模流分析基础(新)
- 格式:ppt
- 大小:591.00 KB
- 文档页数:35
一. 压力條件对产品的影响1.高保压压力能夠降低產品收縮的機會补充入模穴的塑料越多,越可避免產品的收縮高保压压力通常會造成产品不均勻收縮,而导致產品的翹曲变形对薄殼產品而言,由於壓力降更明顯,上述之情況更加嚴重2.Over packing 過保壓保壓壓力高,澆口附近體積收縮量少遠離澆口處保壓壓力低且體積收縮量較大導致產品翹曲變形,產品中央向四周推擠形成半球形(Dome Shape)3. Under packing 保壓不足澆口附近壓力低遠離澆口處壓力更低導致產品翹曲變形,產品中央向四周拉扯形成馬鞍形Twisted shape保壓時間如果夠長,足夠使澆口凝固,則可降低體積收縮的機會澆口凝固後,保壓效果就無效果一、澆口位置的要求:1.外观要求(浇口痕跡, 熔接线)2.產品功能要求3.模具加工要求4.產品的翹曲变形5.澆口容不容易去除二、对生产和功能的影响:1.流長(Flow Length)決定射出壓力,鎖模力,以及產品填不填的滿流長縮短可降低射出壓力及鎖模力2.澆口位置會影響保壓壓力保壓壓力大小保壓壓力是否平衡將澆口遠離產品未來受力位置(如軸承處)以避免殘留應力澆口位置必須考慮排氣,以避免積風發生不要將澆口放在產品較弱处或嵌入处,以避免偏位(Core Shaft)三、选择浇口位置的技巧1.將澆口放置於產品最厚處,從最厚處進澆可提供較佳的充填及保壓效果。
如果保壓不足,較薄的區域會比較厚的區域更快凝固避免將澆口放在厚度突然變化處,以避免遲滯現象或是短射的發生2.可能的話,從產品中央進澆將澆口放置於產品中央可提供等長的流長流長的大小會影響所需的射出壓力中央進澆使得各個方向的保壓壓力均勻,可避免不均勻的體積收縮射出量/切换点的影响射出量可由螺杆行程距离的設定決定射出量包括了填滿模穴需要的塑胶量以及保压時須填入模穴的塑膠量切換點是射出機由速度控制切換成壓力控制的點螺桿前进行程過短(切換點過早)會導致保壓壓力不足假如保压压力比所需射出壓力還低,產品可能发生短射PVT特性p –压力; v –比容; T –溫度描述塑胶如何随着压力及溫度的变化而发生体积上的变化。
结果概要输出充模时间(Fill Time)充模时间显示的是熔体流动前沿的扩展情况,其默认绘制方式是阴影图,但使用云纹图可更容易解释结果.云纹线的间距应该相同,这表明熔体流动前沿的速度相等。
制件的填充应该平衡。
当制件平衡充模时,制件各个远端在同一时刻充满。
对大多数分析,充模时间是一个非常重要的关键结果。
·注射位置压力:XY图(Pressure at injection location: XY Plot )注射节点是观察2维XY图的常用节点。
通过注射位置压力的XY图可以容易地看到压力的变化情况。
当聚合物熔体被注入型腔后,压力持续增高。
假如压力出现尖峰(通常出现在充模快结束时),表明制件没有很好达到平衡充模,或者是由于流动前沿物料体积的明显减少使流动前沿的速度提高。
流动前沿温度(Temperature at flow front)流动前沿温度是聚合物熔体充填一个节点时的中间流温度。
因为它代表的是截面中心的温度,因此其变化不大。
流动前沿温度图可与熔接线图结合使用。
熔接线形成时熔体的温度高,则熔接线的质量就好。
而在一个截面内熔接线首先形成的地方是截面的中心,因此,如果流动前沿的温度高,熔接线强度通常都高。
熔接线(Weld lines)当两股聚合物熔体的流动前沿汇集到一起,或一股流动前沿分开后又合到一起时,就会产生熔接线,如聚合物熔体沿一个孔流动。
有时,当有明显的流速差时,也会形成熔接线。
厚壁处的材料流得快,薄壁处流得慢,在厚薄交界处就可能形成熔接线。
熔接线对网格密度非常敏感。
由于网格划分的原因,有时熔接线可能显现在并不存在的地方,或有时在真正有熔接线的地方没有显示。
为确定熔接线是否存在,可与充模时间一起显示。
同时熔接线也可与温度图和压力图一起显示,以判断它们的相对质量。
减少浇口的数量可以消除掉一些熔接线,改变浇口位置或改变制件的壁厚可以改变熔接线的位置。
气穴(Air traps)气穴定义在节点位置,当材料从各个方向流向同一个节点时就会形成气穴。
基于MOLDFLOW的模流分析技术上机实训教程主编:姓名:年级:专业:南京理工大学泰州科技学院实训一基于Moldflow的模流分析入门实例1.1Moldflow应用实例下面以脸盆塑料件作为分析对象,分析最佳浇口位置以及缺陷的预测。
脸盆三维模型如图1-1所示,充填分析结果如图1-2所示。
图1-1 脸盆造型图1-2 充填分析结果(1)格式转存。
将在三维设计软件如PRO/E,UG,SOLIDWORKS中设计的脸盆保存为STL格式,注意设置好弦高。
(2)新建工程。
启动MPI,选择“文件”,“新建项目”命令,如图1-3所示。
在“工程名称”文本框中输入“lianpen”,指定创建位置的文件路径,单击“确定”按钮创建一新工程。
此时在工程管理视窗中显示了“lianpen”的工程,如图1-4所示。
图1-3 “创建新工程”对话框图1-4 工程管理视图(3)导入模型。
选择“文件”,“输入”命令,或者单击工具栏上的“输入模型”图标,进入模型导入对话框。
选择STL文件进行导入。
选择文件“lianpen.stl”。
单击“打开”按钮,系统弹出如图1-5所示的“导入”对话框,此时要求用户预先旋转网格划分类型(Fusion)即表面模型,尺寸单位默认为毫米。
图1-5 导入选项单击“确定”按钮,脸盆模型被导入,如图1-6所示,工程管理视图出现“lp1_study”工程,如图1-7所示,方案任务视窗中列出了默认的分析任务和初始位置,如图1-8所示。
图1-6 脸盆模型图1-7 工程管理视窗图1-8 方案任务视窗(4)网格划分。
网格划分是模型前处理中的一个重要环节,网格质量好坏直接影响程序是否能够正常执行和分析结果的精度。
双击方案任务图标,或者选择“网格”,“生成网格”命令,工程管理视图中的“工具”页面显示“生成网格”定义信息,如图1-9所示。
单击“立即划分网格”按钮,系统将自动对模型进行网格划分和匹配。
网格划分信息可以在模型显示区域下方“网格日志”中查看,如图1-10所示。
Moldflow的模流分析入门实例要点Moldflow是一款流行的注塑工艺分析软件,可以在产品设计阶段对注塑模具和工艺进行模拟,从而有助于优化产品设计和减少制造成本。
本文将介绍Moldflow的基本概念和流程,并演示一个简单的模流分析入门实例。
Moldflow的基本概念和流程什么是Moldflow?Moldflow是一款通过计算机模拟注塑模具和工艺的软件,可以预测零件的尺寸、热变形、缩短时间和熔融等特性,从而帮助用户优化工艺设计和改善质量。
Moldflow的工作原理和流程1.构建几何模型:首先需要将设计好的三维模型导入Moldflow中,并定义注塑件的材料和成型工艺参数。
2.网格划分:模型构建完成后,需要将它离散化成三角形网格,以便计算机进行数值模拟。
3.材料模型:材料模型是与材料性能相关的方程式、曲线及其参数。
Moldflow包含了多种材料模型,用户可以选择最适合自己项目的模型。
4.模拟运行:设置计算条件并运行模拟,在计算过程中,Moldflow会根据模型的精度和计算机性能,自动划分计算网格,利用有限元技术模拟注塑工艺的各种物理现象。
5.结果分析:模拟完成后,可以查看模拟结果,比如注射时间、注塑温度、断面压力、熔接线、应力分布等。
模流分析入门实例注塑模具设计和工艺参数的选择对注塑生产过程中产品的质量和成本产生很大的影响。
在这个入门实例中,我们将模拟一个中空塑料球的生产过程,旨在演示Moldflow的基本功能和流程。
步骤1:构建几何模型首先我们需要构建完整的几何模型,这里我们以一个中空的塑料球为例。
导入模型后,需要进行几何模型的处理,使它符合注塑制造的要求,比如需要添加浇口、排气道等。
步骤2:网格划分然后进行网格划分,即把整个模型划分成数以万计的小三角形,使得计算机能够模拟注塑过程中的各项复杂物理现象。
步骤3:材料模型选择合适的热塑性塑料材料模型,在Moldflow中有多种模型可以选择,用户需根据自己的设计要求和材料特性选择最优模型。
第一章MOLDFLOW 分析根底知识所谓注塑成型是指将已加热熔化的材料喷射注入到模具内,经由冷却与固化后,得到成品的方法. 在树脂原料经由注塑机注塑成型变为塑料制品的整个过程中,包括以下几个局部.1.计量:为了成型一定大小的塑件,必须使用一定量的颗粒状塑料,这就需要计量.2.塑化:为了将塑料充入模腔,就必须使其变为熔融状态,流过充入模腔.3.注塑充模:为了将熔融塑料充入模腔,就需要对熔融塑料施加注塑压力,注入模腔.4.保压增密:熔融塑料充满模腔后,向模腔内补充因制品冷却收缩所需的物料.5.制品冷却:保压结束后,制品开始进入冷却定型阶段.6.开模:制品冷却定型后,注塑机的合模装置带动模具动模局部与定模局部别离.7.顶件:注塑机的顶出机构顶出塑件.8.取件:通过人力或机械手取出塑件和浇注系统冷凝料等.9.闭模:注塑机的合模装置闭合并锁紧模具.注塑成型机可分为柱塞式和螺杆式两种,这两种注塑成型机都是由注塑系统,锁模系统和模具组成..注塑系统注塑系统匀塑化,在高压下快速注入模具,注塑系统包括加料装置,料筒,螺杆或柱塞,喷嘴,加压和驱动装置等.锁模系统注塑机上实现锁合模具,启闭模具和顶出制件的机构称为锁模系统.熔料在高压下注入模具,必须施加足够大的锁模力才能保证模具严密闭合不溢料,锁模结构还应保证模具启闭灵活,准确,迅速和平安,并防止损坏模具和制件,防止机械受到强烈震动,到达平安运行以延长机器和模具的使用寿命.模具模具是为了将树脂原料做成某种形状而用来承接射出树脂的部件.注塑模具主要由浇注系统,成型零件和结构零件组成.在注塑过程的塑化,填充,保压和冷却这四个主要阶段中,起主要作用的工艺参数也随着注塑过程的变化而变化.1.塑化塑化是指塑料在料筒内经加热到达良好塑成型的准备阶段.熔体在进入模腔之前应到达规定的成型温度,并能在规定时间内到达足够数量,熔体温度应均匀一致,不发生或极少发生热分解以保证生产的连续进行. 2.填充这一阶段从柱塞或螺杆开始向前移动起,直至模腔被塑料熔体充满为止.填充过程中包含的重要工艺参数有:熔体温度,注塑压力,填充时间.充模刚开始一段时间内模腔中没有压力,待模腔充满时,料流压力迅速上升到达最大值.充模的时间与模塑压力有关,充模时间长,先进入模内的塑料受到较多的冷却,粘度增大,后面的塑料就需要在较高的压力下种制品在温度变化较大的使用过程中会出现裂纹,裂纹的方向与分子定向方向是一致的.而且,制品的热,塑料熔体通过喷嘴,主流道,分流道和浇口时产生较多的摩擦而使料温升高,这样当压力到达最大值时,塑料熔体的温度就能够保持较高的值,分子定向程度可减少,制品熔接强度也提高.充模过快时,在嵌件后部的熔接往往不好,致使制品强度变劣.3.保压这是指从熔体充满模腔时起,至柱塞或螺杆撤回时为止的一段时间.保压阶段包括的重要工艺参数有:保压压力,保压时间.保压阶段中,塑料熔体因受到冷却而发生收缩,但因塑料仍然处于柱塞或螺杆的稳压下,料筒内的熔料会被继续注入模腔内补足因收缩而留出的空隙,如果柱塞或螺杆停在原位不动,压力曲密度,降低收缩和克服制品外表缺陷都有影响.此外,由于塑料还在流动,而且温度又在不断下降,定向分子容易被冻结,所以这一阶段是大分子定向形成的主要阶段.这一阶段拖延时间愈长,分子定向程度也将愈大.4.冷却这一阶段是指从浇口的塑料完全冻结时起,到制品从模腔中顶出时为止.冷却阶段包括的重要工艺参数是冷却时间冷却时模腔内压力迅速下降,模腔内塑料在这一阶段内主要是继续冷却,以便制品在脱模时具有足够的刚度而不致发生扭曲变形.在这一阶段内,虽无塑料从浇口流出或流入,但模内还可能有少量的塑料流动,因此到制品脱模时,模内压力不一定等于外界压力,模内压力与外界压力的差值成为剩余压力以,只有大剩余压力接近零时,脱模才比拟顺利,并能够获得满意的制品.注塑成型工艺条件主要包括温度,压力和时间等1.温度注塑成型过程中的温度主要有熔料温度和模具温度.熔料温度影响塑化和注塑充模,模具温度影响充模和冷却定型.熔料温度指塑化树脂的温度和从喷嘴射出的熔体温,熔料温度取决于料筒和喷嘴两局部的温度.熔料温度的上下决定熔体流动性能的好坏.熔料温度高,熔体的粘度小,流动性能好,需要的注塑压力小,成型后的制件外表光洁度好,出现熔接痕,缺料的可能性就小.反之熔料温度低,就会降低熔体的流动性能,会,导致材料物理和化学性能降低.模具温度是指和制品接触的模腔外表温度.模具温度直接影响熔体的充模流动行为,制件的冷却速度和制件在模腔内的流动性,增强制件的密谋和结晶度以及减小充模压力和制件中的压力.但是,提高模具温度会增加制件的冷却时间,增大制件收缩率和脱模后的翘曲,制件成型周期也会因为冷却时间的增加而变长,降低了生产效率.降低模具温度,虽然能够缩短冷却时间,提高生产率,但是,会降低熔体在模腔内的流动能力,并导致制件产生较大的内应力或者形成明显的熔接痕等制件缺陷.2.压力注塑过程中的压力主要有注塑压力,保压压力和背压注塑压力是指螺杆或者柱塞沿轴向前移时,其头部向塑料熔体施加的压力.它主要用于克服熔体在成型过程中的流动阻力,还对熔种,制件的复杂度,壁厚,喷嘴的结构形式,模具浇口的类型和尺寸以及注塑机类型等因素.保压压力是指对模腔内树脂熔体进行压力是重要的注塑工艺参数之一,保压压力和保压时间的选择直接影响注塑制品的质量,保压压力与注塑压力一样由液压系统决定.在保压初期,制品重量随保压时间而增加,到达一定时间不再增加.延长保压时间有助于减少制品的收缩率,但过长的保压时间会使制品两个方向上的收缩率程度出现差异.令制品各个方向上的内应力差异增大,造成制品翘曲,粘模.在保压压力及熔体温度一定时,保压时间的选择应取决于浇口凝固时间.背压是指螺杆顶部熔料在螺杆转动后退时对大背压可以排出原料中的空气,提高熔体密实程度,还会增大熔体内的压力,螺杆后退速度减小,塑化过程的剪切作用加强,摩擦热增多,熔体温度上升,塑化效果提高.但是背压增大后,如果不相应提高螺杆转速,那么,熔体在螺杆计量段螺槽中将会产生较大的逆流和漏流,从而使塑化能力下降.背压的大小与制件成型树脂原料品种,喷嘴种类以及加料方式有关.3.时间注塑成型周期主要由注塑时间Ti,保压时间Tp,冷却时间Tc,开模时间To组成.th为TP与TC之和.注塑时间是指注塑活塞在注塑油缸内开始向前运动直至模腔被全部充满为止所经历的时间.保压时间为从模腔充满后开始,到保压结束为止所经历的时间.注塑时间与保压时间由制件成型树脂原料的流动性能,制件几何形状,制件尺寸大小,模具浇注系统的形式,成型所用的注塑方式和其他工艺条件等到因素决定.冷却时间指保压结束到开启模具所经历的时间.冷却时间的长短受熔体温度,模具温度,脱模温度和冷却剂温度等因素的影响.在保证取得较好制件质量的前提下,应当尽量缩短冷却时间的大小,否那么,会延长制件成型周期,降低生产效率,还可能造成具有复杂几何形状的制件脱模困难.开模时间为模具开启取出制件到下个成型周期开始的时间.注塑机自动化程度高,模具复杂度低,那么开模时间短;否那么,开模时间较长.1.5.1短射短射是指由于模具模腔填充不完全造成制品不完整的质量缺陷,即熔体在完成填充之前就已凝结。
《模流分析基础入门》目录第一章、计算机辅助工程与塑料射出成形1-1 计算机辅助工程分析1-2 塑料射出成形1-3 模流分析及薄壳理论1-4 模流分析软件的未来发展第二章、射出成形机2-1 射出机组件2-1-1 射出系统2-1-2 模具系统2-1-3 油压系统2-1-4 控制系统2-1-5 锁模系统2-2 射出成形系统2-3 射出机操作顺序2-4 螺杆操作2-5 二次加工第三章、什么是塑料3-1 塑料之分类3-2 热塑性塑料3-2-1 不定形聚合物3-2-2 (半)结晶性聚合物3-2-3 液晶聚合物3-3 热固性塑料3-4 添加剂、填充料与补强料第四章、塑料如何流动4-1 熔胶剪切黏度4-2 熔胶流动之驱动--射出压力4-2-1 影响射出压力的因素4-3 充填模式4-3-1 熔胶波前速度与熔胶波前面积4-4 流变理论第五章、材料性质与塑件设计5-1 材料性质与塑件设计5-1-1 应力--应变行为5-1-2 潜变与应力松弛5-1-3 疲劳5-1-4 冲击强度5-1-5 热机械行为5-2 塑件强度设计5-2-1 短期负荷5-2-2 长期负荷5-2-3 反复性负荷5-2-4 高速负荷及冲击负荷5-2-5 极端温度施加负荷5-3 塑件肉厚5-4 肋之设计5-5 组合之设计5-5-1 压合连接5-5-2 搭扣配合连接5-5-3 固定连接组件5-5-4 熔接制程第六章模具设计6-1 流道系统6-1-1 模穴数目之决定6-1-2 流道配置6-1-3 竖浇道尺寸之决定6-1-4 流道截面之设计6-1-5 流道尺寸之决定6-1-6 热流道系统6-2 流道平衡6-2-1 流道设计规则6-3 浇口设计6-3-1 浇口种类6-3-2 浇口设计原则6-4 设计范例6-4-1 阶段一:C-mold Filling EZ 简易充填模拟分析6-4-2 阶段二:执行C-mold Filling & Post Filling 最佳化6-5 模具冷却系统6-5-1 冷却孔道的配置6-5-2 其它的冷却装置6-6 冷却系统之相关方程式6-6-1 冷却系统之设计规则第七章、收缩与翘曲7-1 残留应力7-1-1 熔胶流动引发的残留应力7-1-2 热效应引发之残留应力7-1-3 制程引发残留应力与模穴残留应力7-2 收缩7-3 翘曲7-4 收缩与翘曲的设计规则第八章、问题排除8-1 包风8-2 黑斑、黑纹、脆化、烧痕、和掉色8-3 表面剥离8-4 尺寸变化8-5 鱼眼8-6 毛边8-7 流痕8-8 迟滞效应8-9 喷射流8-10 波纹8-11 短射8-12 银线痕8-13 凹陷与气孔8-14 缝合线与熔合线第九章C-MOLD软件介绍(暂缺)附录A射出机成形条件之设定附录B常用塑料之性质附录C档案格式第一章计算机辅助工程与塑料射出成形1-1 计算机辅助工程分析计算机辅助设计(Compu ter-Aided Design, CAD)是应用计算机协助进行创造、设计、修改、分析、及最佳化一个设计的技术。
《模流分析基础入门》目录第一章计算机辅助工程与塑料射出成形1-1 计算机辅助工程分析1-2 塑料射出成形1-3 模流分析及薄壳理论1-4 模流分析软件的未来发展第二章射出成形机2-1 射出机组件2-1-1 射出系统2-1-2 模具系统2-1-3 油压系统2-1-4 控制系统2-1-5 锁模系统2-2 射出成形系统2-3 射出机操作顺序2-4 螺杆操作2-5 二次加工第三章什么是塑料3-1 塑料之分类3-2 热塑性塑料3-2-1 不定形聚合物3-2-2 (半)结晶性聚合物3-2-3 液晶聚合物3-3 热固性塑料3-4 添加剂、填充料与补强料第四章塑料如何流动4-1 熔胶剪切黏度4-2 熔胶流动之驱动--射出压力4-2-1 影响射出压力的因素4-3 充填模式4-3-1 熔胶波前速度与熔胶波前面积4-4 流变理论第五章材料性质与塑件设计5-1材料性质与塑件设计5-1-1 应力--应变行为5-1-2 潜变与应力松弛5-1-3 疲劳5-1-4 冲击强度5-1-5 热机械行为5-2 塑件强度设计5-2-1 短期负荷5-2-2 长期负荷5-2-3 反复性负荷5-2-4 高速负荷及冲击负荷5-2-5 极端温度施加负荷5-3 塑件肉厚5-4 肋之设计5-5 组合之设计5-5-1 压合连接5-5-2 搭扣配合连接5-5-3 固定连接组件5-5-4 熔接制程第六章模具设计6-1 流道系统6-1-1 模穴数目之决定6-1-2 流道配置6-1-3 竖浇道尺寸之决定6-1-4 流道截面之设计6-1-5 流道尺寸之决定6-1-6 热流道系统6-2 流道平衡6-2-1 流道设计规则6-3 浇口设计6-3-1 浇口种类6-3-2 浇口设计原则6-4 设计范例6-4-1 阶段一:C-mold Filling EZ简易充填模拟分析6-4-2 阶段二:执行C-mold Filling & Post Filling 最佳化6-5 模具冷却系统6-5-1 冷却孔道的配置6-5-2 其它的冷却装置6-6 冷却系统之相关方程式6-6-1 冷却系统之设计规则第七章收缩与翘曲7-1 残留应力7-1-1 熔胶流动引发的残留应力7-1-2 热效应引发之残留应力7-1-3 制程引发残留应力与模穴残留应力7-2 收缩7-3 翘曲7-4 收缩与翘曲的设计规则第八章问题排除8-1包风8-2 黑斑、黑纹、脆化、烧痕、和掉色8-3 表面剥离8-4 尺寸变化8-5 鱼眼8-6 毛边8-7 流痕8-8 迟滞效应8-9 喷射流8-10 波纹8-11 短射8-12 银线痕8-13 凹陷与气孔8-14 缝合线与熔合线第九章C-MOLD软件介绍(暂缺)附录A 射出机成形条件之设定附录B 常用塑料之性质附录C 档案格式第一章计算机辅助工程与塑料射出成形1-1 计算机辅助工程分析计算机辅助设计(Computer-Aided Design, CAD)是应用计算机协助进行创造、设计、修改、分析、及最佳化一个设计的技术。