第一步,软件启动¾通过Windows开始菜单¾通过桌面图标当安装LMS Test. Lab后,系统会在桌面上创建一个LMS Test. Lab文件夹,通过此文件夹也可启动软件。
通过打开Test lab 9A文件夹,双击Geometry按钮,作为一项独立的任务开始¾在任意Test lab的模块中,通过add ins…进行添加第二步,界面及工作表流程1. Geometry 界面2. Geometry 工作表节点工作表 ¾ 从节点 – 创建主/从自由度Geometry 工作表组成: ¾ 组件工作表 – 创建组件 ¾ – 创建节点¾ 线工作表 – 创建线 ¾ 面工作表 – 创建面第三步,创建几何几何坐标的输入有三种方式¾直角坐标¾柱坐标¾球坐标在部件工作表中可以选取不同的坐标输入方式下面以直角坐标输入方式为例创建几何¾ 1--定义组件名称; ¾ 2--定义对应组件颜色; ¾ 3--定义组件间的相对位置 ¾ 4--接受输入状态;¾ 5--在单击Accept Table 后文件列表中会显示相应的组件名如下图中1也可选取显示组件的位置position 应x,y,z); 选取显示组向(orientatio 另外,单击Table Options 后,弹出组件表设置对话框,在其中可进行组件表显示的设置,所示。
LMS b中文操作指南比利时LMS国际公司北京代表处2009年 6月内容¾ Desktop桌面操作¾ Geometry几何建模¾ Signature信号特征测试分析¾ Impact锤击法模态测试¾ Spectral Testing谱分析¾ Modal Analysis模态分析¾ Modification Prediction模态修改预测¾ ODS工作变形分析¾ OMA运行模态分析LMS b中文操作指南— Desktop桌面操作比利时LMS国际公司北京代表处2009年2月LMS b中文操作指南— Desktop桌面操作目录1.开始 (2)2.浏览数据 (3)3.显示数据 (4)3.1.测试的数据 (4)3.2.图形拷贝 (8)3.3.几何图形显示 (8)4.数据调理 (10)5.搜索功能 (11)6.Documentation 界面 (13)6.1.添加附件 (13)6.2.添加模板 (14)6.3.添加用户属性 (15)7.导入外部数据 (17)1. 开始¾ 启动 LMS b Desktop 从 开始菜单 Æ 所有程序 Æ LMS b 9AÆ Desktop 或者通过 桌面的快捷图标软件打开后,通过底部的导航条,可以看到两个界面:Documentation 和 Navigator 。
默认会打开一个空白的Project ,软件激活“Navigator”页面中的“Data Viewing”子页面。
可以浏览数据,图形显示数据。
页面在LMS b 资源管理器中可以看到Project ,另外还有:My Computer: 资源管理器最后一个项目。
可以浏览您电脑中的数据。
My Links: 此处可以链接常用Project 的快捷方式,首先从“My Computer”找到Project ,右键单击Copy ,然后到 “My Links”右键单击Paste as link 。
LMS b中文操作指南— OMA运行模态分析比利时LMS国际公司北京代表处2009年2月LMS b中文操作指南— OMA运行模态分析目录第一步,几何模型的建立 (3)1.更改软件界面设置及项目文件名: (3)2.建立几何模型 (3)第二步,工作模态分析 (4)1.进行互功率谱计算 (4)2.选择参与工作模态分析的互谱数据 (5)3.进行工作模态参数识别 (6)第三步,工作模态分析结果的验证 (7)第一步,几何模型的建立1.更改软件界面设置及项目文件名:¾打开 b Desktop软件界面:¾进入主菜单 Tools‐>Add‐ins界面,分别勾选 Geometry, Operational Modal Analysis, Operational PolyMax Modal Analysis三个 Add‐in。
¾进入主菜单 Tool‐>Workbook Configuration…,为使用方便,将导航栏顺序调整为如下形式:¾新建一个 Project,另存更改项目名,如 ”XXX OMA”。
主菜单 File‐>Save as,定义项目名,保存。
¾更改 Section的名称,在快捷键中选择 a|e,更改 Section的名称为某工况名称,如”run1”2.建立几何模型¾点击导航栏中的 Geometry界面:¾在 Components界面中建立一个子结构,如”Comp”;点击 Accept Table。
¾进入 Nodes界面,在 Name栏填入各测试点的序号或名称,如1,2,3,…,在 X(m),Y(m),Z(m)中分别填入各测试点所对应的几何坐标,点击 Accept Table;¾注意:”Component:Node”所组成的点标识必须与在Spectral或Signature测试中通道设置中所设定的 PointId 中的通道标识名相同,否则需要更改测试数据的PointId。
LMS b中文操作指南比利时LMS国际公司北京代表处2009年 6月内容¾ Desktop桌面操作¾ Geometry几何建模¾ Signature信号特征测试分析¾ Impact锤击法模态测试¾ Spectral Testing谱分析¾ Modal Analysis模态分析¾ Modification Prediction模态修改预测¾ ODS工作变形分析¾ OMA运行模态分析LMS b中文操作指南— Desktop桌面操作比利时LMS国际公司北京代表处2009年2月LMS b中文操作指南— Desktop桌面操作目录1.开始 (2)2.浏览数据 (3)3.显示数据 (4)3.1.测试的数据 (4)3.2.图形拷贝 (8)3.3.几何图形显示 (8)4.数据调理 (10)5.搜索功能 (11)6.Documentation 界面 (13)6.1.添加附件 (13)6.2.添加模板 (14)6.3.添加用户属性 (15)7.导入外部数据 (17)1. 开始¾ 启动 LMS b Desktop 从 开始菜单 Æ 所有程序 Æ LMS b 9AÆ Desktop 或者通过 桌面的快捷图标软件打开后,通过底部的导航条,可以看到两个界面:Documentation 和 Navigator 。
默认会打开一个空白的Project ,软件激活“Navigator”页面中的“Data Viewing”子页面。
可以浏览数据,图形显示数据。
页面在LMS b 资源管理器中可以看到Project ,另外还有:My Computer: 资源管理器最后一个项目。
可以浏览您电脑中的数据。
My Links: 此处可以链接常用Project 的快捷方式,首先从“My Computer”找到Project ,右键单击Copy ,然后到 “My Links”右键单击Paste as link 。
LMS b中文操作指南比利时LMS国际公司北京代表处2009年 6月内容¾ Desktop桌面操作¾ Geometry几何建模¾ Signature信号特征测试分析¾ Impact锤击法模态测试¾ Spectral Testing谱分析¾ Modal Analysis模态分析¾ Modification Prediction模态修改预测¾ ODS工作变形分析¾ OMA运行模态分析LMS b中文操作指南— Desktop桌面操作比利时LMS国际公司北京代表处2009年2月LMS b中文操作指南— Desktop桌面操作目录1.开始 (2)2.浏览数据 (3)3.显示数据 (4)3.1.测试的数据 (4)3.2.图形拷贝 (8)3.3.几何图形显示 (8)4.数据调理 (10)5.搜索功能 (11)6.Documentation 界面 (13)6.1.添加附件 (13)6.2.添加模板 (14)6.3.添加用户属性 (15)7.导入外部数据 (17)1. 开始¾ 启动 LMS b Desktop 从 开始菜单 Æ 所有程序 Æ LMS b 9AÆ Desktop 或者通过 桌面的快捷图标软件打开后,通过底部的导航条,可以看到两个界面:Documentation 和 Navigator 。
默认会打开一个空白的Project ,软件激活“Navigator”页面中的“Data Viewing”子页面。
可以浏览数据,图形显示数据。
页面在LMS b 资源管理器中可以看到Project ,另外还有:My Computer: 资源管理器最后一个项目。
可以浏览您电脑中的数据。
My Links: 此处可以链接常用Project 的快捷方式,首先从“My Computer”找到Project ,右键单击Copy ,然后到 “My Links”右键单击Paste as link 。
LMS公司推出LMS Test Lab第七版LMS公司推出LMS TestLab第七版LMS b第七版的推出是一个新的里程碑,提高了振动噪声试验效率。
LMS b第七版集成了600多项新功能和改进,适用于各种试验任务。
此外,LMSb第七版还新增了移动测试功能,为用户提供适用于车内或现场试验的最佳便携性,以及直观的系统交互性。
LMS b第七版,与紧凑可靠的LMS SCADAS Mobile前端完美结合,可支持单人数据采集,同时提供灵活的快捷键和友好的操作界面。
新版本另一项特点是提供世界上首个自动化模态分析解决方案,具有最佳的模态一致性和最短的分析时间。
自动化模态参数选择(AMPS)可以在10分钟内建立非常复杂或高阻尼结构的高质量模态模型,而且不受操作者人为影响。
LMS b第七版利用创新性技术和工作流程驱动的方法,提高了从标定试验到系统级问题诊断整个开发流程中每个阶段的工作效率。
LMS b第七版新功能:? ? ? ? ? ? ?新的移动测试用户界面,为车载试验提供最理想的便携性完全支持LMS SCADAS Mobile,适用于谱和实时特征信号采集,锤击模态试验和实时倍频程试验可以灵活选择在线、嵌入和离线三种处理方式离线RPM提取,如果没有测量转速信号也能够精确捕捉RPM信号,用于振动或声学阶次分析自动化模态参数选择(AMPS)――精确、可靠、快速,且不受操作者影响稳态和瞬态阵列――用于声源定位――形成了以特有的声聚焦为核心的一整套声源定位方法冲击响应合成和试验序列自动化――支持无人监控的长时间的且具有多种振动控制的鉴定试验LMS b Rotating Machinery旋转机械分析第七版――专为移动测试设计的用户界面在驾驶员位置进行试验为了有效地进行道路试验,试验操作者需要能够单手操作的解决方案,同时能够简单地实时监测试验进度和状态信息。
为了满足这种特定的车内测试需求,LMS b第七版新推出了特定的用户界面,并与专为现场测试而开发的LMS SCADAS Mobile数采前端结合进行试验。
LMS b 在超重训练设备模态分析试验中的运用章 剑 王 翔 王吉成中国直升机设计研究所 九室 33001摘要:本文介绍了运用Lms b 软件的模态分析为试验手段来诊断航天员超重训练设备所存在的故障,通过模态分析试验研究表明系统刚度变化对系统自振频率的影响,动力系统轴承齿轮间摩损的间隙以及环境因数如地基沉降对系统频率的影响等。
关键词: Lms b 、超重训练设备、模态分析、刚度 1 前言航天员超重训练设备是一台以大型载人离心机为主体,能够模拟飞船上升段和返回段超重过载环境以及其他超重过载环境的综合训练设备。
为保障超重训练设备各系统均处于良好协调运转状态,开展了设备全面诊断维修、系统升级和保养等工作。
通过研究超重训练设备在不同条件下受到激励作用后的共振情况,对航天员超重训练设备在维修前进行了模态试验,通过试验结果分析找出所存在的故障,为超重训练设备结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计维修提供了依据。
经过维修后再次对航天员超重训练设备进行模态分析与关键旋转部件进行振动检测分析,将维修前后的动力学特性数据进行分析比较,评价维修后超重训练设备的动力特性。
2 试验模态分析的基本原理模态分析的理论基础是在机械阻抗与导纳的概念上发展起来的,近十多年来,模态分析理论吸取了振动理论、信号分析、数据处理、数理统计及自动控制理论中的有关内容,结合自身内容的发展,形成了一套独特的理论,为模态分析即参数识别技术的发展奠定了理论基础。
自动控制理论中的传递函数(或频率响应函数)概念的引入,对模态分析理论的发展起了很大的推进作用。
通过传递函数,我们可以得到机械结构振动的固有频率以及机械结构各部分的响应变形,而固有频率和振型一起构成机械的振动模态。
人们把通过测量求取振动模态并由此进一步分析机械动态特性的方法称为模态分析。
一般结构系统可以离散为一种具有N 个自由度的线弹系统,其运动微分方程为:[]{}[]{}[]{}{()}M xC x K x f t ++=′′′′′′ٛٛٛٛٛٛ (1) 式中质量、阻尼、刚度矩阵[M]、[C]、[K]为实对称矩阵,[M]正定、[C]、[K]正定或半正定。