动目标检测器(MTD)
- 格式:ppt
- 大小:508.50 KB
- 文档页数:49
雷达系统中的信号处理技术摘要本文介绍了雷达系统及雷达系统信号处理的主要内容,着重介绍与分析了雷达系统信号处理的正交采样、脉冲压缩、MTD和恒虚警检测几种现代雷达技术,雷达系统通过脉冲压缩解决解决雷达作用距离和距离分辨力之间的矛盾,通过MTD来探测动目标,通过恒虚警〔CFAR〕来实现整个系统对目标的检测。
关键词雷达系统正交采样脉冲压缩MTD 恒虚警检测1雷达系统概述雷达是Radar〔Radio Detection And Ranging〕的音译词,意为“无线电检测和测距”,即利用无线电波来检测目标并测定目标的位置,这也是雷达设备在最初阶段的功能。
雷达的任务就是测量目标的距离、方位和仰角,还包括目标的速度,以及从目标回波中获取更多有关目标的信息。
典型的雷达系统如图1,它主要由雷达发射机、天线、雷达接收机、收发转换开关、信号处理机、数据处理机、终端显示等设备组成。
图1雷达系统框图随着现代电子技术的不断发展,特别是数字信号处理技术、超大规模集成数字电路技术、电脑技术和通信技术的告诉发展,现代雷达信号处理技术正在向着算法更先进、更快速、处理容量更大和算法硬件化方向飞速发展,可以对目标回波与各种干扰、噪声的混叠信号进行有效的加工处理,最大程度低剔除无用信号,而且在一定的条件下,保证以最大发现概率发现目标和提取目标的有用信息。
雷达发射机产生符合要求的雷达波形,然后经馈线和收发开关由发射天线辐射出去,遇到目标后,电磁波一部分反射,经接收天线和收发开关由雷达接收机接收,然后对雷达回波信号依次进行信号处理、数据处理,就可以获知目标的相关信息。
雷达信号处理的流程如下:图 2 雷达信号处理流程2雷达信号处理的主要内容雷达信号处理是雷达系统的主要组成部分。
信号处理消除不需要的杂波,通过所需要的目标信号,并提取目标信息。
内容包括雷达信号处理的几个主要部分:正交采样、脉冲压缩、MTD和恒虚警检测。
正交采样是信号处理的第一步,担负着为后续处理提供高质量数据的任务。
1.1.3 二次杂波对消器
滤波器频率特性:
其中通常取接近2但小于2的常数。
目的同样是在保证尽可能多地滤除杂波的
同时,处在零多普勒点的运动目标不被抑制完全。
对比见下图:
二次杂波对消器是工程中应用最多的杂波处理滤波器。
对于低速的杂波消除,频响特性可以向右平移一定的区间,平移的量是杂波运动速度对应的多普勒频移。
因此对于低速运动杂波对消的滤波特性为:
其中为杂波速度对应的多普勒频移。
利用二次杂波对消器处理杂波时,选取相参积累脉冲个数为。
1.2 多普勒滤波器组处理
一般,将MTI处理后输出的信号进行MTD处理,即窄带滤波处理,得到运动目标的速度信息。
1.2.1 窄带多普勒滤波器组实现
利用有N个输出的横向滤波器,经过各脉冲的加权求和实现。
频响幅度为:。
mtd动目标检测原理
MTD动目标检测原理是一种用于实时视频监控和检测的技术,它能够通过对视频帧进行分析,准确地检测出移动物体。
该原理基于视频中移动目标的像素值变化,通过比较相邻帧的像素值差异来确定是否存在移动目标。
在检测的过程中,MTD会将每帧图像分成多个区域,并计算每个区域的像素变化值。
首先,MTD采集两个连续帧的图像,并将它们转换为灰度图像。
然后,它计算每个像素的绝对差值。
接下来,MTD将所有像素的差值相加,得到某个区域的总像素差值。
在确定移动目标的位置时,MTD通过设置一个动态阈值来筛选出像素差值大于阈值的区域。
这些区域被认为是可能存在移动目标的部分。
为了减少误检测和提高检测的准确性,MTD还可以通过应用一些滤波算法来排除噪声。
同时,MTD还会采用多帧图像的平均像素值来对比判断移动目标。
MTD动目标检测原理具有实时性强、准确性高的特点。
它可以应用于各种实时监控系统中,如交通监控、安防监控、智能家居等领域,为人们提供更安全、便捷的生活环境。
总之,MTD动目标检测原理是一种基于像素变化的实时视频监控技术。
通过计算像素差值和设定动态阈值,它能够快速、准确地检测出移动目标,为各种实时监控系统提供支持。
雷达信号处理技术与系统设计第一章绪论1.1 论文的背景及其意义近年来,随着电子器件技术与计算机技术的迅速发展,各种雷达信号处理技术的理论与应用研究成为一大热门领域。
雷达信号的动目标检测(MAD)是利用动目标、地杂波、箔条和气象干扰在频谱上的差别,抑制来自建筑物、山、树、海和雨之类的固定或低速杂波信号。
区分运动目标和杂波的基础是它们在运动速度上的差别,运动速度不同会引起回波信号频率产生的多普勒频移不相等,这就可以从频率上区分不同速度目标的回波。
固定杂波的中心频率位于零频,很容易设计滤波器将其消除。
但对于运动杂波,由于其多普勒频移未知,不能像消除固定杂波那样很容易地设计滤波器,其抑制就变得困难了从本质上来讲,雷达信号的检测问题就是对某一坐标位置上目标信号“有”或“无”的判断问题。
最初,这一任务由雷达操作员根据雷达屏幕上的目标回波信号进行人工判断来完成。
后来,出现了自动检测技术,一开始为固定或半固定门限检测,这种体制下当干扰和杂波功率水平增加几分贝,虚警概率将急剧增加,以至于显示器画面饱和或数据处理过载,这时即使信噪比很大,也不能作出正确的判断。
为克服这些问题进而发展了自适应恒虚警(Constant FalseAlarm Rate,CFAR)检测。
CFAR 检测使得雷达在多变的背景信号中能够维持虚警概率的相对稳定,这种虚警概率的稳定性对于大多数的雷达,如搜索警戒雷达、跟踪雷达、火控雷达等。
第二章 雷达信号数字脉冲压缩技术2.1 引言雷达脉冲压缩器的设计实际上就是匹配滤波器的设计。
根据脉冲压缩系统实 现时的器件不同,通常脉冲压缩的实现方法分为两类,一类是用模拟器件实现的 模拟方式,另一类是数字方式实现的,主要采用数字器件实现。
脉冲压缩处理时必须解决降低距离旁瓣的问题,否则强信号脉冲压缩的旁瓣 会掩盖或干扰附近的弱信号的反射回波。
这种情况在实际工作中是不允许的。
采 用加权的方法可以降低旁瓣,理论设计旁瓣可以达到小于-40dB 的量级。
6.5 动目标显示与动目标检测引言1.目标回波频谱6.5.1 目标回波和杂波的频谱 2.杂波频谱原理递归传统非递归6.5.2 MTI滤波器零点分配算法滤波器设计优化预测误差算法结语原理MTI+FFT6.5.3 MTD滤波器滤波器设计点最佳等间隔最佳结语6.5.4 改善因子分析MTIMTD6.5 动目标显示与动目标检测雷达探测的运动目标如飞机,导弹,舰艇,车辆等周围存在各种背景,包括不动的地物和运动着的云雨,海浪或金属丝干扰等。
动目标显示(Moving Target Indicator :MTI )与动目标检测(Moving Target Detection: MTD )就是使用各种滤波器,滤去这些背景产生的杂波而取出运动目标的回波。
此外也可以通过把雷达安装在山上、增加雷达天线的倾角、安装防杂波网来阻止杂波进入天线;或通过调整雷达天线的波束形式、采用极化技术、降低雷达的分辨单元、在时域采用CFAR 检测、自适应门限、杂波图来抑制杂波。
在频域上应用MTI 与MTD 技术可以提高信杂比,改善杂波背景下检测运动目标的能力。
本节首先分析目标回波和杂波的频谱特性;然后分别讨论MTI 与MTD 原理及滤波器设计方法;最后分析MTI 与MTD 对改善因子的提高。
6.5.1 目标回波和杂波的频谱运动目标回波和杂波在频谱结构上有所差别,运动目标检测就是利用这种差别,从频率上将它们区分,以达到抑制杂波而显示目标回波的目的。
为此,应首先弄清楚目标和杂波的回波的特性。
(1) 目标回波的频谱雷达发射相参脉冲串,其脉冲宽度为e T ,脉冲重复频率为r f 。
当天线不扫描而对准目标时,所得脉冲为无限脉冲串。
调制信号)(1t u 及其频谱)(1f U 分别为∑∞-∞=⎪⎪⎭⎫⎝⎛-=n e rTnT t rect A t u )(1 (6.5.1)∑∞-∞=-=n r e e r e f n f T f T f T AT f U )()sin()(1δππ (6.5.2)A 为信号振幅。