大学物理习题第1单元 质点运动学
- 格式:doc
- 大小:167.50 KB
- 文档页数:2
第1章 质点运动学一、选择题 1. 一物体在位置1的矢径是 r 1, 速度是1v . 如图1-1-1所示.经∆t 时间后到达位置2,其矢径是 r 2, 速度是2v .则在∆t 时间内的平均速度是 [ ] (A) )(2112v v - (B) )(2112v v + (C) t r r ∆-12 (D) t r r ∆+12 2. 关于加速度的物理意义, 下列说法正确的是 [ ] (A) 加速度是描述物体运动快慢的物理量(B) 加速度是描述物体位移变化率的物理量(C) 加速度是描述物体速度变化的物理量(D) 加速度是描述物体速度变化率的物理量 3. 一质点作曲线运动, 任一时刻的矢径为 r , 速度为v , 则在∆t 时间内[ ] (A) v v ∆=∆ (B) 平均速度为∆∆r t (C) r r ∆=∆ (D) 平均速度为t r ∆∆ 4. 一质点作抛体运动, 忽略空气阻力, 在运动过程中, 该质点的t d d v 和td d v 的变化情况为 [ ] (A) t d d v 的大小和t d d v 的大小都不变 (B) t d d v 的大小改变, t d d v 的大小不变 (C) t d d v 的大小和t d d v 的大小均改变 (D) t d d v 的大小不变, td d v 的大小改变 5. 下面各种判断中, 错误的是[ ] (A) 质点作直线运动时, 加速度的方向和运动方向总是一致的(B) 质点作匀速率圆周运动时, 加速度的方向总是指向圆心(C) 质点作斜抛运动时, 加速度的方向恒定(D) 质点作曲线运动时, 加速度的方向总是指向曲线凹的一边6 下列表述中正确的是[ ] (A) 质点作圆周运动时, 加速度一定与速度垂直(B) 物体作直线运动时, 法向加速度必为零(C) 轨道最弯处法向加速度最大(D) 某时刻的速率为零, 切向加速度必为零7 一物体作匀变速直线运动, 则[ ] (A) 位移与路程总是相等(B) 平均速率与平均速度总是相等(C) 平均速度与瞬时速度总是相等(D) 平均加速度与瞬时加速度总是相等图1-1-18. 在地面上以初速v 0、抛射角θ 斜向上抛出一物体, 不计空气阻力.问经过多长时间后速度的水平分量与竖直分量大小相等, 且竖直分速度方向向下?[ ] (A) )cos (sin 0θθ+gv (B) )cos 2(sin 0θθ-g v (C) )sin (cos 0θθ-g v (D) g0v 9. 从离地面高为h 处抛出一物体,在下列各种方式中,从抛出到落地时间内位移数值最大的一种是 [ ] (A) 自由下落 (B) 以初速v 竖直下抛 (C) 以初速v 平抛 (D) 以初速v 竖直上抛10. 作圆周运动的物体[ ] (A) 加速度的方向必指向圆心 (B) 切向加速度必定等于零(C) 法向加速度必定等于零 (D) 总加速度必定不总等于零11. 质点作变速直线运动时, 速度及加速度的关系为[ ] (A) 速度为0, 加速度一定也为0(B) 速度不为0, 加速度也一定不为0(C) 加速度很大, 速度也一定很大(D) 加速度减小, 速度的变化率也一定减小12. 下列几种情况中, 哪种情况是不可能的?[ ] (A) 物体具有向东的速度和向东的加速度(B) 物体具有向东的速度和向西的加速度(C) 物体具有向东的速度和向南的加速度(D) 物体具有变化的加速度和恒定的速度 13. 一质点在平面上运动, 已知质点位置矢量的表示式为j t b i t a r 22+=(其中a 、b为常量) , 则该质点作[ ] (A) 匀速直线运动 (B) 变速直线运动(C) 抛物曲线运动 (D) 一般曲线运动14 . 一质点在xOy 平面内运动, 其运动方程为Rt t R x ωω+=sin ,R t R y +=ωcos , 式中R 、ω均为常数.当y 达到最大值时该质点的速度为[ ] (A) 0,0==y x v v (B) 0,2==y x R v v ω(C) ωR y x -==v v ,0 (D) ωωR R y x -==v v ,215. 物体不能出现下述哪种情况?[ ] (A) 运动中, 瞬时速率和平均速率恒相等(B) 运动中, 加速度不变, 速度时刻变化(C) 曲线运动中, 加速度越来越大, 曲率半径总不变(D) 曲线运动中, 加速度不变, 速率也不变16. 某物体的运动规律为t k t2d d v v -=, 式中k 为常数.当t = 0时,初速度为0v .则速度v 与时间t 的函数关系是[ ] (A) 0221v v +=t k (B) 0221v v +-=t k(C) 02121v v +=t k (D) 02121v v +-=t k17. 如图1-1-33所示,站在电梯内的人, 看到用细绳连接的质量不同的两物体跨过电梯内的一个无摩擦的定滑轮而处于“平衡”状态, 由此他断定电梯作加速运动, 其加速度的[ ] (A) 大小为g , 方向向上(B) 大小为g , 方向向下(C) 大小为g /2, 方向向上(D) 大小为g /2, 方向向下二、填空题 1. 一辆汽车以10 m.s -1的速率沿水平路面直前进, 司机发现前方有一孩子开始刹车,以加速度-0.2m.s -2作匀减速运动,则刹后1 min 内车的位移大小是 .2. 一质点沿半径为R 的圆周运动一周回到原地, 质点在此运动过程中,其位移大小为 ,路程是 .3. 如图1-2-3所示,甲、乙两卡车在一狭窄的公路上同向行驶,甲车以10 m.s -1速度匀速行驶, 乙车在后. 当乙车发现甲车时, 车速度为15 m.s -1,相距1000m .为避免相撞,乙车立即作匀减速行驶,其加速度大小至少应为 .4. 一质点沿x 轴作直线运动,其t v -曲线如图1-2-5所示.若t =0时质点位于坐标原点,则t =4.5 s 时,质点在x 轴上的位置为 .5. 一质点沿x 轴作直线运动, 在t = 0时, 质点位于x 0 =2 m处. 该质点的速度随时间变化的规律为2312t -=v ( t 以s 计). 当质点瞬时静止时,其所在位置为 ,加速度为 .6. 已知一个在xOy 平面内运动的物体的速度为j t i 82-=v .已知t = 0时它通过(3, -7)位置.则该物体任意时刻的位置矢量为 .7 距河岸(看成直线)300 m 处有一艘静止的船,船上的探照灯以转速为1m inr 1-⋅=n 转动,当光束与岸边成30°角时,光束沿岸边移动的速率=v .8 一物体作如图1-2-15所示的斜抛运动,测得在轨道A 点处速度v的大小为v ,其方向与水平方向夹角成30°.则物体在A 点的切向加速度的大小τa = ,轨道的曲率半径=ρ .图1-2-3图1-1-33 1s m -⋅/v 1221345.25.4()t 1-第2章 动力学基本定律一、选择题1. 下列说法中正确的是[ ] (A) 运动的物体有惯性, 静止的物体没有惯性(B) 物体不受外力作用时, 必定静止(C) 物体作圆周运动时, 合外力不可能是恒量(D) 牛顿运动定律只适用于低速、微观物体2. 下列诸说法中, 正确的是[ ] (A) 物体的运动速度等于零时, 合外力一定等于零(B) 物体的速度愈大, 则所受合外力也愈大(C) 物体所受合外力的方向必定与物体运动速度方向一致(D) 以上三种说法都不对3. A 、B 两质点m A >m B , 受到相等的冲量作用, 则[ ] (A) A 比B 的动量增量少 (B) A 与B 的动能增量相等(C) A 比B 的动量增量大 (D) A 与B 的动量增量相等4. 如图2-1-4所示,物体在力F 作用下作直线运动, 如果力F 的量值逐渐减小, 则该物体的[ ] (A) 速度逐渐减小, 加速度逐渐减小(B) 速度逐渐减小, 加速度逐渐增大(C) 速度继续增大, 加速度逐渐减小(D) 速度继续增大, 加速度逐渐增大5. 对一运动质点施加以恒力, 质点的运动会发生什么变化?[ ] (A) 质点沿着力的方向运动 (B) 质点仍表现出惯性(C) 质点的速率变得越来越大 (D) 质点的速度将不会发生变化6. 一物体作匀速率曲线运动, 则[ ] (A) 其所受合外力一定总为零 (B) 其加速度一定总为零(C) 其法向加速度一定总为零 (D) 其切向加速度一定总为零 7. 牛顿第二定律的动量表示式为t m F d )d(v =, 即有tm t m F d d d d v v +=.物体作怎样的运动才能使上式中右边的两项都不等于零, 而且方向不在一直线上?[ ] (A) 定质量的加速直线运动 (B) 定质量的加速曲线运动(C) 变质量的直线运动 (D) 变质量的曲线运动8. 如图2-1-8所,质量相同的两物块A 、B 用轻质弹簧连接后, 再用细绳悬吊着, 当系统平衡后, 突然将细绳剪断, 则剪断后瞬间[ ] (A) A 、B 的加速度大小均为g(B) A 、B 的加速度均为零(C) A 的加速度为零, B 的加速度大小为2gF 图2-1-4 图2-1-8 1m 2m(D) A 的加速度大小为2g , B 的加速度为零9. 假设质量为70 kg 的飞机驾驶员由于动力俯冲得到7g 的净加速度, 问作用于驾驶员上的力最接近于下列的哪一个值?[ ] (A) 10 N (B) 70 N (C) 490 N (D) 4800 N10. 如图2-1-10所示,升降机内地板上放有物体A, 其上再放另一物体B, 二者的质量分别为A m 、B m .当升降机以加速度a 向下加速运动时(a <g ), 物体A 对升降机地板的压力为 [ ] (A) g m A (B) g m m )(B A + (C) ))((B A a g m m ++ (D) ))((B A a g m m -+ 11. 一质量为60 kg 的人静止在一个质量为600 kg 且正以-1s m 2⋅的速率向河岸驶近的木船上, 河水是静止的, 其阻力不计.现人相对于船以一水平速度v 沿船的前进方向向河岸跳去, 该人起跳后, 船速减为原来的一半, 这说明v 值为[ ] (A) -1s m 2⋅ (B) -1s m 12⋅ (C) -1s m 20⋅ (D) -1s m 11⋅ 12. 牛顿定律和动量守恒定律的适用范围为[ ] (A) 仅适用于宏观物体(B) 仅适用于宏观, 低速物体(C) 牛顿定律适用于宏观低速物体, 动量守恒定律普遍适用(D) 牛顿定律适用于宏观低速物体, 动量守恒定律适用于宏观物体13. 一炮弹由于特殊原因在飞行中突然炸成两块, 其中一块作自由下落, 则另一块着地点[ ] (A) 比原来更远 (B) 比原来更近(C) 仍和原来一样 (D) 条件不足不能判定14. 如图2-1-14所示,停在空中的气球的质量和人的质量相等.如果人沿着竖直悬挂在气球上的绳梯向上爬高m 1,不计绳梯的质量, 则气球将[ ] (A) 向上移动m 1 (B) 向下移动m 1(C) 向上移动m 5.0 (D) 向下移动m 5.015. 用锤压钉不易将钉压入木块, 用锤击钉则很容易将钉击入木块,这是因为[ ] (A) 前者遇到的阻力大, 后者遇到的阻力小(B) 前者动量守恒, 后者动量不守恒(C) 后者锤的动量变化大, 给钉的作用力就大(D) 后者锤的动量变化率大, 给钉的作用力就大16. 有两个同样的木块, 从同一高度自由下落, 在下落途中, 一木块被水平飞来的子弹击中, 并陷入其中.子弹的质量不能忽略, 若不计空气阻力, 则 [ ] (A) 两木块同时到达地面 (B) 被击木块先到达地面 (C) 被击木块后到达地面 (D) 不能确定哪块木块先到达地面图2-1-10 a A B图2-1-16图2-1-1417 将一物体提高10 m, 下列哪种情形下提升力所做的功最小?[ ] (A) 以-1s m 5⋅的速度匀速上升(B) 以-1s m 10⋅的速度匀速提升(C) 将物体由静止开始匀加速提升10 m, 速度达到-1s m 5⋅(D) 使物体从-1s m 10⋅的初速度匀减速上升10 m, 速度减为-1s m 5⋅18. 质点系的内力可以改变[ ] (A) 系统的总质量 (B) 系统的总动量(C) 系统的总动能 (D) 系统的总角动量19. 作用在质点组的外力的功与质点组内力做功之和量度了[ ] (A) 质点组动能的变化(B) 质点组内能的变化(C) 质点组内部机械能与其它形式能量的转化(D) 质点组动能与势能的转化20. 在一般的抛体运动中, 下列说法中正确的是[ ] (A) 最高点动能恒为零(B) 在升高的过程中, 物体动能的减少等于物体的势能增加和克服重力 所作功之和(C) 抛射物体机械能守恒, 因而同一高度具有相同的速度矢量(D) 在抛体和地球组成的系统中, 物体克服重力做的功等于势能的增加21. 有A 、B 两个相同的物体, 处于同一位置, 其中物体A 水平抛出, 物体B 沿斜面无摩擦地自由滑下, 则[ ] (A) A 先到达地面, 两物体到达地面时的速率不相等(B) A 先到达地面, 两物体到达地面时的速率相等(C) B 先到达地面, 两物体到达地面时的速率不相等(D) B 先到达地面, 两物体到达地面时的速率相等22. 将一小球系在一端固定的细线(质量不计)上, 使小球在竖直平面内作圆周运动,作用在小球上的力有重力和细线的拉力.将细线、小球和地球一起看作一个系统, 不考虑空气阻力及一切摩擦, 则[ ] (A) 重力和拉力都不做功, 系统的机械能守恒(B) 因为重力和拉力都是系统的内力, 故系统的机械能守恒(C) 因为系统不受外力作用,这样的系统机械能守恒(D) 以上说法都不对23. 关于保守力, 下面说法正确的是[ ] (A) 只有保守力作用的系统动能和势能之和保持不变(B) 只有合外力为零的保守内力作用系统机械能守恒(C) 保守力总是内力(D) 物体沿任一闭合路径运动一周, 作用于它的某种力所做之功为零, 则该力称为保守力24. 在下列叙述中,错误的是[ ] (A) 保守力做正功时相应的势能将减少(B) 势能是属于物体体系的(C) 势能是个相对量,与参考零点的选择有关(D) 势能的大小与初、末态有关, 与路径无关25. 如图2-1-25所示,劲度系数-1m N 1000⋅=k 的轻质弹簧一端固定在天花板上, 另一端悬挂一质量为m = 2 kg 的物体, 并用手托着物体使弹簧无伸长.现突然撒手, 取-2s m 10⋅=g , 则弹簧的最大伸长量为[ ] (A) 0.01 m (B) 0.02 m (C) 0.04 m (D) 0.08 m26. 在弹性范围内, 如果将弹簧的伸长量增加到原来的3倍, 则弹性势能将增加到原来的[ ] (A) 6倍 (B) 8倍 (C) 9倍 (D) 12倍27. 从地面发射人造地球卫星的速度称为发射速度v 0, 卫星绕地球运转的速度称为环绕速度v , 已知rgR 2=v (R 为地球半径, r 为卫星离地心距离), 忽略卫星在运动过程中的阻力, 对于发射速度v 0[ ] (A) v 越小相应的v 0越大 (B) 01v v ∝(C) v 越大相应的v 0越大 (D) 0v v ∝ 28. 设一子弹穿过厚度为l 的木块其初速度大小至少为v .如果木块的材料不变, 而厚度增为2l , 则要穿过这木块, 子弹的初速度大小至少要增为[ ] (A) 2v (B) v 2 (C) v 21 (D) 2v 29. 如图2-1-29所示,用铁锤将一铁钉击入木板, 设铁钉受到的阻力与其进入木块的深度成正比, 铁锤两次击钉的速度相同, 第一次将钉击入木板内1cm, 则第二次能将钉继续击入的深度为[ ] (A) 0.4cm (B) 0.5cm (C) 1cm (D) 1.4cm30. 如图2-1-30所示,一被压缩的弹簧, 两端分别连接A 、B两个不同的物体, 放置在光滑水平桌面上, 设m A = 2m B , 由静止释放. 则物体A 的动能与物体B 的动能之比为 [ ] (A) 1 : 1 (B) 2 : 1 (C) 1 : 2 (D) 1 : 431. 关于功的概念有以下几种说法:(1) 保守力做正功时,系统内相应的势能增加.(2) 质点运动经一闭合路径,保守力对质点做的功为零.(3) 作用力和反作用力大小相等、方向相反,所以两者所做的功的代数和必然为零. 在上述说法中[ ] (A) (1)、(2)是正确的 (B) (2)、(3)是正确的(C) 只有(2)是正确的 (D) 只有(3)是正确的32 关于机械能守恒条件和动量守恒条件有以下几种说法,其中正确的是[ ] (A) 不受力作用的系统,其动量和机械能必然守恒(B) 所受合外力为零、内力都是保守力的系统,其机械能必然守恒(C) 不受外力,而内力都是保守力的系统,其动量和机械能必然同时守恒(D) 外力对一个系统做的功为零,则该系统的机械能和动量必然同时守恒图2-1-3033. 一力学系统由两个质点组成,它们之间只有引力作用,若两质点所受外力的矢量和为零,则此系统[ ] (A) 动量、机械能以及对一轴的角动量守恒(B) 动量、机械能守恒,但角动量是否守恒不能断定(C) 动量守恒,但机械能和角动量守恒与否不能断定(D) 动量和角动量守恒,但机械能是否守恒不能断定34. 一质量为0m 的弹簧振子,水平放置静止在平衡位置,如图2-1-34所示.一质量为m 的子弹以水平速度v射入振子中,并随之一起运动.如果水平面光滑,此后弹簧的最大势能为 [ ] (A) 221v m (B) )(2022m m m +v (C) 220202)(v m m m m + (D) 2022v m m 35. 物体在恒力F 作用下作直线运动, 在∆t 1时间内速度由0增加到v , 在∆t 2时间内速度由v 增加到v 2, 设F 在∆t 1时间内做的功是A 1, 冲量是1I , 在∆t 2时间内做的功是A 2, 冲量是2I 。
《大学物理》各章练习题及答案解析第1章 质点运动学一、选择题:1.以下五种运动中,加速度a保持不变的运动是 ( D ) (A) 单摆的运动。
(B) 匀速率圆周运动。
(C) 行星的椭圆轨道运动。
(D) 抛体运动。
(E) 圆锥摆运动。
2.下面表述正确的是( B )(A)质点作圆周运动,加速度一定与速度垂直; (B) 物体作直线运动,法向加速度必为零; (C)轨道最弯处法向加速度最大; (D)某时刻的速率为零,切向加速度必为零。
3.某质点做匀速率圆周运动,则下列说法正确的是( C )(A)质点的速度不变; (B)质点的加速度不变 (C)质点的角速度不变; (D)质点的法向加速度不变4.一运动质点在某瞬时位于矢径()y x r , 的端点处,其速度大小为( D )()()(()22⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛dt dy dt dx D C dtrd B dt drA5. 一质点在平面上运动,运动方程为:j t i t r222+=,则该质点作( B )(A)匀速直线运动 (B)匀加速直线运动(C)抛物线运动 (D)一般曲线运动6.一质点做曲线运动,r 表示位置矢量,v 表示速度,a表示加速度,s 表示路程,a t 表示切向加速度,对下列表达式,正确的是( B )(A)dt dr v = (B) dt ds v = (C) dtdv a = (D) dt vd a t=7. 某质点的运动方程为 3723+-=t t X (SI ),则该质点作 [ D ](A)匀加速直线运动,加速度沿 x 轴正方向; (B)匀加速直线运动,加速度沿 x 轴负方向; (C)变加速直线运动.加速度沿 x 轴正方向; (D)变加速直线运动,加速度沿 x 轴负方向8.一质点沿x 轴运动,其运动方程为()SI t t x 3235-=,当t=2s 时,该质点正在( A )(A)加速 (B)减速 (C)匀速 (D)静止1.D2. B3. C4.D5.B ,6B ,7A 8 A二 、填空题1. 一质点的运动方程为x =2t ,y =4t 2-6t ,写出质点的运动方程(位置矢量)j t t i t r)64(22-+=,t =1s 时的速度j i v22+=,加速度j a 8=,轨迹方程为x x y 32-=。
大学物理题库 第一章 质点运动学一、选择题:1、在平面上运动的质点,如果其运动方程为j bt i at r22+= (其中b a ,为常数),则该质点作[ ](A ) 匀速直线运动 (B ) 变速直线运动 (C ) 抛物线运动 (D ) 一般曲线运动2、质点以速度124-⋅+=s m t v 作直线运动,沿质点运动方向作ox 轴,并已知s t 3=时,质点位于m x 9=处,则该质点的运动方程为[ ](A) t x 2= (B) 2214t t x += (C) 123143-+=t t x (D) 123143++=t t x3、某雷达刚开机时发现一敌机的位置在j i96+处,经过3秒钟后,该敌机的位置在处,若i 、j分别表示直角坐标系中y x ,的单位矢量,则敌机的平均速度为[ ](A )j i 36+ (B )j i 36-- (C )j i -2 (D )j i +-24、质点沿半径为R 的圆周作匀速率运动,每T 秒转一圈.在2T 时间间隔中,其平均速度大小与平均速率大小分别为(A) 2πR /T , 2πR/T . (B) 0 , 2πR /T(C) 0 , 0. (D) 2πR /T , 0. [ ]5、一质点在平面上作一般曲线运动,其瞬时速度为v,瞬时速率为v ,某一时间内的平均速度为v,平均速率为v ,它们之间的关系必定有:(A )v v v,v == (B )v v v,v =≠(C )v v v,v ≠≠(D )v v v,v ≠=[ ] 6、一运动质点的位置矢量为)y ,x (r,其速度大小为[ ](A)dt dr (B )dt r d (C )dt r d (D )dtr d (E )22)()(dt dydt dx +7、某物体的运动规律为t kv dtdv2-=,式中的k 为大于零的常数,当0=t 时,初速度为0v ,则速度v 与时间t 的函数关系是:[ ](A )0221v kt v += (B ) 0221v kt v +-=(C ) 021211v kt v += (D ) 021211v kt v +-=8、一质点作直线运动,某时刻的瞬时速度=v 2 m/s ,瞬时加速度2/2s m a -=,则一秒钟后质点的速度(A) 等于零. (B) 等于-2 m/s .ji 612+(C) 等于2 m/s . (D) 不能确定. [ ] 9、质点作曲线运动,r 表示位置矢量,v 表示速度,a表示加速度,S 表示路程,a 表示切向加速度,下列表达式中,(1) a t = d /d v , (2) v =t r d /d , (3) v =t S d /d , (4) t a t =d /d v.(A) 只有(1)、(4)是对的. (B) 只有(2)、(4)是对的. (C) 只有(2)是对的.(D) 只有(3)是对的. [ ] 10、一质点在运动过程中,0=dtr d ,而=dtdv常数,这种运动属于[ ] (A )初速为零的匀变速直线运动; (B )速度为零而加速度不为零的运动; (C )加速度不变的圆周运动; (D )匀变速率圆周运动。
第一章 力和运动(质点运动学)一. 选择题:[ B ]1、一质点沿x 轴作直线运动,其v t 曲线如图所示,如t =0时,质点位于坐标原点,则t = s 时,质点在x 轴上的位置为(A) 5m . (B) 2m .(C) 0. (D) 2 m .(E) 5 m.(1 2.5)22(21)122()x m =+⨯÷-+⨯÷=提示:[ C ]2、如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率0v 收绳,绳不伸长、湖水静止,则小船的运动是 (A) 匀加速运动. (B) 匀减速运动.(C) 变加速运动. (D) 变减速运动. (E) 匀速直线运动. 提示:如图建坐标系,设船离岸边x 米,222l h x =+22dl dxlxdt dt= 22dx l dl x h dldt x dt x dt+==0dlv dt=- 220dx h x v i v i dt x +==-rr r2203v h dv dv dxa i dt dx dt x==⋅=-r rr r[ D ]3、一运动质点在某瞬时位于矢径()y x r ,ϖ的端点处, 其速度大小为1 4.5432.52-112t (s)v (m/s)v ϖxo(A) t r d d (B) tr d d ϖ(C) t rd d ϖ (D) 22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x提示:22, dx dy dx dy v i j v dt dt dt dt ⎛⎫⎛⎫⎛⎫=+∴=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭r r v[ B ]4、质点沿半径为R 的圆周作匀速率运动,每T 秒转一圈.在2T 时间间隔中,其平均速度大小与平均速率大小分别为(A) 2R /T , 2R/T . (B) 0 , 2R /T(C) 0 , 0. (D) 2R /T , 0.提示:平均速度大小:0rv t∆==∆v r 平均速率:2s R v t T∆==∆π [ B ]5、在相对地面静止的坐标系内,A 、B 二船都以2 m/s 速率匀速行驶,A 船沿x 轴正向,B 船沿y 轴正向.今在A 船上设置与静止坐标系方向相同的坐标系(x 、y 方向单位矢用i ϖ、j ϖ表示),那么在A 船上的坐标系中,B 船的速度(以m/s 为单位)为(A) 2i ϖ+2j ϖ. (B) 2i ϖ+2j ϖ. (C) -2i ϖ-2j ϖ. (D) 2i ϖ-2j ϖ.提示:2(2)B A B A v v v j i →→→=+=+-r r r r r地地[ D ]6、某人骑自行车以速率v 向西行驶,今有风以相同速率从北偏东30o方向吹来,人感到风从哪个方向吹来(A)北偏东30 (B)北偏西60 (C) 北偏东60 (D) 北偏西30提示:根据v r 风对人=v r 风对地+v r地对人,三者的关系如图所示:这是个等边三角形,∴人感到风从北偏西300方向吹来。
第一章质点运动学一选择题1.以下说法中,正确的选项是:()A.一物体若拥有恒定的速率,则没有变化的速度;B.一物体拥有恒定的速度,但仍有变化的速率;C.一物体拥有恒定的加快度,则其速度不行能为零;D. 一物体拥有沿x 轴正方向的加快度而有沿x 轴负方向的速度。
解:答案是 D。
2.长度不变的杆 AB,其端点 A 以 v0匀速沿 y 轴向下滑动, B 点沿 x 轴挪动,则 B 点的速率为:()A . v0 sinB .v0 cos C.v0 tan D.v0 / cos解:答案是 C。
简要提示:设 B 点的坐标为 x, A 点的坐标为 y,杆的长度为l,则x2y2l 2对上式两边关于时间求导:dx dy0,因dxv,dyv0,所以2 x 2 ydtdt dt dt2xv2yv0 = 0即v=v0 y/x =v0tan所以答案是 C。
3.如图示,路灯距地面高为 H,行人身高为 h,若人以匀速 v 背向路灯行走,灯y人头A H vv0hθvx影sB选择题 3图选择题 2图则人头影子挪动的速度u 为()H h Hv h HA.vB.H H h H h 解:答案是 B 。
简要提示:设人头影子到灯杆的距离为 x ,则x s h , x Hs , x H H hdx H ds HvuH h dt Hdt h所以答案是 B 。
4. 某质点作直线运动的运动学方程为x = 3t-5t 3 + 6 (SI),则该质点作A. 匀加快直线运动,加快度沿 x 轴正方向.B. 匀加快直线运动,加快度沿 x 轴负方向.C. 变加快直线运动,加快度沿 x 轴正方向.D. 变加快直线运动,加快度沿x 轴负方向.()解: 答案是 D5. 一物体从某一确立高度以v 0 的初速度水平抛出,已知它落地时的速度为v t ,那么它的运动时间是: ()v t - v 0v t v 0v t2 22v v 0 v t A.B.C.gD.2 gg2 g解:答案是 C 。
第一章 质点运动学一、简答题1、运动质点的路程和位移有何区别?答:路程是标量,位移是矢量;路程表示质点实际运动轨迹的长度,而位移表示始点指向终点的有向线段。
2、质点运动方程为()()()()k t z j t y i t x t r ++=,其位置矢量的大小、速度及加速度如何表示? 答:()()()t z t y t x r 222r ++==()()()k t z j t y i t xv ++= ()()()k t z j t y i t x a ++=3、质点做曲线运动在t t t ∆+→时间内速度从1v 变为到2v ,则平均加速度和t时刻的瞬时加速度各为多少? 答:平均加速度 t v v a ∆-=12 ,瞬时加速度()()dt v d t v v a t t lim t 120 =∆-=→∆4、画出示意图说明什么是伽利略速度变换公式? 其适用条件是什么?答:牵连相对绝对U V +=V ,适用条件宏观低速5、什么质点? 一个物体具备哪些条件时才可以被看作质点?答:质点是一个理想化的模型,它是实际物体在一定条件下的科学抽象。
条件:只要物体的形状和大小在所研究的问题中属于无关因素或次要因素,物体就能被看作质点。
二、选择题1、关于运动和静止的说法中正确的是 ( C )A 、我们看到的物体的位置没有变化,物体一定处于静止状态B 、两物体间的距离没有变化,两物体就一定都静止C 、自然界中找不到不运动的物体,运动是绝对的,静止是相对的D 、为了研究物体的运动,必须先选参考系,平时说的运动和静止是相对地球而言的2、下列说法中正确的是 ( D )A 、物体运动的速度越大,加速度也一定越大B 、物体的加速度越大,它的速度一定越大C 、加速度就是“加出来的速度”D 、加速度反映速度变化的快慢,与速度大小无关3、质点沿x 轴作直线运动,其t v-曲线如图所示,如s t 0=时,质点位于坐标原点,则s .t 54=时,质点在x 轴的位置为 ( B )A 、5 mB 、2 mC 、0 mD 、-2 m4、质点作匀速率圆周运动,则 ( B )A 、线速度不变B 、角速度不变C 、法向加速度不变D 、加速度不变5、质点作直线运动,某时刻的瞬时速度为s /m v 2=,瞬时加速度为22s /m a -=,则一秒钟后质点的速度 ( D )A 、等于0B 、等于s /m 2-C 、等于s /m 2D 、不能确定6、质点作曲线运动,r 表示位置矢量的大小,s 表示路程,z a 表示切向加速度的大小,v 表示速度的大小。
第一章 力学的基本概念(一)
质点运动学
序号 学号 姓名 专业、班级
一 选择题
[ A ]1. 一小球沿斜面向上运动,其运动方程为2
85t t s -+=(SI),则小球运动到最高点的时刻是:
(A) s 4=t ;
(B) s 2=t ; (C) s 8=t ;
(D) s 5=t 。
[ D ]2. 一运动质点在某瞬时位于矢径 r (x,y)的端点处,其速度大小为 (A)dt
dr
(B) dt d r (C)dt d r (D)22)()(dt dy dt dx +
[ D ]3. 某质点的运动方程x=3t-53t +6 (SI),则该质点作: (A ) 匀加速直线运动,加速度沿x 轴正方向; (B ) 匀加速直线运动,加速度沿x 轴负方向; (C ) 变加速直线运动,加速度沿x 轴正方向; (D ) 变加速直线运动,加速度沿x 轴负方向。
[ C ]4. 某物体的运动规律为dt
dv
=-k 2v t,式中k 为常数,当t=0时,初速度为0v ,则速度v 与时间的函数关系为:
(A ) v=21
k 2t +0v ; (B ) v=-2
1
k 2t +0v
(C ) v 1=
2
1k 2t +01
v
(D ) v
1
=-2
1k 2t +01v
[ D ]5. 一质点从静止出发,沿半径为1m 的圆周运动,角位移θ=3+92
t ,当切向加速度与合加速度的夹角为︒45时,角位移θ等于:
(A) 9 rad, (B )12 rad, (C)18 rad, (D)3.5 rad
[ D ]6. 质点作曲线运动,r 表示位置矢量,s 表示路径,t a 表示切向加速度,下列表达式中: (1)
dt dv =a; (2)dt dr =v; (3)dt
ds
=v; (4)dt d v =t a ,则,
(A ) 只有(1)、(4)是对的; (B ) 只有(2)、(4)是对的; (C ) 只有(2)是对的; (D ) 只有(3)是对的。
二 填空题
1. 设质点在平面上的运动方程为r =Rcos t ωi +Rsin t
ωj ,R 、ω为常数,则质点运动的速度v =
j t con R i t R
ωωωω+-sin ,轨迹为 半径为R 的圆 。
2. 以初速度v 0、抛射角θ0抛出一物体,则其抛物线轨道最高点处的曲率半径为g
v 0
220cos θ。
3. 半径为30cm 的飞轮,从静止开始以-2
s rad 500⋅.的匀角加速度转动,则飞轮边缘上一点在飞轮
转过240°时的切向加速度的大小t a = 2
s m 15.0-⋅ ,法向加速度的大小n a =
2s m 26.1-⋅ 。
4. 一质点在平面上作曲线运动,其速率v 与路程S 的关系为
v=1+S 2
( SI )
则其切向加速度以路程S 来表示的表达式为
a t = )1(22
s s + (
SI )
5. 灯距地面高度为h 1,一个人身高为h 2,在灯下以匀速率v 沿水平直线行走,如图1-2所示,则他的头顶在地上的影子M 点沿地面移动的速度v M =
v h h h 2
11
-。
(图1-1)
三 计算题
1. 一个人自原点出发,25s 内向东走30m ,又10s 内向南走10m ,再15s 内向正西北走18m 。
求在这50s 内,
(1) 平均速度的大小和方向;
(2) 平均速率的大小。
解:建立如图坐标系。
(1) 50 s 内人的位移为
BC AB OA r ++=∆
()j
i j i j i
73.227.1745cos 181030+=+-+-=
则50 s 内平均速度的大小为:
)s m (35
.050
73.227.17122-⋅=+=∆∆=t r v
方向为与x 轴的正向夹角:
)98.8(98.827
.1773
.2tg tg 11
东偏北==∆∆=--x y ϕ
(2) 50 s 内人走的路程为S =30+10+18=58 (m),所以平均速率为
)s m (16.150
581-⋅==∆=
t S v 2. 如图1-3所示,在离水面高为h 的岸上,有人用绳拉船靠岸,船在离岸边x 处。
当人以v 0的速率收绳时,试问船的速度、加速度的大小是多少?并说明小船作什么运动。
(图1-3) 解:略
O
)
(东)(南(西)4
πC
B A
ϕ。