七年级数学有理数的乘方导学案(2)(无答案)人教新课标版
- 格式:docx
- 大小:10.20 KB
- 文档页数:3
初中数学《有理数乘方》教学设计一、指导思想:根据《新课标》要求,联系实际使学生明确乘方的意义及表示方法.会根据定义进行有理数的乘方运算.引导学生用数学的眼光观察分析生活中的实际问题.培养学生通过类比、联想、归纳,加强对乘方意义的理解,发展学生的思维能力.二、教学分析1.教学内容分析有理数的乘方是初中七年级上学期第一章第五节的教学内容,是有理数的一种基本运算,从教材编排的结构上看,共需要4个课时,此课为第一课时,是在学生学习了有理数的加、减、乘、除运算的基础上来学习的,它既是有理数乘法的推广和延续,又是后继学习有理数的混合运算、科学记数法、整式乘方以及开方的基础,起到承前启后、铺路架桥的作用.在这一课的教学过程中,可以培养学生观察问题、分析问题和解决问题的能力,以及转化的数学思想,通过这一课的学习,对培养学生的这些能力和转化的数学思想起到很重要的作用.完成本课的教学,需要1课时的时间,教学时以学生自己为主,教师起组织、引导作用.2.教学方法分析本节课的教学是以学生为主体,教师为主导.通过创造情境,通过动手操作调动学生学习积极性,让学生在课堂上多活动,多观察、主动参与到整个教学的全过程,通过自己的努力,发现规律,总结出法则.它符合教学论中的自觉性和积极性.并有利于培养学生勇于探索新知的创新精神.3.学情分析初中七年级的学生,已具备了进行有理数的加减乘除四则运算的能力,对于一个具体的数,能用身边熟悉的、具体的事物来描述刻画它的大小.我主要通过一张纸对折20次后有多高来加深学生对乘方意义的理解,从而进行一些较为复杂的乘方运算.在这样的情景中,学生的许多个人知识和直接经验都能用的上,不同的学生会从中获得不同的心得.因此以这种内容设置作为培养学生数感的载体,恰当且顺应了中学生身心发展的需要.研究表明,这个阶段的学生还以抽象逻辑思维为主要发展趋势,他们的思维仍属于经验性的逻辑思维,很大程度上仍需依赖具体形象的经验材料来理解抽象的逻辑关系,故本节课老师在第一环节尽力通过学生的切身感受和体验发展他们的数感,提倡“做中学”,引导学生先进行猜想,再动手操作,后探索规律,再思考验证,帮助学生发展抽象思维能力.同时据初中七年级学生好动、好问、好奇的心理特征,课堂上创设情境,让每个学生都动口、动脑、动手,积极思考,参与讨论,自己归纳出运算法则.学会自主探究、合作交流的学习方式,在合作交流中培养学生学习的积极性和主动性,使学习方式由“学会”变为“会学”,培养学生良好的学习品质.4 教学环境分析学习地点:多媒体教室硬件条件:投影机和投影屏幕,教师用机1台软件条件:Windows XP系统,microsoft office,math3.0新课标、新理念要求学生充分发挥自身的主体性,通过实际操作,亲身体验得到新知.而多媒体教学具有信息容量大、直观、鲜明、省时等特点,恰好符合我想通过精讲多练让学生牢固掌握本节知识的要求,故做成幻灯片进行本节课的教学. 将实际问题直观化,以图片的形式展示出来,便于理解三、设计理念:1、数学教学的重要目的是发展智力,提高能力,而发展智力、提高能力的核心是发展学生的思维能力,教学中既要注重逻辑推理能力的培养,又要注重观察、归纳以及合情推理能力的培养,因此,根据教学内容和学生的认知水平,我们再一次把培养学生的观察、归纳、推理等能力列入了教学目标.2、学生是学习的“主人”,教学应以学生为中心.从学生已有的生活经验出发,创设有助于学生自主学习的的情境,让学生在老师的指导下主动地学习.学生必须通过自己的探索才能学会数学和会学数学,本人认为学习数学,不如说体验数学,始终给学生以创造发挥的机会,让学生自己在学习中扮演主动角色,教师不代替学生思考,把重点放在教学情境的设计上.3、把学生做巩固性练习和总结运算规律放在一起进行,其效果就远远超出了巩固性练习的初衷.四、教学目标1教学目标(1)知识技能:理解乘方的意义,理解底数、指数、幂的意义及相互关系,会进行有理数的乘方运算,会用计算器求有理数乘方.(2) 数学思考:培养学生通过类比、联想、归纳,加强对乘方意义的理解,发展学生的思维能力.使学生初步具备类比,特殊到一般,化归及分类讨论的数学思想,并培养学生的逆向思维.(3)解决问题:会进行简单的有理数乘方运算和解答简单的实际问题。
1.5.1 乘方(二)1.能确定有理数加、减、乘、除、乘方混合运算的顺序; 2.会进行有理数的混合运算;3.培养并提高正确迅速的运算能力.重点:运算顺序的确定和符号的处理; 难点:有理数的混合运算.一、温故知新1.在2+32×(-6)这个式子中,存在着__三__种运算.2.以4人一个小组讨论、交流,上面这个式子应该先算乘方,再算乘除,最后算加减.二、自主学习1.由上可以知道,在有理数的混合运算中,运算顺序是: (1)先乘方,再乘除,最后加减; (2)同级运算,从左到右进行;(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行. 2.P43例题3,学生试练,教师指导. 3.师生共同探讨P43例题4.1.P44练习. 2.计算:(1)(-1)10×2+(-2)3÷4; 解:原式=2-8÷4 =2-2 =0;(2)(-5)3-3×(-12)4;解:原式=-125-3×116=-125316;(3)115×(13-12)×311÷45;解:原式=115×(-16)×311×54=-115×16×311×45=-225;(4)(-10)4+[(-4)2-(3+32)×2]. 解:原式=10000+[16-(3+9)×2] =10000+(16-12×2) =10000+(16-24)=10000-8 =9992.有理数的混合运算顺序.1.计算:(1)(-3)2×[-23+(-59)];解:原式=9×(-23-59)=9×(-23)-9×59=-6-5=-11;(2)-23÷49÷(-23)3;解:原式=-8×94×(-278)=2434;(3)(0.25)29×430. 解:原式=0.2529×429×4 =1×4 =4.2.观察下面三行数:①-3,9,-27,81,-243,729,…; ②0,12,-24,84,-240,732,…; ③-1,3,-9,27,-81,243,…. (1)第①行数有什么规律?第①行是(-3)1,(-3)2,(-3)3,(-3)4,…(-3)n. (2)第②行数与第①行数有什么关系? 第②行数是第①行相应的数加3.(3)第③行数与第①行数有什么关系? 第③行数是第①行相应数乘以13.(4)取每行数的第10个数,计算这三个数的和. (-3)10+[(-3)10+3]+(-3)10×13=59049+59049+3+59049×13=59049+59049+19683+3 =137784.3.x ,y 为有理数,且|x -1|+2(y +3)2=0,求x 2-3xy +2y 2的值. 解:由题意知x -1=0,y +3=0. ∴x =1,y =-3. ∴x 2-3xy +2y 2=28.4.一根1米长的绳子,第一次剪去12,第二次剪去剩下的12,如此剪下去,第六次后剩下的绳子还有1厘米长吗?为什么?解:(12)6=164≈0.016(米)∵0.016米>1厘米∴第六次后剩下的绳子还有1厘米长.《由立体图形到视图》一、教材分析1.教材所处的地位与作用《由立体图形到视图》是华师大版七年级数学教材第四章第二节第一课时。
1.5.1 有理数的乘方(1)学习目标:1.理解有理数乘方的意义,了解幂、底数、指数等相关概念;2.掌握有理数乘方运算的符号法则,能进行有理数乘方的运算。
学习重点:有理数乘方的运算学习难点:有理数乘方运算的符号法则学习过程一、初窥小径·遇数学之谜珠穆朗玛峰是世界的最高峰,它的海拔高度是8848米。
把一张足够大的厚度为0.1毫米的纸,连续对折30次的厚度能超过珠穆朗玛峰。
二、拾级而上·探数学之理1.(-2)×(-2)×(-2)×(-2) 记作什么?读作什么?2.一般地,n个相同的因数a 相乘,记作 a n,读作 a的 n 次方。
求n个因数的的运算叫做乘方。
三、步步登高·品数学好用活动一、说出下列乘方的底数、指数和意义。
(-2)4 -24活动二、同桌两个人为一组,一位同学写出4个乘方的形式,让另一名同学写出相应的底数和指数。
活动三、分析比较例1、计算:(1)(-4)3;(2)(-2)4;(3)(-32)3。
【归纳】负数的奇次幂是 数,负数的偶次幂是 数。
正数的任何次幂都是 数,0的任何正整数次幂都是 。
四、勇攀高峰·解数学之谜珠穆朗玛峰是世界的最高峰,它的海拔高度是8848米。
把一张足够大的厚度为0.1毫米的纸,连续对折30次的厚度能超过珠穆朗玛峰。
是真的吗?课堂达标1.(-9)8表示的意义是( )A .-9乘8B .8个-9相乘C .9个8相乘的相反数D .8个9相乘的相反数2.下列说法正确的是( )呢?与535322⎪⎭⎫ ⎝⎛A .-23的底数是-2B .-⎝⎛⎭⎫342的底数是-34C .-62的底数是6D .(-3)2的底数是33.化简(-1)2 020的值是( )A .2 020B .-2 020C .1D .-14.(-2)3与-23 ( )A .互为相反数B .相等C .互为倒数D .它们的和为-10 5.计算:(1).(-1)10(2).(-1)7(3).83(4).(-5)3(5). (-3)2(6). -32五、一览众山·悟数学之美本节课学习了哪些知识?掌握了哪些方法?你有什么体会和困惑?六、追逐梦想·巩固提升《名校课堂40页》。
第一章有理数1.5 有理数的乘方1.5.1 乘方第2课时一、教学目标【知识与技能】掌握有理数混合运算的顺序,能正确地进行有理数的加、减、乘、除、乘方的混合运算.【过程与方法】通过例题学习,发展学生观察、归纳、猜想、推理等能力.【情感态度与价值观】体验获得成功的感受、增加学习自信心.二、课型新授课三、课时第2课时,共2课时。
四、教学重难点【教学重点】运算顺序的确定和性质符号的处理【教学难点】有理数的混合运算五、课前准备教师:课件、直尺、计算器等。
学生:三角尺、练习本、铅笔、圆珠笔或钢笔。
六、教学过程(一)导入新课我们学过哪些运算?(出示课件2)学生答:有理数的加、减、乘、除、乘方五种运算。
教师:我们一起来思考下面的问题:教师问1:在2+×(-6)这个式子中,存在着哪几种运算?学生回答:乘方、加法、乘法.教师问2:这道题应按什么顺序运算?学生回答:先算乘方,再算乘法,最后算加法.(二)探索新知1.有理数的混合运算出示课件4-5,学生观察图片,思考问题,列出算式。
圆形花坛的半径为3m,中间雕塑的底面是边长为1m 的正方形。
请同学们估计一下若每平方米种9株花,我要买几株花呀?学生列出算式:(π×32-12)×9教师问3:上式含有哪几种运算?先算什么?后算什么?(出示课件6) 学生回答:下式含有乘方、乘法、减法三种运算,先算乘方,再算括号内的乘法,然后算减法,最后算括号外的乘法.23教师问4:前面我们已经学习加减乘除四则运算,知道要先算乘除,再算加减,现在又多一种乘方运算,你们认为在做有理数混合运算时,应注意哪些运算顺序?师生共同解答如下:(出示课件7)(1)先算乘方,再算乘除,最后算加减;(2)同级运算,从左到右进行;(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.例1:计算:(出示课件8)(1)2×(-3)3-4×(-3)+15;(2)(-2)3+(-3)×[(-4)2+2]-(-3)2÷(-2).师生共同解答如下:解:(1)原式=2×(-27)-(-12)+15=-54+12+15=-27(2)原式=-8+(-3)×(16+2)-9÷(-2)=-8+(-3)×18-(-4.5)=-8-54+4.5=-57.5总结点拨:分清运算顺序,先乘方,再做中括号内的运算,接着做乘除,最后做加减.计算时,特别注意符号问题.例2:计算:(出示课件10)师生共同解答如下:解法一、原式= 解法二、原式= =-6+(-5)=-11总结点拨:在运算过程中,巧用运算律,可简化计算.2.探究数字规律例:观察下面三行数:(出示课件12-14)–2, 4, –8, 16, –32, 64,…; ①0, 6, –6, 18, –30, 66,…; ②–1, 2, –4, 8, –16, 32,…. ③(1)第①行数按什么规律排列?师生共同解答如下:分析:观察①,发现各数均为2的倍数.联系数的乘方,从符号和绝对值两方面考虑,可发现排列的规律.解:(1)第①行数是-2,(-2)2,(-2)3,(-2)4,(-2)5,(-2)6,…(2)对比①②两行中位置对应的数,你有什么发现?()2253[]39⎛⎫-⨯-+- ⎪⎝⎭119119⎛⎫⨯-=- ⎪⎝⎭259939⎛⎫⎛⎫⨯-+⨯- ⎪ ⎪⎝⎭⎝⎭222220,46,86,1618,..++++-−−→−−→-−−→-−−→第②行数是第①行相应的数加2.即 -2+2,(-2)2+2,(-2)3+2,(-2)4+2,…对比①③两行中位置对应的数,你有什么发现?第③行数是第①行相应的数的一半,即-2×0.5,(-2)2×0.5,(-2)3×0.5,(-2)4×0.5,…(3)根据第①行数的规律,得第10个数为(-2)10,那么第②行的第10个数为(-2)10+2,第③行中的第10个数是(-2)10×0.5.所以每行数中的第10个数的和是:(-2)10+[(-2)10+2]+[(-2)10×0.5]=1024+(1024+2)+1024×0.5=1024+1026+512=2562(三)课堂练习(出示课件16-20)1.计算4+(–2)2×5=( )A .–16B .16C .20D .242.计算式子(–1)3 +(–1)6的结果是( )A.1B.–1C.0D.1或–13.设a=–2×32, b=(–2×3)2, c=–(2×3)2,那么a 、b 、c 的大小关系是( )A.a<c<bB.c<a<bC.c<b<aD.a<b<c4.计算:(-12)2×(91-41) 5.计算:(-2)2022+(-2)20236.计算:(1)2×(-3)2-4×(-3)+15 ;(2)16122472;⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭(3)()27274;⎛⎫-+-÷- ⎪⎝⎭ (4)-8-3×(-1)3-(-1)4 7.一个长方体的长、宽都是a,高是b,它的体积和表面积怎样计算?当a=2 cm,b=5 cm 时,它的体积和表面积是多少?参考答案:1.D 解析:4+(–2)2×5=4+4×5=4+20=24.2.C3.B4.解:(-12)2×(91-41) =144×41-144×91 =36-16=205.解:原式=22022 – 22023= 22022 – 22022×2= 22022 –22022 –22022= –220226.(1)45;(2)79;(3)0;(4)-6 7.解:体积V=a 2b=22×5=20 cm 3.表面积S=2a 2+4ab=2×22+4×2×5=48 cm 2.(四)课堂小结今天我们学了哪些内容:有理数混合运算的顺序:1.先乘方,再乘除,最后加减;2.同级运算,从左往右进行;3.如果有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.(五)课前预习预习下节课(1.5.2)的相关内容。
“有理数”的复习课(2)的教学设计:【课题】“有理数”的复习课(2)【设计与执教者】:【教学时间】:【学情分析】:本设计面向平行班学生,在学生学习有理数全章书后,对有理数的运算法则已有初步的了解,能进行有理数的加减、乘除、乘方的运算,但如何才能做到准确进行运算,并能正确运用运算律简化运算等方面还需加强,因此,希望通过本节课的复习,使学生进一步掌握基本技能和基本方法,提高有理数加减、乘除、乘方的运算熟练程度和准确率。
【学情目标】:系统复习有理数加、减、乘、除、乘方的运算法则及运算律,熟练进行有理数的加、减、乘、除、乘方及混合运算;会运用运算律进行有理数的简便运算,提高解题的速度和准确性。
【教学重点】:熟练进行有理数加减、乘除、乘方的混合运算【教学难点】:准确进行有理数加减、乘除、乘方的混合运算【教学突破点】:通过实例帮助学生掌握有理数加、减、乘、除、乘方的运算法则,会运用运算律进行有理数的简便运算,提高解题的速度和准确性,设计分层练习,让各层次的学生能在课堂上得到有效的训练。
【教法、学法设计】:分层教学,讲授、练习相结合。
【教学过程】:练习与测评: 一、基础题(1))6514()537()6155()5213(-+--+-- (2) )21()43()32(6)3(42+÷-+-⨯--⨯- (3)11136(2)4912⎛⎫-⨯--÷-⎪⎝⎭(4)2)6(1)]43(361)2411[(-÷-+++ 二、中等题:1、某摩托车厂本周计划每日生产250辆摩托车,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(增加的辆数为正数)①本周六生产了多少辆?②产量最多的一天比产量最少的一天多生产了多少辆? ③本周平均每天实际生产多少辆? 解:①周六生产了241辆②34辆周五生产了259辆,周日生产了225辆产量最多的一天比产量最少的一天多生产了34辆 ③247辆 2473250725894375250=-=--++-+-+2、将-15、-12、-9、-6、-3、0、3、6、9,填入下列 小方格里,使大方格的横、竖、斜对角的三个数字之和都相等。
有理数的乘方乘方( 2)知识与技术 能确立有理数加、 减、乘、除、乘方混淆运算的次序;能够娴熟地进行有理数的加、减、乘、除、乘方的运 过程与方法教课目的算,并在运算过程中合理使用运算律;培育学生对数的感觉, 提升学生正确运算的能力,培感情态度价养 学生思想的逻辑性和灵巧性,进一步发展学生的值观思想能力.教课要点有理数的混淆运算法例教课难点运算次序确实定和性质符号的办理教课过程(师生活动)设计理念教师提出问题:在 2+ 32×(- 6)这个式子中,存在着哪几种运算?给学生充足议论学生回答后,教师可持续发问:这道题应按什么顺的时间,鼓舞他提出问题序运算?前方我们已经学习加减乘除四则运算,知道们多发布自己的小组议论以为在做有理数混淆运算时,应注意哪些运算次序?请看法。
分 4 人小组议论。
小组议论后,请小组代表报告、沟通议论结果,其他同学增补,教师在学生回答的基础上做适合的总结与增补:( 1) 先算乘方,再算乘除,最后算加减;( 2) 同级运算,从左到右进行;( 3) 若有括号, 先做括号内的运算, 按小括号、 中括号、大括号挨次进行。
培育学生擅长归例 1 计算:纳、总结的能力,( 1)(- 2)3+(- 3)× [ (- 4) 2+2] -(- 3)2÷(-五种代数运算可分为三级;加减 沟通反应是一级,乘除是2);( 2) 1- 1× [3 ×(- 2)2-(- 1)41÷(- 1二级,乘方与开 ]+)方(此后会学)2 342是二级。
值.3、师生共同探请教科书44页的例 4.3.重申:按有理数混淆运算的次序进行运算,在每一步运 算中,仍旧是要先确立结果的符号,再确立符号的绝对要先算乘除,再算加减,此刻又多一种乘方运算,你们例 2 察下边三行数:-2, 4,- 8, 16,- 32, 64,⋯;① 0, 6,- 6, 18,- 30, 66,⋯;②-1, 2,- 4, 8 ,- 16, 32,⋯.③( 1)第①行数按什么律摆列?( 2)第②③行数与第①行数分有什么关系?( 3)取每行数的第 10 个数,算三个数的和.225 ] ,1.算3[39建学生采纳多种方法行算。