传感器第五章
- 格式:doc
- 大小:45.50 KB
- 文档页数:3
第5章《传感器及其应用》第1节 揭开传感器的“面纱”【学习目标】1.了解传感器在生产和生活中的应用。
2.知道非电学量转换成电学量的技术意义。
3.知道传感器的最基本原理及其一般结构。
4.知道敏感元件的作用。
【要点透析】1. 什么是传感器?传感器是把非电学物理量(如位移、速度、压力、温度、湿度、流量、声强、光照度等)按一定规律转换成便于处理和传输电学量(如电压、电流等)的一种元件。
传感器输入的是非电学物理量,输出的是电学量。
将非电学物理量转换成电学量后,测量比较方便,而且能输入到计算机进行处理。
各种传感器是自动控制设备中不可缺少的元件,已经渗透到宇宙开发、环境保护、交通运输以至家庭生活等多种领域。
2.传感器的组成传感器一般由敏感元件、转换元件和测量电路三部分组成,有时还需要加辅助电源。
如图5.1-1所示。
敏感元件(预变换器):将不能够直接变换为电量的非电量转换为可直接变换为电量的非电量元件。
敏感元件是传感器的核心部分,它是利用材料的某种敏感效应(如热敏、光敏、压敏、力敏、湿敏等)制成的。
转换元件:将感受到的非电量直接转换为电量的器件称为转换元件,如压电晶体、热电偶等。
转换电路:将转换元件输出的电量变成便于显示、记录、控制和处理的有用电信号的电路称为测量电路。
3.传感器的分类传感器的种类很多,目前尚没有统一的分类方法,一般常采用的分类方法有如下几种:(1)按工作原理分类物理传感器:利用物质的物理性质和物理效应感知并检测出待测对象信息的传感器,如电容传感器、电感传感器、光电传感器、压电传感器等;化学传感器:利用化学反应识别和检测信息的传感器,如气敏传感器、湿敏传感器等; 生物传感器:利用生物化学反应识别和检测信息的传感器,它是由固定生物体材料和适图5.1-1 敏感元件当转换器件组合成的系统。
如组织传感器、细胞传感器、酶传感器等。
(2)按用途分类这种分类方法给使用者提供了方便,容易根据需要测量的对象选择所需要的传感器。
第5章电阻应变式传感器学习要点:1.掌握传感器的工作原理及性能2.了解传感器的结构、种类3.掌握测量电路及其补偿方法4.掌握应变片的布置及接桥方式5.了解传感器的应用电阻应变式传感器的基本原理是将被测非电量转换成与之有确定对应关系的电阻值,再通过测量此电阻值达到测量非电量的目的。
一、工作原理及结构参数1. 电阻应变片的工作原理电阻应变片分为金属电阻应变片和半导体应变片。
金属电阻应变片的工作原理是基于导体材料的“电阻应变效应”,半导体应变片的工作原理是基于半导体材料的“压阻效应”。
当电阻丝受到拉伸或压缩时,其几何尺寸和电阻值同时发生变化,电阻的相对变化为ρρ+εμ+=d)21(RdRx对于金属材料来说,电阻应变效应是主要的。
由于压阻系数很小,电阻率的变化可以忽略不计,所以有 x)21(RdRεμ+=其灵敏度 0/12xdRRSμε==+对于半导体材料来说,其压阻效应远大于其应变效应,所以有xLEdRdRεπρρ==其灵敏度 ERdRSLxπε==0和金属电阻应变片相比,半导体应变片具有灵敏度系数大,横向效应小,机械滞后小,尺寸小等优点,但是,半导体应变片多数用薄硅片制成,容易断裂,其测试时的可测应变范围通常限制在3000με左右,而金属电阻应变片的可测应变值达40000με。
另外,半导体应变片的温度稳定性差,测量较大应变时非线性严重,所以其应用仍然受到一定的限制。
当同样长度的线材制成金属电阻应变片时,试件的轴向应变使敏感栅电阻发生变化,同时敏感栅半圆弧部分产生的横向应变也将使其电阻发生变化。
应变片的这种既受轴向应变影响,又受横向应变影响而引起电阻变化的现象称为横向效应。
横向效应的存在使得在测量纵向应变时,圆弧部分产生了一个负的电阻变化,从而降低了应变片的灵敏度系数。
减小横向效应的措施主要有:1)按标称灵敏度系数的测定条件使用;2)减小横向效应系数C,采用短接措施或采用箔式应变片;3)针对实际情况,重新标定在实际使用的应变场下,应变片的应变灵敏度系数。
第四章磁敏传感器
4-1
什么是磁敏传感器?它有哪些类型?
答:通常把能将磁学量信号转换成电信号的器件或装置称为磁敏传感器。
按照原理主要有三大类:
(1)利用半导体材料内部的载流子(电子、空穴)随磁场变运动方向这一特性而制成的而制成的传感器,代表产品有霍尔器件、磁敏电阻、磁敏二极管和磁敏晶体管等;
(2)利用电磁感应原理制成的传感器,主要有电涡流传感器、磁通门磁强计、磁栅式传感器和电感线圈磁头;
(3)金属膜磁敏电阻、巨磁阻抗传感器、磁致伸缩和韦甘德器件,以及核磁共振磁强计等。
4-2
什么是霍尔传感器?它有什么特点?
答:利用霍尔效应原理将被测量磁场转换成电动势的一种磁敏传感器称为霍尔器件,又称为霍尔式传感器。
特点有:结构简单、体积小、坚固且质量轻,无触点、稳定性好、使用方便;频率响应宽、动态范围大、输出信号信噪比大;使用寿命长、可靠性高,易微型化和集成化等。
4-5
霍尔集成电路有哪几种类型?开关型霍尔集成电路有什么特点?线性型霍尔集成电路有什么特点?使用时应注意什么?霍尔传感器有哪些应用实例?
答:霍尔集成电路有线性型和开关型两类。
开关型霍尔集成电路体积小,灵敏度高,安全可靠,使用简单,安装方便。
是很好的非接触式位置开关传感器。
霍尔效应线性型集成电路是利用硅平面工艺,在霍尔效应基础上与放大器组合一起的集成的电路。
它是一种高灵敏的磁电转换器件,线性度较好,可广泛用于位置传感、非接触测距、无触点电位器、无刷马达、磁场测量、高斯计、磁力探伤等等。
下面分别介绍三种国产C S型霍尔效应线性集成
电路。
对于开关型霍尔IC,其输出端内部一般为开路集电极晶体管或开路发射极输出器形式。
因此它能方便地与各种负载配接,如可直接驱动晶体管、LED、光电耦合器、单双向晶闸管和小电流继电器等,并能和TTL及CMOS数字电路、PLC输入口、固态继电器、各种交直流电子开关接口。
线性霍尔集成电路有其独特优点,可适用于准礁测量,控制位置、重量、厚度及电流等。
霍尔器件的应用主要有:1、位移测量;2、功率测量;3、磁强测量仪;4、霍尔开关集成传感器的应用等。
4-8
什么是磁阻效应?磁敏电阻有哪几种类型?半导体磁敏电阻有什么特点?它是怎样工作的?磁敏电阻有哪些主要特性?磁敏电阻有哪些主要用途?
答:将外加磁场使半导体或导体的电阻发生变化的现象称为磁阻效应。
磁敏电阻的类型有:长方形磁敏电阻、高灵敏栅格型磁敏电阻、科宾诺元件、共晶磁阻元件。
特点:具有两个端子、结构简单、灵敏度高、安装方便等优点,其应用较为普遍。
工作原理:当外加磁场的方向或强度发生变化时,磁敏电阻的阻值相应改变,利用该变化,可精确地测试出磁场的相对位移。
用半导体材料制作的磁敏电阻器、无触点电位器、模拟运算器和磁传感器等应用于测量、计算机、无线电和自动控制等方面。
4-13
设计一利用霍尔开关集成电路检测发动机转速的电路。
要求当转速过高时或过低时发出警报信号。
答:系统由传感器、信号处理、显示电路和系统软件等部分组成。
传感器采用霍尔传感器,负责将转速转化为脉冲信号。
信号处理电路包含待测信号放大、波形变换、波形整形电路等部分,其中放大器实现对待测信号的放大,降低对待测信号的幅度要求,实现对小信号的测量;波形变换和波形整形电路实现把正负交变的信号波形变换成可被单片机接受的TTL/CMOS兼容信号。
处理器采用STC89C52单片机,显示器采用8位LED数码管动态显示。