单因素方差分析SPSS
- 格式:ppt
- 大小:925.50 KB
- 文档页数:31
SPSS——单因素方差分析详解单因素方差分析(One-Way ANOVA)常用于比较两个或更多组之间的平均差异是否显著。
本文将详细介绍单因素方差分析的原理、步骤和结果解读。
一、原理:单因素方差分析通过比较组间方差(Treatment Variance)与组内方差(Error Variance)的大小来判断不同组间的平均差异是否显著。
组间方差反映了不同组之间的平均差异,而组内方差反映了同一组内个体之间的随机波动。
如果组间方差显著大于组内方差,则可以判断不同组间的平均差异是显著的。
二、步骤:1.收集数据:首先确定研究问题和目的,然后根据实际情况设计并收集数据。
例如,我们想比较三个不同品牌的手机的待机时间是否有显著差异,需要收集每个品牌手机的待机时间数据。
2.建立假设:根据研究问题和数据的特点,建立相应的零假设(H0)和备择假设(Ha)。
在单因素方差分析中,零假设通常是所有组的平均值相等,备择假设则是至少有一组平均值与其他组不等。
4.分析结果解读:SPSS输出了一系列统计结果,包括方差分析表、平均值表、多重比较和效应大小等信息。
关键的统计结果包括F值、P值和ETA方。
-方差分析表:用于比较组间方差和组内方差的大小。
方差分析表中的F值表示组间方差除以组内方差的比值,F值越大说明组间差异越显著。
-P值:用于判断F值的显著性。
如果P值小于设定的显著性水平(通常为0.05),则拒绝零假设,即认为不同组间的平均差异是显著的。
-ETA方:代表效应大小程度。
ETA方越大说明组间的差异对总变异的解释程度越大,即差异的效应越显著。
5. 多重比较:如果方差分析结果显著,需要进行多重比较来确定具体哪些组之间存在显著差异。
SPSS提供了多种多重比较方法,包括Tukey HSD、Scheffe和Bonferroni等。
三、结果解读:对方差分析的结果进行解读时,需要综合考虑F值、P值、ETA方和多重比较结果。
1.F值和P值:-如果F值显著(P值小于设定显著性水平),则可以得出不同组间的平均差异是显著的结论。
单因素方差分析spss
一、什么是单因素方差分析
单因素方差分析(ANOVA)是一种统计技术,用于检测是否存在任何
显著差异,以及这些差异在哪里。
它旨在测定两个或更多样本之间的
差异,样本是来自不同类别的几个组的变量,这些组别被称为因素。
二、单因素方差分析的作用
单因子方差分析的作用是确定某一变量的一个或多个不同水平之间的
统计性差异。
当检验不同类别内的水平差异时,单因素方差分析是最
常用的技术。
三、单因素方差分析使用SPSS
SPSS是一个很容易使用的统计分析软件,可以应用单因素方差分析来
检验样本之间的差异。
下面是使用SPSS进行单因素方差分析的步骤:
1. 打开SPSS,打开新建数据表,输入各个组别的名称以及对应的分数。
2. 在“分析”菜单中,点选“生成”,然后选择“单因素方差分析”。
3.在“因变量”框中输入需要分析的变量,在“因素”框中输入需要比较的分组。
4. 点击OK运行,等待完成,结果就直接在SPSS统计屏幕上显示出来了。
五、结论
单因素方差分析是一种强大的统计技术,可以用来帮助研究人员确定是否存在任何显著差异。
使用SPSS来完成单因素方差分析也是比较简单的,只需要正确输入变量,点击“分析”和“生成”,等待报告显示结果就可以了。
单因素方差分析 SPSS简介SPSS(统计软件包社会科学)是一款功能强大的统计软件,广泛应用于社会科学研究领域。
在此文档中,我们将介绍如何使用SPSS进行单因素方差分析(One-way ANOVA)。
单因素方差分析单因素方差分析是一种统计方法,用于比较两个或更多个组之间的均值差异。
它的基本原理是将总体均值差异分解为组内变异和组间变异两部分。
通过比较组间变异与组内变异的大小,我们可以判断组之间是否存在显著差异。
在进行单因素方差分析之前,我们需要满足以下前提条件: 1. 数据应该来自正态分布的总体。
2. 等方差性:各组之间的方差应该是相等的。
3. 独立性:不同组之间的个体应该是相互独立的。
SPSS使用步骤以下是在SPSS中进行单因素方差分析的步骤。
步骤1:导入数据首先,打开SPSS软件并导入包含需要进行单因素方差分析的数据的文件。
选择“打开文件”选项,然后选择相应的数据文件。
步骤2:设置变量在SPSS中,我们需要将需要进行单因素方差分析的变量设置为“因子变量”(Factor Variable)。
选择“数据”菜单中的“变量视图”,然后选择需要进行单因素方差分析的变量,在“类型”一栏中选择“因子”。
步骤3:进行单因素方差分析选择“分析”菜单中的“比较手段”选项,然后选择“单因素方差”。
步骤4:指定变量在单因素方差分析对话框中,将需要进行分析的因子变量移动到“因子”框中。
步骤5:选项设置在单因素方差分析对话框中,可以设置一些可选参数,如:显示描述性统计信息、绘制盒须图等。
根据需要对这些选项进行设置。
步骤6:结果解读点击“确定”按钮后,SPSS将执行单因素方差分析并生成结果输出。
在输出窗口中,可以看到各组的均值、标准差和方差等统计指标。
同时,还会显示组间变异和组内变异的F统计量、p值和显著性水平。
结论单因素方差分析是一种用于比较多个组间均值差异的统计方法。
通过SPSS软件,我们可以轻松地进行单因素方差分析,并获取分析结果。
SPSS——单因素方差分析来源:李大伟的日志单因素方差分析单因素方差分析也称作一维方差分析。
它检验由单一因素影响的一个(或几个相互独立的)因变量由因素各水平分组的均值之间的差异是否具有统计意义.还可以对该因素的若干水平分组中哪一组与其他各组均值间具有显著性差异进行分析,即进行均值的多重比较.One—Way ANOVA过程要求因变量属于正态分布总体。
如果因变量的分布明显的是非正态,不能使用该过程,而应该使用非参数分析过程.如果几个因变量之间彼此不独立,应该用Repeated Measure过程.[例子]调查不同水稻品种百丛中稻纵卷叶螟幼虫的数量,数据如表1—1所示。
表1—1 不同水稻品种百丛中稻纵卷叶螟幼虫数重复水稻品种1234514133383731 23937353934 34035353834数据保存在“data1。
sav”文件中,变量格式如图1—1.图1—1分析水稻品种对稻纵卷叶螟幼虫抗虫性是否存在显著性差异。
1)准备分析数据在数据编辑窗口中输入数据。
建立因变量“幼虫”和因素水平变量“品种",然后输入对应的数值,如图1-1所示。
或者打开已存在的数据文件“data1。
sav”。
2)启动分析过程点击主菜单“Analyze”项,在下拉菜单中点击“Compare Means”项,在右拉式菜单中点击“0ne-Way ANOVA”项,系统打开单因素方差分析设置窗口如图1—2。
图1—2 单因素方差分析窗口3)设置分析变量因变量:选择一个或多个因子变量进入“Dependent List”框中。
本例选择“幼虫”.因素变量:选择一个因素变量进入“Factor"框中.本例选择“品种"。
4)设置多项式比较单击“Contrasts”按钮,将打开如图1-3所示的对话框.该对话框用于设置均值的多项式比较。
图1—3 “Contrasts"对话框定义多项式的步骤为:均值的多项式比较是包括两个或更多个均值的比较。
SPSS作业3:方差分析不同学校专业类别对报名人数的分析(一)单因素方差分析基本操作:(1)选择菜单Analyz e-Compare means―One-Way ANOVA;(2)分别选择“报名人数”“专业类别”和“报名人数”“学校”做分析,结果如下:a.专业类别对报名人数的单因素方差分析结果b.不同学校对报名人数的单因素方差分析结果1分析:提出零假设―选择检验统计量―计算检验统计量的观测值及概率p值―给出显著性水平a,做出决策。
零假设:不同专业类别对报名人数没有显著影响;备择假设:不同专业类别对报名人数有显著影响。
图a是专业类别对报名人数的单因素方差分析结果。
可以看出,报名人数的总离差平方和为2.617E8;如果仅考虑专业类别单个因素的影响,则报名人数总变差中,专业类别可解释的变差为5.866E7,抽样误差引起的变差为2.030E8,他们的方差分别为1.955E7和1450230.159,相除所得的F统计量为13.483,对应的p值近似为0。
如果显著水平为a=0.05,由于p值小于a,则应拒绝原假设,认为不同专业类别对报名人数产生了显著影响,它对报名人数的影响效应应不全为0。
零假设:不同学校对报名人数没有显著影响:备择假设:不同学校对报名人数有显著影响。
图b是不同学校对报名人数的单因素方差分析结果。
可以看出,报名人数的总离差平方和为2.617E8;如果仅考虑学校单个因素的影响,则报名人数总变差中,不同学校可解释的变差为9.265E7,抽样误差引起的变差为1.690E8,他们的方差分别为5450179.739和1341587.302,相除所得的F统计量为4.062,对应的p值近似为0。
如果显著水平为a=0.05,由于p值小于a,则应拒绝原假设,认为不同学校对报名人数产生了显著影响,它对报名人数的影响效应应不全为0。
(二)单因素方差的进一步分析基本操作:在Optio n、Post Hoc、Contrasts框中,选择所需要的计算值,结果如下:不同专业类别对报名人数的基本描述统计量及95%置信区间2分析:在4中不同专业类别中,各有36个样本,其中,经管类的报名人数最多,其次是理工类,然后是艺术类,最少的是文学类。
用SPSS进行单因素方差分析和多重比较20学分
一、问题描述
本研究旨在探讨应用不同管理模式(A、B、C三种)对企业的管理效果。
二、研究假设
1、应用不同管理模式会对企业的管理效果产生影响。
2、A、B、C三种管理模式对企业的管理效果有显著差异。
三、研究方法
本研究采用SPSS进行单因素方差分析和多重比较。
四、数据分析
1、用SPSS分析单因素方差分析,结果如下:
表1单因素方差分析检验结果
检验项目,F,F检验结果
:--:,:--:,:--:
总体方差检验,11.56,P<0.001
结果表明,管理模式对企业的管理效果有显著差异
(F=11.56,p<0.001)。
2、多重比较结果如下:
表2多重比较结果
比较组,比较结果,LSD-t
:--:,:--:,:--:
A与B,14.78*,1.96
A与C,21.14*,1.96
B与C,6.36*,1.96
*P<0.001
比较结果显示,A(17.48)组的管理效果要优于B(2.70)组,要优于
C(-3.66)组;B(2.70)组的管理效果要优于C(-3.66)组(P<0.001)。
五、结论
综上所述,本研究采用SPSS进行单因素方差分析和多重比较,结果
表明,应用不同管理模式会对企业的管理效果产生显著影响,A组的管理
效果要优于B组和C组,而B组的管理效果也要优于C组。
SPSS中的单因素方差分析单因素方差分析(One-way ANOVA)是一种常用的统计方法,用于比较不同组之间的平均数差异是否显著。
本文将介绍SPSS中进行单因素方差分析的步骤和结果解读。
首先,我们需要准备数据。
假设我们有一个实验,想要比较三种不同根据不同学习方法进行学习的组之间的学习成绩差异。
我们随机选择了30个参与者,将他们以随机方式分成三组,分别进行不同训练方法的学习。
每个参与者在学习结束后会得到一个学习成绩。
我们将数据录入SPSS,将每个组的学习成绩作为一个变量,并将组别作为因素变量。
确保数据已经正确输入后,我们可以进行单因素方差分析。
1. 打开SPSS软件,点击"Analyze",然后选择"General Linear Model",再选择"One-Way ANOVA"。
2. 在弹出的对话框中,将变量选择为因变量,将因素选择为分组变量。
点击"Options"来选择分析的选项,比如描述性统计和效应大小指标。
3.点击"OK"进行分析。
在分析结果会显示出表格,其中包含了各个组的均值、方差、诸如F值和p值等统计指标。
根据分析结果,我们可以得到以下结论:-F值:根据单因素方差分析的结果表格,我们可以看到F值。
F值是一种比较不同组均值变异性的度量。
F值越大,说明组之间的平均差异越显著。
-p值:p值是用来判断组别之间的差异是否显著的指标。
在单因素方差分析中,我们通常关注的是p值是否小于0.05(或者0.01,根据研究需要),小于这个阈值说明组别之间的差异是显著的。
根据我们的假设,在我们的实验中,不同学习方法对学习成绩有显著影响。
通过SPSS的单因素方差分析,我们可以得到以下结论:-F值:在我们的实验中,F值为10.41、这个结果意味着不同学习方法组之间的学习成绩有显著差异。
-p值:p值为0.001,在我们的显著水平0.05下,p值小于阈值,说明组别之间的学习成绩差异是显著的。
用SPSS进行单因素方差分析和多重比较在SPSS中进行单因素方差分析和多重比较可以帮助研究人员分析各组之间的差异,并确定是否存在显著性差异。
本文将详细介绍如何使用SPSS进行单因素方差分析和多重比较。
一、单因素方差分析1.数据准备首先,将数据导入SPSS软件。
确保每个观测值都位于独立的行中,并且将每个因素作为一个变量列。
确保每个变量的测量水平正确设置。
对于要进行单因素方差分析的变量,应该是连续型变量。
2.描述性统计在执行方差分析之前,我们需要进行描述性统计,以了解每个组的均值、标准差和样本数量。
在SPSS中,可以通过选择“统计”菜单,然后选择“描述统计”来执行描述性统计。
在弹出的对话框中,选择想要分析的变量,并选择“均值”和“标准差”。
3.单因素方差分析要进行单因素方差分析,在SPSS中选择“分析”菜单,然后选择“一元方差分析”。
在弹出的对话框中,将要分析的变量移入“因素”框中。
然后,点击“选项”按钮,选择想要输出的结果,如方差分析表和均值表。
最后,点击“确定”执行单因素方差分析。
4.结果解读方差分析表提供了重要的统计信息,包括组间和组内的平方和、自由度、均方、F值和p值。
其中,F值表示组间变异性和组内变异性的比值。
p值表示在原假设下观察到的差异是否显著。
如果p值小于设定的显著性水平(通常为0.05),则可以拒绝原假设,即存在显著差异。
二、多重比较当在单因素方差分析中发现存在显著组间差异时,下一步是进行多重比较,以确定哪些组之间存在显著差异。
1.多重比较检验在SPSS中,可以使用多种方法进行多重比较检验,如Tukey HSD、Bonferroni、LSD等。
这些方法可以通过选择“分析”菜单,然后选择“比较手段”来执行。
在弹出的对话框中,选择要进行比较的变量和方法。
点击“确定”执行多重比较检验。
2.结果解读多重比较结果表提供了各组之间的均值差异估计、标准误差、置信区间和p值。
根据p值,可以确定哪些组之间存在显著差异。
SPSS--单因素方差分析单因素方差分析也称作一维方差分析。
单因素方差分析是两个样本平均数比较的引伸,是指对单因素试验结果进行分析,检验因素对试验结果有无显著性影响的方法。
它是用来检验多个平均数之间的差异,从而确定因素对试验结果有无显著性影响的一种统计方法。
单因素方差分析(one-way ANOVA),用于完全随机设计的多个样本均数间的比较,其统计推断是推断各样本所代表的各总体均数是否相等。
采用One-way ANOVA过程要求:因变量属于正态分布总体,若因变量的分布明显是非正态,应该用非参数分析过程。
若对被观测对象的试验不是随机分组的,而是进行的重复测量形成几个彼此不独立的变量,应该用Repeated Measure菜单项,进行重复测量方差分析,条件满足时,还可以进行趋势分析。
[例子]调查不同水稻品种百丛中“稻纵卷叶螟”幼虫的数量,数据如表1-1所示。
分析水稻品种对稻纵卷叶螟幼虫抗虫性是否存在显著性差异。
表1-1不同水稻品种百丛中“稻纵卷叶螟”幼虫数(个/100丛)1建立因变量“虫数”和因素水平变量“品种”,然后在数据编辑窗口中输入对应的数值。
变量格式如表1-2和图1-1所示。
或者打开已存在的数据文件“虫数.sav”。
图1-12)启动分析过程从菜单中选择:分析 > 比较均值 > 单因素 ANOVA。
打开单因素方差分析对话框,如图1-2。
图1-2单因素方差分析窗口3)设置分析变量在这个对话框中,将因变量(观测变量)放到“因变量列表”框中,本例选择“虫数”。
将因素变量(自变量)放到“因子”框中。
本例选择“品种”。
4)设置多项式比较(一般选择缺省值)单击“对比”按钮,将打开如图1-3所示的对话框。
该对话框用于设置均值的多项式比较。
图1-3“对比”对话框定义多项式的步骤为:均值的多项式比较是包括两个或更多个均值的比较。
例如图1-3中显示的是要求计算“1.1×mean1-1×mean2”的值,检验的假设H0:第一组均值的1.1倍与第二组的均值相等。
SPSS——单因素方差分析来源:李大伟的日志单因素方差分析单因素方差分析也称作一维方差分析。
它检验由单一因素影响的一个(或几个相互独立的)因变量由因素各水平分组的均值之间的差异是否具有统计意义。
还可以对该因素的若干水平分组中哪一组与其他各组均值间具有显著性差异进行分析,即进行均值的多重比较。
One-Way ANOVA过程要求因变量属于正态分布总体。
如果因变量的分布明显的是非正态,不能使用该过程,而应该使用非参数分析过程。
如果几个因变量之间彼此不独立,应该用Repeated Measure 过程。
[例子]调查不同水稻品种百丛中稻纵卷叶螟幼虫的数量,数据如表1-1所示。
表1-1 不同水稻品种百丛中稻纵卷叶螟幼虫数数据保存在“data1.sav”文件中,变量格式如图1-1。
图1-1分析水稻品种对稻纵卷叶螟幼虫抗虫性是否存在显著性差异。
1)准备分析数据在数据编辑窗口中输入数据。
建立因变量“幼虫”和因素水平变量“品种”,然后输入对应的数值,如图1-1所示。
或者打开已存在的数据文件“data1.sav”。
2)启动分析过程点击主菜单“Analyze”项,在下拉菜单中点击“Compare Means”项,在右拉式菜单中点击“0ne-Way ANOVA”项,系统打开单因素方差分析设置窗口如图1-2。
图1-2 单因素方差分析窗口3)设置分析变量因变量:选择一个或多个因子变量进入“Dependent List”框中。
本例选择“幼虫”。
因素变量:选择一个因素变量进入“Factor”框中。
本例选择“品种”。
4)设置多项式比较单击“Contrasts”按钮,将打开如图1-3所示的对话框。
该对话框用于设置均值的多项式比较。
图1-3 “Contrasts”对话框定义多项式的步骤为:均值的多项式比较是包括两个或更多个均值的比较。
例如图1-3中显示的是要求计算“1.1×mean1-1×mean2”的值,检验的假设H0:第一组均值的1.1倍与第二组的均值相等。
SPSS统计分析软件应用一、SPSS中的单因素方差分析(One-Way Anova) (一)基本原理单因素方差分析也即一维方差分析,是检验由单一因素影响的多组样本某因变量的均值是否有显著差异的问题,如各组之间有显著差异,说明这个因素(分类变量)对因变量是有显著影响的,因素的不同水平会影响到因变量的取值。
(二)实验工具SPSS for Windows(三)试验方法例:某灯泡厂用四种不同配料方案制成的灯丝(filament),生产了四批灯泡。
在每批灯泡中随机地抽取若干个灯泡测其使用寿命(单位:小时hours),数据列于下表,现在想知道,对于这四种灯丝生产的灯泡,其使用寿命有无显著差异。
(四)不使用选择项操作步骤(1)在数据窗建立数据文件,定义两个变量并输入数据,这两个变量是:filament变量,数值型,取值1、2、3、4分别代表甲、乙、丙、丁,格式为F1.0,标签为“灯丝”。
Hours变量,数值型,其值为灯泡的使用寿命,单位是小时,格式为F4.0,标签为“灯泡使用寿命”。
(2)按Analyze,然后Compared Means,然后One-Way Anova 的顺序单击,打开“单因素方差分析”主对话框。
(3)从左边源变量框中选取变量hours,然后按向右箭头,所选去的变量hours即进入Dependent List框中。
(4)从左边源变量框中选取变量filament,然后按向右箭头,所选取的变量folament即进入Factor框中。
(5)在主对话框中,单击“OK”提交进行。
(五)输出结果及分析灯泡使用寿命的单因素方差分析结果该表各部分说明如下:第一列:方差来源,Between Groups是组间变差,Within Groups 是组内变差,Total是总变差。
第二列:离差平方和,组间离差平方和为39776.46,组内离差平方和为178088.9,总离差平方和为217865.4,是组间离差平方和与组内离差平方和相加而得。
SPSS中的单因素方差分析(One-WayAnova)SPSS统计分析软件应用一、SPSS中的单因素方差分析One-Way Anova(一)基本原理单因素方差分析也即一维方差分析,是检验由单一因素影响的多组样本某因变量的均值是否有显著差异的问题,如各组之间有显著差异,说明这个因素(分类变量)对因变量是有显著影响的,因素的不同水平会影响到因变量的取值。
(二)实验工具SPSS for Windows(三)试验方法例:某灯泡厂用四种不同配料方案制成的灯丝(filament),生产了四批灯泡。
在每批灯泡中随机地抽取若干个灯泡测其使用寿命(单位:小时hours),数据列于下表,现在想知道,对于这四种灯丝生产的灯泡,其使用寿命有无显著差异。
灯泡灯丝 1 2 3 4 5 6 7 8甲 1600 1610 1650 1680 1700 1700 1780乙 1500 1640 1400 1700 1750丙 1640 1550 1600 1620 1640 1600 1740 1800丁 1510 1520 1530 1570 1640 1680(四)不使用选择项操作步骤(1)在数据窗建立数据文件,定义两个变量并输入数据,这两个变量是:filament变量,数值型,取值1、2、3、4分别代表甲、乙、丙、丁,格式为F1.0,标签为“灯丝”。
Hours变量,数值型,其值为灯泡的使用寿命,单位是小时,格式为F4.0,标签为“灯泡使用寿命”。
(2)按Analyze,然后Compared Means,然后One-Way Anova的顺序单击,打开“单因素方差分析”主对话框。
(3)从左边源变量框中选取变量hours,然后按向右箭头,所选去的变量hours即进入Dependent List框中。
(4)从左边源变量框中选取变量filament,然后按向右箭头,所选取的变量folament即进入Factor框中。
(5)在主对话框中,单击“OK”提交进行。
SPSS——单因素方差分析单因素方差分析单因素方差分析也称作一维方差分析。
它检验由单一因素影响的一个(或几个相互独立的)因变量由因素各水平分组的均值之间的差异是否具有统计意义。
还可以对该因素的若干水平分组中哪一组与其他各组均值间具有显著性差异进行分析,即进行均值的多重比较。
One-Way ANOVA过程要求因变量属于正态分布总体。
如果因变量的分布明显的是非正态,不能使用该过程,而应该使用非参数分析过程。
如果几个因变量之间彼此不独立,应该用Repeated Measure 过程。
[例子]调查不同水稻品种百丛中稻纵卷叶螟幼虫的数量,数据如表1-1所示。
表1-1 不同水稻品种百丛中稻纵卷叶螟幼虫数图1-2 单因素方差分析窗口3)设置分析变量因变量:选择一个或多个因子变量进入“Dependent List”框中。
本例选择“幼虫”。
因素变量:选择一个因素变量进入“Factor”框中。
本例选择“品种”。
4)设置多项式比较单击“Contrasts”按钮,将打开如图1-3所示的对话框。
该对话框用于设置均值的多项式比较。
图1-3 “Contrasts”对话框定义多项式的步骤为:均值的多项式比较是包括两个或更多个均值的比较。
例如图1-3中显示的是要求计算“1.1×mean1-1×mean2”的值,检验的假设H0:第一组均值的1. 1倍与第二组的均值相等。
单因素方差分析的“0ne-Way ANOVA”过程允许进行高达5次的均值多项式比较。
多项式的系数需要由读者自己根据研究的需要输入。
具体的操作步骤如下:①选中“Polynomial”复选项,该操作激活其右面的“Degree”参数框。
②单击Degree参数框右面的向下箭头展开阶次菜单,可以选择“Linear”线性、“Quadratic”二次、“Cubic”三次、“4th”四次、“5th”五次多项式。
③为多项式指定各组均值的系数。
方法是在“Coefficients”框中输入一个系数,单击Add按钮,“Coefficients”框中的系数进入下面的方框中。
单因素协方差分析【详】-SPSS教程一、问题与数据某研究者拟分析两种药物对血脂浓度的影响,招募45位中年男性分为三组,第一组给以药物1治疗(为期6周),第二组给以药物2治疗(为期6周),第三组作为空白对照组。
研究者测量了每位研究对象接受干预前的总胆固醇浓度(TC1)和干预后的总胆固醇浓度(TC2),部分数据图1。
图1 部分数据二、对问题分析研究者想判断不同干预方法(group)对因变量(治疗后TC2)的影响,但是不能忽视协变量(治疗前TC1)对因变量的作用。
针对这种情况,我们可以使用单因素协方差分析,但需要先满足以下10项假设:假设1:因变量是连续变量。
假设2:自变量存在2个或多个分组。
假设3:协变量是连续变量。
假设4:各研究对象之间具有相互独立的观测值。
假设5:各组内协变量和因变量之间存在线性关系。
假设6:各组间协变量和因变量的回归直线平行。
假设7:各组内因变量的残差近似服从正态分布。
假设8:各组内因变量的残差方差齐。
假设9:各组间因变量的残差方差齐。
假设10:因变量没有显著异常值。
经分析,本研究数据满足假设1-4,那么应该如何检验假设5-10,并进行单因素协方差分析呢?三、SPSS操作3.1 检验假设5:各组内协变量和因变量之间存在线性关系为检验假设5,我们需要先绘制协变量与因变量在不同组内的散点图。
在主界面点击Graphs→Chart Builder,在Chart Builder对话框下,从Choose from 选择Scatter/Dot。
在中下部的8种图形中,选择“Grouped Scatter”,并拖拽到主对话框中。
如图2。
图2 Chart Builder将TC1、TC2和group变量分别拖拽到“X-Axis?”、“Y-Axis?”和“Set color”方框内。
如图3。
图3 Chart Builder在Element Properties框内点击Y-Axis1 (Point1),在Scale Range框内取消对Minimum的勾选。
SPSS基础学习⽅差分析—单因素分析为什么要进⾏⽅差分析?单样本、两样本t检验其最终⽬的都是分析两组数据间是否存在显著性差异,但如果要分析多组数据间是否存在显著性差异就很困难,因此⽤⽅差分析解决这个问题;举例:t检验可以分析⼀个班男⼥的⼊学成绩差异;⽽⽅差分析可以分析⼀个班来⾃各省市地区同学的⼊学成绩。
在⽅差分析中,涉及到控制变量和随机变量以及观测变量;举例:施肥量是否会给农作物产量带来显著影响;这⾥,控制变量:施肥量,观测变量:农作物产量,随机变量:天⽓、温度……单因素分析⽬的:分析单⼀控制因素影响下的多组样本的均值是否存在显著性差异。
适⽤条件:正态性,每个⽔平下的因变量应服从正态分布;同⽅差性,各组之间的具有相同的⽅差;独⽴性,各组之间是相互独⽴的。
案例分析:案例描述:在某⼀公司下,分析⼴告形式对销售额的影响。
(数据来源:《统计分析与SPSS的应⽤》(第五版)薛薇第六章)题⽬分析:在题⽬中,⼴告形式不⾄两种,没办法⽤两独⽴样本t检验分析形式和销售额之间的显著性差异,同时,只有⼀个控制因素,所以采⽤⽅差分析中的单因素分析。
提出原假设:⼴告形式和销售额之间不存在显著性差异。
界⾯操作步骤:分析—⽐较均值—单因素ANOVA关键步骤截图:分清楚因变量列表和因⼦;因⼦:控制变量,因变量列表:观测变量结果分析:单因素⽅差分析销售额平⽅和df均⽅F显著性组间5866.08331955.36113.483.000组内20303.222140145.023总数26169.306143分析:平⽅和:组间离差平⽅和(SSA)是由控制变量的不同⽔平造成的变差,组内离差平⽅和(SSE)是由随机变量的不同⽔平造成的变差;df:组间⾃由度,在本题中根据⼴告形式的不同分为四组,所以⾃由度为k-1=4-1=3;组内⾃由度n-k=144-k=140;均⽅:即为⽅差;F=SSA/(k-1)÷(SSE/(n-k))=组间⽅差/组内⽅差,F值显著性⼤于1,说明控制变量对观测变量的影响⽐随机变量⼤,反之有效;P-值=0.00<0.05,所以拒绝原假设,认为不同的⼴告形式和地区对销售额的平均值产⽣了显著影响,不同的⼴告形式、地区对销售额的影响效应不全为0。