苏科版八年级数学上册 第四章 实数 单元测试题
- 格式:docx
- 大小:36.36 KB
- 文档页数:4
苏科版八年级数学上册《第四章实数》单元测试卷带答案1. 9 的平方根是 ( )A . 3B . ±3C . 81D . ±812. 计算 √4 的值是 ( )A . ±√2B . √2C . ±2D . 2 3. 下列结论中,正确的是 ( )A . 64 的立方根是 ±4B . −18 没有立方根C .立方根等于本身的数是 0D . √−273=−√2734. 下列说法中,正确的是 ( )A .带根号的数都是无理数B .无限小数都是无理数C .无理数是无限不循环小数D .无理数是开方开不尽的数5. 边长是 m 的正方形面积是 7.如图,在数轴上画出表示 m 的点,是在下列两个字母之间 ( )A . C 与 DB . A 与 BC . A 与 CD . B 与 C6. 已知 a 2=25,∣b∣=3,则 a +b 所有可能的值为 ( )A . 8B . 8 或 2C . 8 或 −2D . ±8 或 ±27. 化简:√16= ,√183= .8. 小华体重为 48.96 kg ,将这个数据精确到十分位取近似数为 kg .9. 2−√3 的相反数是 ,绝对值是 .10. 在实数 227,√3,√83,√4,π3,−0.1010010001⋯(每两个 1 之间 0 的个数逐次增加),0.1 中,无理数有 个.11. 如果梯子的底端离建筑物 1 m ,那么 6 m 长的梯子的顶端到达建筑物的高度是 m .12.已知x2=2,则x=;已知√y3=−2,则y=.13.求下列各式中的x.(1) 4x2=81.(2) (x+1)3−27=0.14.比较下列每组数的大小:(1) √5与2.5.(2) √−253与−3.(3) √5−12与12.15.如图,在数轴上分别画出√5,−√13所对应的点.16.如图,在正方形网格中,每个小正方形边长都是1,每个小格的顶点叫作格点.以格点为顶点,分别按下列要求画三角形:(1) 在图①中画一个三角形,使它的三边长都是有理数;(2) 在图②中画一个三角形,使它的三边长分别是3,2√2,√5.17.一梯子长为25m,斜靠在一堵墙上,梯子底端B离墙7m(如图).如果梯子的顶端A下滑9m,那么梯子的底部在水平方向上滑动多少米?18.阅读理解:∵12<2<22∴1<√2<2即√2大于1,且√2小于2.又∵1.42=1.96,1.52=2.25∴√2介于1.4与1.5之间.1.4是√2的近似值,且它小于√2,称1.4为√2的不足近似值,1.4和√2的误差不超过0.1.按照上面的方法,求:(1) √3的不足近似值,且误差不超过0.1;3的不足近似值,且误差不超过0.1.(2) √519.如图,在△ABC中AB=AC,AD⊥BC,垂足为D,且AD=BC=4.把△ABC沿AD剪开成两个三角形,在平面上把这两个三角形拼成一个四边形,你能拼出所有的不同形状的四边形吗?画出示意图,分别求出所拼四边形的对角线长.参考答案1. 【答案】B2. 【答案】D3. 【答案】D4. 【答案】C5. 【答案】A6. 【答案】D7. 【答案】4;128. 【答案】49.09. 【答案】√3−2;2−√310. 【答案】311. 【答案】√3512. 【答案】±√2;−813. 【答案】(1) x=±4.5.(2) x=2.14. 【答案】(1) √5<2.5.(2) √−253>−3.(3) √5−12>12.15. 【答案】画图略.16. 【答案】(1) 画图略(画法不唯一)(2) 画图略17. 【答案】13m.18. 【答案】(1) 1.7(2) 1.719. 【答案】2√52√544√28√552√522√17.。
苏科版八年级上册数学第四章实数含答案一、单选题(共15题,共计45分)1、实数a,b,c,d在数轴上的对应点的位置如图所示.若b+d=0,则下列结论中正确是()A.b+c>0B. >1C.ad>bcD.|a|>|d|2、如图所示:数轴上点A所表示的数为a,则a的值是()A. +1B.- +1C. -1D.3、4的平方根是( )A.2B.16C.±2D.±164、实数在数轴上的对应点位置如图所示,把按照从小到大的顺序排列,正确的是( ).A. B. C. D.5、下列计算正确的是()A.(﹣8)﹣8=0B.3+ =3C.(﹣3b)2=9b 2D.a 6÷a 2=a 36、下列对实数的说法其中错误的是()A.实数与数轴上的点一一对应B.两个无理数的和不一定是无理数C.负数没有平方根也没有立方根D.算术平方根等于它本身的数只有0或17、如果一个实数的平方根与它的立方根相等,则这个数是().A. 和B.正实数C.D.8、下列说法中,正确的是( )A.-(-3) 2=9B.|-3|=-3C. =±3D. =9、如图,数轴上A,B两点分别对应实数a丶b,则下列结论正确的是().A.a+b>0B.ab>0C.a-b>0D.10、的平方根是()A. B. C. D.11、下列计算正确的是()A. B. C. D.12、用四舍五入法,把精确到百分位,取得的近似数是()A. B. C. D.13、已知x是整数,且满足,则x可能的值共有( )A.3个B.6个C.49个D.99个14、下列从左到右的变形中,正确的是()A. =±9B.﹣=﹣0.6C. =﹣10D. =﹣15、有理数在数轴上的位置如图所示,下列选项错误的是()A. B. C. D.二、填空题(共10题,共计30分)16、估计与0.5的大小关系是:________(填“>”、“<”或“=”).17、将 0.249 用四舍五入法保留到十分位的结果是________.18、 8的平方根是________,8的立方根是________.19、月球沿着定的轨道围绕地球运动,某一时刻它与地球相距106500千米,用科学记数法表这个这个数并保留三个有效数字为________千米。
2022-2023学年八年级数学上册第四章《实数》试题卷一、单选题1( )A .B .±9C .±3D .92.下列等式中,正确的是( )A .34=B 34=C .38=±D 34=± 3.下列语句中正确的是( )A .16的平方根是4B .﹣16的平方根是4C .16的算术平方根是±4D .16的算术平方根是4 4.在下列各组数中,互为相反数的一组是( )A .2-B .-2与1-2C .-D .25.下列说法:①无限小数都是无理数;②无理数都是带根号的数;③负数没有立方根;的平方根是±8;⑤无理数减去任意一个有理数仍为无理数.其中正确的有( )A .0个B .1个C .2个D .3个 6.实数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是( )A .a 2>-B .b 1<C .a b ->D .a b <7.实数﹣3,3,0,中最大的数是( )A .﹣3B .3C .0 D8.为落实“双减”政策,鼓楼区教师发展中心开设“鼓老师讲作 业”线上直播课.开播首月该栏目在线点击次数已达66799次,用四舍五入法将66799精确到千位所得到的近似数是( )A .36.710⨯B .46.710⨯C .36.7010⨯D .46.7010⨯9.某市年财政收入取得重大突破,地方公共财政收入用四舍五人法取近似值后为35.29亿元,那么这个数值( )A .精确到十分位B .精确到百分位C .精确到千万位D .精确到百万位10.如图,在数轴上点B 表示的数为1,在点B 的右侧作一个边长为1的正方形BACD ,将对角线BC 绕点B 逆时针转动,使对角线的另一端落在数轴负半轴的点M 处,则点M 表示的数是( )A B +1 C .1﹣ D .﹣二、填空题11.如果14x +是的平方根,那么x = .12.已知一个正数的两个平方根是32x +和520x -,则这个数是 .13的相反数为 ,倒数为 ,绝对值为 .14.可以作为“两个无理数的和仍为无理数”的反例的是 .151 3(填“>”、“<”或“=”).三、计算题16.计算:12011|7|(π 3.14)43--⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭. 17.计算:)1021112-⎛⎫-+ ⎪⎝⎭18.计算 ()31-+.四、解答题19.将-π,0,2 ,-3.15,3.5用“>”连接.20.把下列各数填入相应的集合圈里(填序号)⑴﹣30 ⑴ ⑴3.14 ⑴ 225 ⑴0 ⑴+20 ⑴﹣2.6 ⑴ ⑴ -2π⑴ 0.05 ;⑴﹣0.5252252225…(每两个5之间依次增加1个2) ⑴ ⑴21.若 x y + 是9的算术平方根, x y - 的立方根是 2- ,求 22x y - 的值.22.已知a 的平方根是±3,b -1的算术平方根是2,求a -2b 的立方根.23.已知实数 a 、 b 、 c 在数轴上的对应点为 A 、 B 、 C ,如图所示:化简: b a c b ----.24.甲同学用如图所示的方法作出C OAB 中,90OAB ∠=,2OA =,3AB =,且点O ,A ,C 在同一数轴上,OB OC =.仿照甲同学的做法,在如图所示的数轴上描出表示F .25.一个篮球的体积为39850cm ,求该篮球的半径r (π取3.14,结果精确到0.1cm ).答案解析部分1.【答案】A【解析】3=.故答案为:A.3=,再求出3的平方根即可.2.【答案】B【解析】【解答】解:34=±,故A、C错误;34=,故B正确,D错误;故答案为:B.【分析】根据平方根、算术平方根逐一计算,并判断即可.3.【答案】D【解析】【解答】解:∵16的平方根是±4,16的算术平方根是4,负数没有平方根,∴选项D正确.故答案为:D.【分析】一个正数x2=a(a>0)则这个正数x就是a的算术平方根,一个数x2=a(a>0)则这个数x就是a的平方根;正数有两个平方根,这两个平方根互为相反数,0的平方根是0,负数没有平方根,据此一一判断得出答案.4.【答案】C【解析】【解答】解:A2=-,故本选项不符合题意;B、-2与2是相反数,故本选项不符合题意;C、-=是相反数,故本选项符合题意;D2=,故本选项不符合题意故答案为:C.【分析】利用二次根式的性质、立方根、绝对值的性质将各选项中能化简的数先化简,再根据只有符号不同的数是互为相反数,可得答案.5.【答案】B【解析】【解答】解:根据无理数的定义可知:①无限小数都是无理数;说法错误;②无理数都是带根号的数;说法错误;③负数没有立方根;负数有立方根,故说法错误;=8的平方根是±,故说法错误;⑤无理数减去任意一个有理数仍为无理数.说法正确;正确说法有1个.故答案为:B.【分析】无限不循环小数叫做无理数,据此判断①②;每一个数都有立方根,据此判断③;根据平方根的概念可判断④;根据无理数的认识以及减法法则可判断⑤.6.【答案】C【解析】【解答】解:根据数轴得:a b <,a b >,故C 选项符合题意,A ,B ,D 选项不符合题意. 故答案为:C.【分析】根据数轴可得a<-2<0<1<b<2且|a|>|b|,据此判断.7.【答案】B【解析】【解答】解:根据题意得:3>>0>−3, 则实数−3,3,0, 中最大的数是3, 故答案为:B.【分析】利用实数的大小比较:正数都大于0和负数,观察可得答案.8.【答案】B【解析】【解答】解:66799=6.6799×104,精确到千位为46.710⨯.故答案为:B.【分析】利用科学记数法表示出此数,再利用四舍五入法将此数精确到千位.9.【答案】D【解析】【解答】∵35.29亿末尾数字9是百万位,∴35.29亿精确到百万位;故答案为:D .【分析】根据近似数的定义及四舍五入的方法求解即可。
苏科版八年级上册数学第四章实数含答案一、单选题(共15题,共计45分)1、实数a、b在数轴上的位置如图所示,下列式子错误的是()A.a<bB.|a|>|b|C.-a<-bD.b-a>02、下列各式中,正确的是()A. =±4B.±=4C. =-3D. =-43、的算术平方根是()A.3B.C.±3D.±4、下列说法正确的是( )A.近似数3.58精确到十分位B.近似数1000万精确到个位C.近似数20.16万精确到0.01D.近似数2.77×10 4精确到百位5、数3.949×105精确到万位约()A.4.0万B.39万C.3.95×10 5D.4.0×10 56、下列运算正确的是()A. ×=B. •=1C.﹣2x 2﹣3x+5=(1﹣x)(2x+5)D.(﹣a)7÷a 3=a 47、下列说法正确的是()A.0.600有4个有效数字B.5.7万精确到0.1C.6.610精确到千分位D.2.708×10 4有5个有效数字8、81的平方根为()A.3B.±3C.9D.±99、下列说法:①有理数与数轴上的点一一对应;②1.4×104精确到千位;③两个无理数的积一定为无理数;④立方和立方根都等于它本身的数是0或±1.其中正确的是()A.①②B.①③C.③④D.②④10、下列运算中错误的有()①=;②;③;④;⑤A.1个B.2个C.3个D.4个11、16的平方根是()A.±4B.±2C.4D.﹣412、下列说法中错误的是()A.近似数0.0304精确到万分位,有三个有效数字3、0、4B.近似数894.5精确到十分位,有四个有效数字8、9、4、5C.近似数0.030精确到千分位,有两个有效数字3、0D.近似数3.05×10 精确到个位,有五个有效数字3、0、5、0、013、下列运算正确的是()A. =±6B. =﹣4C. =D. =314、下列各对近似数中,精确度一样的是( ).A. 与B. 与C.5百万与万D.与15、9的算术平方根是()A.3B.﹣3C.±3D.9二、填空题(共10题,共计30分)16、写出一个比大的负无理数________.17、已知有理数,满足:,且,则________.18、的算术平方根是________,=________.19、比较两数的大小:________ .(用“>”、“<”、“=”填空)20、计算(π-1)0+ =________.21、的平方根是________, —125的立方根是________.22、把下列各数填在相应的表示集合的括号内.-1,- ,,0,,-0.303303330…,1.7,-(-2),2π.整数集合:{________}正分数集合:{________}无理数集合:{________}23、在﹣1,,0,-π,﹣3这五个数中,最小的数是________.24、如果,则________;如果,则________.25、如右图所示AB=AC,则C表示的数为________.三、解答题(共5题,共计25分)26、计算:+()﹣1﹣2cos60°+(2﹣π)0.27、例如∵<<即2<<3,∴的整数部分为2,小数部分为﹣2,如果整数部分为a,的小数部分为b,求a+b+5的值.28、把数1 ,-2,表示在数轴上,并用“<”将它们从小到大连接起来.29、(把下列各数序号分别填在表示它所在的集合里:①-5,②-,③2004,④-(-4),⑤,⑥-|-13|,⑦-0.36,⑧0,⑨,⑩正数集合{……};整数集合{……};分数集合{ ……};30、如图,在长和宽分别是a、b的长方纸片的四个角都剪去一个边长为x的正方形,当a=8,b=6,且剪去部分的面积等于剩余部分的面积的时,求正方形的边长x的值.参考答案一、单选题(共15题,共计45分)1、C2、C3、B4、D5、B6、C7、C8、D10、C11、A12、D13、C14、B15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。
八年级上册数学单元测试卷-第四章实数-苏科版(含答案)一、单选题(共15题,共计45分)1、下列运算正确的是()A.3 ﹣1=﹣3B. =±3C.(ab 2)3=a 3b 6D.a 6÷a 2=a 32、在:-1,1,0,-2四个实数中,最大的是()A.-1B.1C.0D.-23、下列说法中,正确的是( )A. 的算术平方根是B. 的立方根是C.任意一个有理数都有两个平方根D.绝对值是的实数是4、9的平方根为()A.3B.-3C.±3D.±5、若数a的近似数为1.6,则下列结论正确的是()A.a=1.6B.1.55≤a<1.65C.1.55<a≤1.56D.1.55≤a<1.566、数学课上老师给出了下面的数据,请问哪一个数据是精确的()A.2003年美国发动的伊拉g战争每月耗费约40亿美元B.地球上煤储量为5万亿吨左右C.人的大脑约有1×10 10个细胞D.某次期中考试中小颖的数学成绩是98分7、-27的立方根与的平方根之和是()A.0B.-6C.0或-6D.68、如图为洪涛同学的小测卷,他的得分应是A.25分B.50分C.75分D.100分9、实数在数轴上的位置如图所示,下列关系式错误的是()A. B. C. D.10、下列各式中正确的是A. B. C. D.11、下列运算正确的()A.(﹣3)2=﹣9B. =2C.2 ﹣3=8D.π0=012、在实数,,,0,中,有理数有()A.1个B.2个C.3个D.4个13、下列说法中,错误的是()A.4的算术平方根是2B. 的平方根是±3C.8的立方根是±2 D.﹣1的立方根等于﹣114、已知=−1,=1,(c−)2=0,则abc的值为()A.0B.−1C.−D.15、如图,长方形放在数轴上,,,以为圆心,长为半径画弧交数轴于点,则点表示的数为( )A. B. C. D.二、填空题(共10题,共计30分)16、计算:×2﹣2﹣| tan30°﹣3|+20180=________.17、试举一例,说明“两个无理数的和仍是无理数”是错误的:________.18、比较大小:________ .(填“”“”或“”)19、写出一个比0大,且比2小的无理数:________.20、已知实数x的两个平方根分别为2a+1和3-4a,实数y的立方根为-a,则的值为________.21、计算:2﹣1×+2cos30°=________.22、计算:________.23、144的平方根是________,﹣125的立方根是________.24、用“※”定义新运算:对于任意实数a、b,都有a※b=2a2+b.例如3※4=2×32+4=22,那么※2=________.25、某种生物细胞的直径约为0.000056米,用科学记数法表示为________米.三、解答题(共5题,共计25分)26、计算: |﹣3|+ tan30°﹣﹣20200﹣.27、若3是的平方根,是的立方根,求的平方根.28、已知:a、b在数轴上如图所示,化简.29、已知是的算术平方根,是的立方根,试求的立方根.30、已知(a+3)2+ =0,求a﹣b的立方根.参考答案一、单选题(共15题,共计45分)1、C2、B3、B4、C5、B6、D7、C8、D9、B10、D12、C13、C14、C15、A二、填空题(共10题,共计30分)17、18、19、20、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、30、。
苏科版八年级上册数学第四章实数含答案一、单选题(共15题,共计45分)1、下列说法中正确的个数是()( 1 )用四舍五入法把数精确到百分位,得到的近似数是;( 2 )多项式是四次三项式;( 3 )单项式的系数为;( 4 )若,则.A. 个B. 个C. 个D. 个2、下列说法错误的是()A. 的平方根是±4B. 与是同类二次根式C. -1与+1互为倒数 D.3、下列说法正确的是()A.非负实数就是指一切正数B.数轴上任意一点都对应一个有理数C.若是实数,则a为任意实数D.若|a|= -a,则a<04、(﹣2)2的算术平方根是()A.2B.±2C.﹣2D.5、比较2,,的大小,正确的是()A.2<<B.2<<C. <2<D. <<26、如图,以数轴的单位长度线段为边作一个正方形,以表示数2的点为圆心,正方形对角线长为半径画弧,交数轴于点A,则点A表示的数是( )A. B.2 C.1 D.1+7、如图,在数轴上,AB=AC,A,B两点对应的实数分别是和﹣1,则点C对应的实数是()A.2B.2 ﹣2C. +1D.2 +18、下列四个说法中,正确的是( )A.近似数2.340有四个效数字B.多项式a 2b-3b+1是二次三项式 C.42°角的余角等于58° D.一元二次方程x 2-5=0没有实数根9、下列说法正确的是()A.0的立方根是0B.0.25的算术平方根是-0.5C.-1000的立方根是10D. 的算术平方根是10、已知=6,y3=-8,且,则=()A.-8B.-4C.12D.-1211、下列说法正确是()A. 是0.5的平方根B.正数有两个平方根,且这两个平方根之和等于0 C. 的平方根是7 D.负数有一个平方根12、对于由四舍五入法得到的近似数8.8×104,下列说法正确的是()A.精确到十分位B.精确到个位C.精确到千位D.精确到万位13、下列四个数中的负数是()A.﹣2 2B.C.(﹣2)2D.|﹣2|14、下列命题中①9的算术平方根是3 ②﹣8的立方根为2 ③平方根等于它本身的数有0和1 ④﹣8没有平方根正确的有()A.一个B.两个C.三个D.四个15、下列说法正确的是()A.0的平方根是0B.1的平方根是1C.-1的平方根是-1 D.(-1)2的平方根是-1二、填空题(共10题,共计30分)16、若有理数a和b在数轴上所表示的点分别在原点的右边和左边,则=________.17、计算的结果是________.18、阅读理解:引入新数i,新数i满足分配律、结合律、交换律,已知i2=﹣1,那么(1+i)•(1﹣i)的平方根是________.19、计算:=________.20、若=3,则a= ________21、这三个数、、中,最小的数是________.22、若单项式与是同类项,则的值是________.23、比2大比3小的无理数是________.24、在数轴上表示实数a的点如图所示,化简+|a﹣2|的结果为________.25、一个正方体的体积变为原来的27倍,则它的棱长变为原来的________倍。
苏科版八年级上册数学第四章实数含答案一、单选题(共15题,共计45分)1、下列计算正确的是().A. B. C. D.2、在实数中,最小的数是()A. B.0 C. D.13、在(﹣)0,,0,,0.010010001…,﹣0.333…,,3.1415,2.010101…(相邻两个1之间有1个0)中,无理数有()A.1个B.2个C.3个D.4个4、给出四个数0,- ,,-1,其中最小的数是( )A.-1B.-C.0D.5、小明在作业本上做了4道题①=﹣5;②±=4;③=9;④=﹣6,他做对的题有( )A.1道B.2道C.3道D.4道6、下列运算中正确的是()A. =±4B. =﹣10C. =﹣3D.| ﹣3|=3﹣7、8的立方根是()A. 4B.C.2D.8、近似数0.0386精确到________位有________个有效数字.()A.千分,3B.千分,4C.万分,3D.万分,49、用四舍五入法按要求对下列各数取近似值,其中描述错误的是()A.0.67596(精确到0.01)≈0.68B.近似数169.8精确到个位,结果可表示为170C.近似数是精确到百分位D.近似数0.05049精确到0.1,结果可表示为0.110、由四舍五入法得到的近似数2.370,它的精确度是精确到()A.十分位B.百分位C.千分位D.个位11、有一个数值转换器,原理如下:当输入的x=64时,输出的y等于()A.2B.8C.3D.212、5.24万精确到()A.十分位B.百分位C.万位D.百位13、下列说法中,不正确的是()A.8的立方根是2B.-8的立方根是-2C.0的立方根是0 D.125的立方根是±514、用科学记数法表示﹣0.0000064记为()A.﹣64×10 ﹣7B.﹣0.64×10 ﹣4C.﹣6.4×10 ﹣6D.﹣640×10 ﹣815、①0的相反数是0;②0的倒数是0;③一个数的绝对值不可能是负数;④﹣(﹣3.8)的相反数是3.8;⑤整数包括正整数和负整数;⑥0是最小的有理数.上述说法中,符合题意的有()A.1个B.2个C.3个D.4个二、填空题(共10题,共计30分)16、计算:| ﹣4|﹣()﹣2=________.17、已知一个数的平方根是和,则这个数的立方根是________.18、把5087精确到百位,这个近似数是________.19、的算术平方根是________;-64的立方根是________.20、计算:________.21、如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位.那么和我们所学的实数对应起来就叫做复数,表示为a+bi(a,b为实数),a叫这个复数的实部,b叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.如:(2+i)+(3﹣4i)=(2+3)+(1﹣4)i=5﹣3i,(5+i)(3﹣4i)=5×3+5×(﹣4i)+i×3+i×(﹣4i)=15﹣20i+3i﹣4i2=19﹣17i请根据以上内容的理解,利用以前学习的有关知识将(1+2i)(1﹣3i)化简结果为________.22、 =________.23、2cos30°-= ________24、如图,长方形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,AC 的长为半径作弧交数轴于点M,则点M表示的数为________.25、如图,数轴上点A表示的数为a,化简:=________三、解答题(共5题,共计25分)26、(1)计算:|1﹣|+()﹣2﹣+;(2)解方程:=1﹣.27、已知A= 是3x﹣7的立方根,而B= 是A的相反数,求x2﹣y的立方根.28、化简求值:(),其中a=2+ .29、已知:﹣是a的一个平方根,b是平方根等于本身的数,c是的整数部分,求的平方根.30、已知:a、b在数轴上如图所示,化简.参考答案一、单选题(共15题,共计45分)1、B2、A3、B4、B5、A6、D7、C8、C9、C10、C11、D12、D13、D14、C15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。
《第4章实数》一、选择题1.25的平方根是()A.5 B.﹣5 C.± D.±52.下列语句正确的是()A.9的平方根是﹣3 B.﹣7是﹣49的平方根C.﹣15是225的平方根D.(﹣4)2的平方根是﹣43.下列说法中,不正确的是()A.平方根等于本身的数只有零B.非负数的算术平方根仍是非负数C.任何一个数都有立方根,且是唯一的D.一个数的立方根总比平方根小4.若一个数的算术平方根与它的立方根的值相同,则这个数是()A.1 B.0和1 C.0 D.非负数5.估计的值()A.在3到4之间 B.在4到5之间 C.在5到6之间 D.在6到7之间6.下列各数精确到万分位的是()A.0.0720 B.0.072 C.0.72 D.0.1767.有下列说法:(1)无理数就是开方开不尽的数;(2)无理数是无限不循环小数;(3)无理数包括正无理数、零、负无理数;(4)无理数都可以用数轴上的点来表示.其中正确的说法的个数是()A.1 B.2 C.3 D.48.已知:是整数,则满足条件的最小正整数n为()A.2 B.3 C.4 D.59.如图所示,“数轴上的点并不都表示有理数,如图中数轴上的点P所表示的数是”,这种说明问题的方式体现的数学思想方法叫做()A.代入法B.换元法C.数形结合 D.分类讨论10.在算式()□()的□中填上运算符号,使结果最大,这个运算符号是()A.加号 B.减号 C.乘号 D.除号二、填空题11.计算:±= ;(﹣)2= .12.计算:= ;= .13.的倒数是,()3的相反数是.14.写出一个介于4和5之间的无理数:.15.π=3.1415926…精确到千分位的近似数是;0.43万精确到千位表示为.16.﹣的相反数的绝对值是.17.已知a、b为两个连续整数,且a<<b,则a+b= .18.已知实数x,y满足+|x﹣2y+2|=0,则2x﹣y的平方根为.三、解答题19.将下列各数分别填在各集合的大括号里:,,0.3,,3.414,,,﹣,﹣,,0.自然数集合:{ …};分数集合:{ …};无理数集合:{ …};实数集合:{ …}.20.计算:(1)+﹣()2;(2)+|1﹣|﹣;(3)﹣﹣|﹣4|﹣(﹣1)0.21.一个正方体,它的体积是棱长为3的正方体体积的8倍,这个正方体的棱长是多少?22.求下列各式中的未知数x的值:(1)2x2﹣8=0;(2)(x+1)3=﹣64;(3)25x2﹣49=0;(4)﹣(x﹣3)3=8.23.已知2a﹣1的平方根是±3,3a+b﹣1的平方根是±4,c是的整数部分,求a+2b+c的算术平方根.24.在5×5的正方形方格中,每个小正方形的边长都为1,请在下图给定的网格中按下列要求画出图形.(1)从点A出发,画一条线段AB,使它的另一个端点B在格点(小正方形的每个顶点都称为格点)上,且长度为2.(2)画出所有以(1)中AB为边的等腰三角形,使另一个顶点在格点上,且另两边的长度都是无理数,并写出所有满足条件的三角形.《第4章实数》参考答案与试题解析一、选择题1.25的平方根是()A.5 B.﹣5 C.± D.±5【考点】平方根.【分析】根据平方根的定义和性质即可得出答案.【解答】解:∵(±5)2=25,∴25的平方根是±5.故选:D.【点评】本题主要考查的是平方根的定义,掌握平方根的定义是解题的关键.2.下列语句正确的是()A.9的平方根是﹣3 B.﹣7是﹣49的平方根C.﹣15是225的平方根D.(﹣4)2的平方根是﹣4【考点】平方根.【专题】计算题.【分析】根据一个正数的平方根有两个,且互为相反数可对A、D进行判断;根据负数没有平方根可对B进行判断;根据平方根的定义对C进行判断.【解答】解:A、9的平方根是±3,所以A选项错误;B、﹣49没有平方根,所以B选项错误;C、﹣15是225的平方根,所以C选项正确;D、(﹣4)2的平方根为±4,所以D选项错误.故选C.【点评】本题考查了平方根的定义:若一个数的平方等于a,那么这个数叫a的平方根,记作±(a ≥0).3.下列说法中,不正确的是()A.平方根等于本身的数只有零B.非负数的算术平方根仍是非负数C.任何一个数都有立方根,且是唯一的D.一个数的立方根总比平方根小【考点】立方根;平方根;算术平方根.【专题】计算题.【分析】利用立方根,平方根,以及算术平方根定义判断即可.【解答】解:A、平方根等于本身的数只有零,正确;B、非负数的算术平方根仍是非负数,正确;C、任何一个数都有立方根,且是唯一的,正确;D、一个数的立方根不一定比平方根小,错误.故选D.【点评】此题考查了立方根,平方根,以及算术平方根,熟练掌握各自的定义是解本题的关键.4.若一个数的算术平方根与它的立方根的值相同,则这个数是()A.1 B.0和1 C.0 D.非负数【考点】立方根;算术平方根.【分析】根据立方根和平方根的性质可知,立方根等于它本身的实数0、1或﹣1,算术平方根等于它本身的实数是0或1,由此即可解决问题.【解答】解:∵立方根等于它本身的实数0、1或﹣1;算术平方根等于它本身的数是0和1.∴一个数的算术平方根与它的立方根的值相同的是0和1.故选B.【点评】此题主要考查了立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,0的立方根是0.算术平方根是非负数.5.估计的值()A.在3到4之间 B.在4到5之间 C.在5到6之间 D.在6到7之间【考点】估算无理数的大小.【专题】计算题.【分析】应先找到所求的无理数在哪两个和它接近的整数之间,然后判断出所求的无理数的范围.【解答】解:∵5<<6,∴在5到6之间.故选:C.【点评】此题主要考查了估算无理数的那就,“夹逼法”是估算的一般方法,也是常用方法.6.下列各数精确到万分位的是()A.0.0720 B.0.072 C.0.72 D.0.176【考点】近似数和有效数字.【分析】根据近似数的精确度进行判断.【解答】解:0.0720精确到万分位;0.072精确到千分位;0.72精确到百分位;0.176精确到千分位.故选A.【点评】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.7.有下列说法:(1)无理数就是开方开不尽的数;(2)无理数是无限不循环小数;(3)无理数包括正无理数、零、负无理数;(4)无理数都可以用数轴上的点来表示.其中正确的说法的个数是()A.1 B.2 C.3 D.4【考点】无理数.【分析】根据无理数的定义以及实数的分类即可作出判断.【解答】解:(1)π是无理数,而不是开方开不尽的数,则命题错误;(2)无理数就是无限不循环小数,则命题正确;(3)0是有理数,不是无理数,则命题错误;(4)正确;故选B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.8.已知:是整数,则满足条件的最小正整数n为()A.2 B.3 C.4 D.5【考点】二次根式的定义.【分析】因为是整数,且==2,则5n是完全平方数,满足条件的最小正整数n为5.【解答】解:∵==2,且是整数;∴2是整数,即5n是完全平方数;∴n的最小正整数值为5.故本题选D.【点评】主要考查了乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数.二次根式的运算法则:乘法法则=.除法法则=.解题关键是分解成一个完全平方数和一个代数式的积的形式.9.如图所示,“数轴上的点并不都表示有理数,如图中数轴上的点P所表示的数是”,这种说明问题的方式体现的数学思想方法叫做()A.代入法B.换元法C.数形结合 D.分类讨论【考点】实数与数轴.【分析】本题利用实数与数轴上的点对应关系结合数学思想即可求解答.【解答】解:如图在数轴上表示点P,这是利用直观的图形﹣﹣数轴表示抽象的无理数,∴说明问题的方式体现的数学思想方法叫做数形结合,∴A,B,D的说法显然不正确.故选C.【点评】本题考查的是数学思想方法,做这类题可用逐个排除法,显然A,B,D所说方法不对.10.在算式()□()的□中填上运算符号,使结果最大,这个运算符号是()A.加号 B.减号 C.乘号 D.除号【考点】实数的运算;实数大小比较.【专题】计算题.【分析】分别把加、减、乘、除四个符号填入括号,计算出结果即可.【解答】解:当填入加号时:()+()=﹣;当填入减号时:()﹣()=0;当填入乘号时:()×()=;当填入除号时:()÷()=1.∵1>>0>﹣,∴这个运算符号是除号.故选D.【点评】本题考查的是实数的运算及实数的大小比较,根据题意得出填入加、减、乘、除四个符号的得数是解答此题的关键.二、填空题11.计算:±= ±3 ;(﹣)2= 3 .【考点】实数的运算;平方根.【专题】计算题.【分析】原式利用平方根定义计算即可得到结果.【解答】解:原式=±3;原式=3,故答案为:±3;3【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.12.计算:= ﹣4 ;= 4 .【考点】立方根;算术平方根.【专题】计算题.【分析】原式利用立方根,算术平方根的定义计算即可得到结果.【解答】解:=﹣4;=|﹣4|=4,故答案为:﹣4;4.【点评】此题考查了立方根,以及算术平方根,熟练掌握各自的定义是解本题的关键.13.的倒数是﹣3 ,()3的相反数是9 .【考点】立方根.【专题】计算题.【分析】原式利用立方根性质,相反数,以及倒数的定义计算即可得到结果.【解答】解:=﹣,﹣的倒数为﹣3;()3=﹣9,﹣9的相反数为9,故答案为:﹣3;9【点评】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.14.写出一个介于4和5之间的无理数:(答案不唯一).【考点】估算无理数的大小;无理数.【专题】应用题.【分析】由于4=,5=,所以被开方数只要在16和25之间即可;【解答】解:∵4=,5=,∴在4与5之间的无理数为(答案不唯一),故答案为:(答案不唯一).【点评】此题主要考查了无理数的估算,解决本题的关键是得到最接近无理数的有理数的值.15.π=3.1415926…精确到千分位的近似数是 3.142 ;0.43万精确到千位表示为4×103.【考点】近似数和有效数字.【分析】对于π=3.1415926,把万分位上的数字5进行四舍五入即可;对于0.43万,把百位上的数字3进行四舍五入即可.【解答】解:π=3.1415926…精确到千分位的近似数是3.142;0.43万精确到千位表示为4×103.故答案为3,142 4×103.【点评】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.16.﹣的相反数的绝对值是﹣.【考点】实数的性质.【分析】根据只有符号不同的两个数互为相反数,可的相反数,根据差的绝对值是大数减小数,可得答案.【解答】解:﹣的相反数是﹣,﹣的相反数的绝对值是﹣,故答案为:﹣.【点评】本题考查了实数的性质,先求相反数,再求绝对值.17.已知a、b为两个连续整数,且a<<b,则a+b= 9 .【考点】估算无理数的大小.【专题】计算题.【分析】由于4<<5,由此即可找到所求的无理数在哪两个和它接近的整数之间,然后即可求解.【解答】解:∵4<<5,∴a=4,b=5,∴a+b=9.故答案为:9.【点评】此题主要考查了无理数的大小的比较.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.18.已知实数x,y满足+|x﹣2y+2|=0,则2x﹣y的平方根为±2.【考点】解二元一次方程组;非负数的性质:绝对值;非负数的性质:算术平方根.【专题】计算题.【分析】利用非负数的性质列出方程组,求出方程组的解得到x与y的值,即可确定出原式的平方根.【解答】解:∵+|x﹣2y+2|=0,∴,解得:,则2x﹣y=16﹣4=12,12的平方根为±2,故答案为:±2【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.三、解答题19.将下列各数分别填在各集合的大括号里:,,0.3,,3.414,,,﹣,﹣,,0.自然数集合:{ ,0 …};分数集合:{ …};无理数集合:{ ,,,﹣,﹣…};实数集合:{ ,,0.3,,3.414,,,﹣,﹣,,0 …}.【考点】实数.【分析】根据实数的分类方法,分别判断出自然数集合、分数集合、无理数集合、实数集合各包含哪些数即可.【解答】解:自然数集合:{,0…};分数集合:{,…};无理数集合:{,,,﹣,﹣…};实数集合:{,,0.3,,3.414,,,﹣,﹣,,0…}.故答案为:,0;;,,,﹣,﹣;,,0.3,,3.414,,,﹣,﹣,,0. 【点评】此题主要考查了实数的分类方法,要熟练掌握,解答此题的关键是要明确自然数、分数、无理数、实数的含义和特征.20.计算:(1)+﹣()2;(2)+|1﹣|﹣;(3)﹣﹣|﹣4|﹣(﹣1)0.【考点】实数的运算;零指数幂.【专题】计算题.【分析】(1)原式利用算术平方根,立方根以及二次根式性质计算即可得到结果;(2)原式利用二次根式性质,绝对值的代数意义化简,合并即可得到结果;(3)原式利用二次根式性质,立方根,绝对值的代数意义,以及零指数幂法则计算即可得到结果.【解答】解:(1)原式=3﹣4﹣3=﹣4;(2)原式=2+﹣1﹣=1;(3)原式=3﹣2﹣4+﹣1=﹣2+. 【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.21.一个正方体,它的体积是棱长为3的正方体体积的8倍,这个正方体的棱长是多少?【考点】立方根.【专题】计算题.【分析】根据题意列出算式,计算即可得到结果.【解答】解:根据题意得:=6,则这个正方体的棱长为6.【点评】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.22.求下列各式中的未知数x的值:(1)2x2﹣8=0;(2)(x+1)3=﹣64;(3)25x2﹣49=0;(4)﹣(x﹣3)3=8.【考点】立方根;平方根.【专题】计算题.【分析】各方程整理后,利用平方根或立方根定义开方(开立方)即可求出解.【解答】解:(1)方程整理得:x2=4,开方得:x=±2;(2)开立方得:x+1=﹣4,解得:x=﹣5;(3)方程整理得:x2=,开方得:x=±;(4)开立方得:x﹣3=﹣2,解得:x=1.【点评】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.23.已知2a﹣1的平方根是±3,3a+b﹣1的平方根是±4,c是的整数部分,求a+2b+c的算术平方根.【考点】平方根;算术平方根;估算无理数的大小.【分析】由平方根的定义可知2a﹣1=9,3a+b﹣1=16,可求得a、b的值,然后再根据被开方数越大对应的算术平方根越大估算出c的值,接下来再求得a+2b+c的值,最后求得a+2b+c的算术平方根即可.【解答】解:∵2a﹣1的平方根是±3,3a+b﹣1的平方根是±4,∴2a﹣1=9,3a+b﹣1=16.解得:a=5,b=2.∵49<57<64,∴7<<8.∴c=7.∴a+2b+c=5+2×2+7=16.∵16的算术平方根是4.∴a+2b+c的算术平方根是4.【点评】本题主要考查的是平方根、算术平方根的定义、估算无理数的大小,明确被开方数越大对应的算术平方根越大是解题的关键.24.在5×5的正方形方格中,每个小正方形的边长都为1,请在下图给定的网格中按下列要求画出图形.(1)从点A出发,画一条线段AB,使它的另一个端点B在格点(小正方形的每个顶点都称为格点)上,且长度为2.(2)画出所有以(1)中AB为边的等腰三角形,使另一个顶点在格点上,且另两边的长度都是无理数,并写出所有满足条件的三角形.【考点】勾股定理;无理数;等腰三角形的判定.【专题】网格型.【分析】(1)根据勾股定理可知使线段AB为边长为2的等腰直角三角形的斜边即可;(2)作AB的垂直平分线和网格相交并且满足边长为无理数即可.【解答】解:(1)如图所示:(2)如图所示:【点评】本题考查了勾股定理、垂直平分线的性质,熟知勾股定理的定义是解答此题的关键.。
第四章 实数 单元测试卷一、选择题(本大题共10小题,共30分。
在每小题列出的选项中,选出符合题目的一项)1. √116的平方根是( ) A. 14 B. −14 C. ±14 D. ±12 2. 实数5的平方根是( )A. 2.5B. −2.5C. √5D. ±√53. 实数a ,b ,c 在数轴上的对应点的位置如图所示,下列结论中正确的是( )A. a >bB. |b|<|c|C. a +c <0D. ab >c4. 下列说法正确的是( )A. 0的算术平方根是0B. 9是3的算术平方根C. ±3是9的算术平方根D. −3是9的算术平方根5. 下列等式成立的是( ) A. √25=±5B. √(−3)33=3C. √(−4)2=−4D. ±√0.36=±0.6 6. 已知−1<x <0,那么在−x,−1x ,√−x,x 2中,最大的数是( )A. −xB. −1xC. √−xD. x 27. 下列说法中,正确的有( )①只有正数才有平方根;②a 一定有立方根;③√−a 没有意义;④√−a 3=−√a 3;⑤只有正数才有立方根.A. 1个B. 2个C. 3个D. 4个8. 下列说法: ①−0.25的平方根是±0.5; ②任何数的平方都是非负数,因而任何数的平方根也是非负数; ③任何一个非负数的平方根都不大于这个数; ④平方根等于本身的数是0.其中正确的是( )A. ④B. ① ②C. ② ③D. ③9. 已知等腰三角形的两边长分別为a 、b ,且a 、b 满足√2a −3b +5+(2a +3b −13)2=0,则此等腰三角形的周长为( )A. 7或8B. 6或10C. 6或7D. 7或103=−2,则a+b的值是( )10.若a2=16,√−bA. 12B. 12或4C. 12或±4D. −12或4二、填空题(本大题共8小题,共24分)11.64的立方根为.12.写出一个比3大且比4小的无理数:.13.写出一个大于1且小于2的无理数.3=.14.计算:√25=;√|−9|=;√276415.若一个数的算术平方根是8,则这个数的立方根是.16.若√m+1=3,则7−m的立方根是.3=−2,则√b−a=.17.已知a2=81,√b18.已知√x+2y+|x2−9|=0,则3x−12y的立方根是.三、解答题(本大题共8小题,共66分。
苏科版八年级上册数学第四章实数含答案一、单选题(共15题,共计45分)1、如图,在数轴上表示数×(﹣5)的点可能是()A.点EB.点FC.点PD.点Q2、下列大小比较正确的是( )A. <B.-(- )=-|- |C.-(-31)<+(-31)-(-31)<+(-31)D.-|-10 |>73、下列各式计算错误的是()A. B. C. D.4、下列说法正确的是()A.任何数都有两个平方根B.若a 2=b 2,则a=bC. =±2 D.﹣8的立方根是﹣25、下列语句:①-1是1的平方根。
②带根号的数都是无理数。
③-1的立方根是-1。
④的立方根是2。
⑤(-2)2的算术平方根是2。
⑥-125的立方根是±5。
⑦有理数和数轴上的点一一对应。
其中正确的有()A.2个B.3个C.4个D.5个6、下列命题中错误的是()A.﹣2017的绝对值是2017B.3的平方根是C.﹣的倒数是﹣ D.0的相反数是07、如图,数轴上A,B两点分别对应实数a,b,则下列结论正确的是()A.| a|>| b|B. a+ b>0C. ab<0D.| b|= b8、下列计算错误的是()A.﹣15+25=10B. =2C.4 -3 =1D.﹣5﹣6=﹣119、等于()A.﹣4B.4C.±4D.25610、下列判断正确的是().A.0没有算术平方根B.1的立方根为±1C.4的平方根为2D.负数没有平方根11、下面的计算中,错误的是()A. B. C.D.12、下列计算正确的是()A. B. = C. D.13、2的平方根为()A.4B.±4C.D.±14、一个数如果有两个平方根,那么这两个平方根的积必定()A.大于0B.等于0C.小于0D.小于或等于015、小辉测得一根木棒的长度为3.7米,这根木棒的实际长度的范围().A.大于3米,小于4米B.大于3.6米,小于3.8米C.大于或等于3.64米,小于3.74米 D.大于或等于3.65米,小于3.75米二、填空题(共10题,共计30分)16、比较大小:________2;________ .17、下列各数:、、π、﹣、、0.101001…中是无理数的有________18、实数a在数轴上对应的点的位置如图所示,计算|a-π|+| -a|的结果为________ 。
第四章实数单元测试题
(满分120分;时间:120分钟)
真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功!
题号一二三总分
得分
一、选择题(本题共计10 小题,每题3 分,共计30分,)
1. 9的平方根是()
A.3
B.−3
C.3和−3
D.81
2. √16的算术平方根是()
A.2
B.4
C.±4
D.±2
3. 在√5,π
2,−√9,3.14,1
3
,(−√3)2,0.10100…中,有理数有()
A.2个
B.3个
C.4个
D.5个
4. 下列运算正确的是()
A.√9=±3
B.|−3|=−3
C.−32=9
D.−√9=−3
5. 若√x+6+√2+y=0,则√xy=()
A.2√2
B.2√3
C.−2√2
D.−2√3
6. 下列各组数中,互为相反数的一组是()
A.2与1
2B.−2与√−8
3 C.−2与√(−2)2 D.|−3|与3
7. −64的立方根与√64的平方根之和为()
A.−2或2
B.−2或−6
C.−4+2√2或−4−2√2
D.0
8. 实数a,b,在数轴上大致位置如图,则a,b,的大小关系是()
A.a <0<b
B.b <a <0
C.0<b <a
D.a >0>b
9. 如果用四舍五入得到的近似数是5,则下列各数中,可能是它的真值的是( )
A.4.49
B.5.5
C.5.49
D.4.09
10. 若a =−√32,b =−|−√2|,c =−√(−2)33,则a 、b 、c 的大小关系是( )
A.a >b >c
B.c >a >b
C.b >a >c
D.c >b >a 二、 填空题 (本题共计 8 小题 ,每题 3 分 ,共计24分 , )
11. 立方根等于本身的实数是________.
12. √13−4的相反数是________.
13. 使|x|≤2+√3的整数x 的所有可能的值是________.
14. 请写出一个比1大且比3小的无理数:________.
15. 近似数4.26×106,它精确到________位.比较大小:−√6________−√7.
16. 比较大小:
√5−32________√5−23(选填“>”“<”或“=”)
17. √81的平方根是________,(−9)2的算术平方根是________.
18. 比较大小(填“>”、“=”或“<”):√5+12________√10−12.
三、 解答题 (本题共计 7 小题 ,共计66分 , )
19. 计算:|1−√2|+√9−√−1253
.
20. 计算:(−√7)2−√62+√−8
3−|3−√7|.
21. 求下列各式中x的值.
(1)2x2=8;
(2)(x−1)3−27=0;
22. 计算:|x|=2
3,|y|=1
2
且x<0<y,求6÷(x−y).
23. 把下列各数在数轴上表示出来,并用“<”号把它们连接起来.−2,|−3|,3
2
,−√7(近似表示),0.
24. 国际比赛的足球场长在100米到110米之间,宽在64米到75米之间,现有一个长方形的足球场,其长是宽的1.5倍,面积是6337.5平方米,问这个足球场是否能用作国际比赛吗?
25. 阅读下面文字解答问题:大家知道√2是一个无限不循环小数,因此√2的小数部分我们不可能全部写出来,又因为√2是介于1到2之间的一个数,于是就可以用√2−1来表示小数部分,根据以上知识回答下列问题:
(1)如果√5的小数部分为a ,√13的整数部分为b ,求a +b +5的值;
(2)已知10+√3=x +y ,其中x 是整数,且0<y <1,求x −y +√3的相反数;
(3)已知5+√11的小数部分为a ,5−√11的小数部分为b ,求a +b 的值.
1、最困难的事就是认识自己。
20.11.711.7.202017:3017:30:55Nov -2017:30
2、自知之明是最难得的知识。
二〇二〇年十一月七日2020年11月7日星期六
3、越是无能的人,越喜欢挑剔别人。
17:3011.7.202017:3011.7.202017:3017:30:5511.7.202017:3011.7.2020
4、与肝胆人共事,无字句处读书。
11.7.202011.7.202017:3017:3017:30:5517:30:55
5、三军可夺帅也。
Saturday, November 7, 2020November 20Saturday, November 7, 202011/7/2020
6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。
5时30分5时30分7-Nov -2011.7.2020
7、人生就是学校。
20.11.720.11.720.11.7。
2020
年11月7日星期六二〇二〇年十一月七日 8、你让爱生命吗,那么不要浪费时间。
17:3017:30:5511.7.2020Saturday, November 7, 2020
亲爱的用户: 烟雨江南,画屏如展。
在那桃花盛开的地方,在这醉
人芬芳的季节,愿你生活像春天一样阳光,心情像桃花一样美丽,感谢你的阅读。