数值分析-习题答案(函数逼近与曲线拟合)
- 格式:pdf
- 大小:3.44 MB
- 文档页数:25
《数值分析》课程设计实验报告实验二函数逼近与曲线拟合一、问题提出从随机的数据中找出其规律性,给出其近似表达式的问题,在生产实践和科学实验中大量存在,通常利用数据的最小二乘法求得拟合曲线。
在某冶炼过程中,根据统计数据的含碳量与时间关系,试求含碳量与时间t 的拟合曲线。
二、实验步骤先写出线性最小二乘法的M文件function c=lspoly(x,y,m)% x是数据点的横坐标组成的向量,y是纵坐标组成的向量% m是要构成的多项式的次数,c是多项式由高到低次的系数所组成的向量n=length(x);b=zeros(1:m+1);f=zeros(n,m+1);for k=1:m+1f(:,k)=x.^(k-1);enda=f'*f;b=f'*y';c=a\b;c=flipud(c);方法一:近似解析表达式为:y(t)=a1t+a2t2+a3t3第二步在命令窗口输入:lspoly([0,5,10,15,20,25,30,35,40,45,50,55],[0,1.27,2.16,2.86,3.44 ,3.87,4.15,4.37,4.51,4.58,4.02,4.64],2)回车得到:ans =0.0000-0.00520.26340.0178即所求的拟合曲线为y=-0.0052t2+0.2634t+0.0178在编辑窗口输入如下命令:>>x=[0,5,10,15,20,25,30,35,40,45,50,55];y=[0,1.27,2.16,2.86,3.44, 3.87,4.15,4.37,4.51,4.58,4.02,4.64];>> t=0:0.1:55;>> z=-0.0052*t.^2+0.2634*t+0.0178;>> plot(x,y,'ro',t,z);grid命令执行得到如下图(图2-1)0102030405060拟合多项式与数据点的关系方法二:假设近似表达式为:y(t)=c0+c1t+c2t2第一步在命令窗口输入:>>lspoly([0,5,10,15,20,25,30,35,40,45,50,55],[0,1.27,2.16,2.86,3. 44,3.87,4.15,4.37,4.51,4.58,4.02,4.64],2)回车得到:ans =-0.00240.20370.2305即所求的拟合曲线为y=-0.0024t2+0.2037t+0.2305在编辑窗口输入如下命令:>>x=[0,5,10,15,20,25,30,35,40,45,50,55];y=[0,1.27,2.16,2.86,3.44,3.87,4.15,4.37,4.51,4.58,4.02,4.64];>> t=0:0.1:55;>> z=-0.0024*t.^2+0.2037*t+0.2305;>> plot(x,y,'ro',t,z);grid命令执行得到如下图(图2-2)拟合多项式与数据点的关系三、实验结论在利用数据的最小二乘法求拟合曲线时,选取合适的近似表达式很重要,应通过不断的试验找出较为合适的近似表达式,这样才能尽可能的提高拟合精度。
数值分析第三章答案【篇一:常州大学数值分析作业第三章】答:matlab 程序function [a,y]=lagrange(x,y,x0) %检验输入参数if nargin 2 || nargin 3error(incorrect number of inputs); endif length(x)~=length(y)error(the length of x must be equal to it of y); endm=length(x);n=m-1;l=zeros(m,m); %计算基本插值多项式的系数for i=1:n+1 c=1;for j=1:n+1if i~=jif abs(x(i)-x(j))eps abs(x(i)-x(j))epserror(there are two two same nodes);endc=conv(c,poly(x(j)))/(x(i)-x(j));end endl(i,:)=c; end%计算lagrange插值多项式的系数 a=y*l;%计算f(x0)的近似值 if nargin==3y=polyval(a,x0);工程(专)学号:14102932enda=fliplr(a); return[a,y] = lagrange(x,y,x0); p1 = vpa(poly2sym(a),3) y[a,y] = lagrange(x,y,x0); p2=vpa(poly2sym(a),3) yp2 = x2 - 0.109x - 0.336 y =0.5174[a,y]=lagrange(x,y,x0); p4=vpa(poly2sym(a),3) yp4 =x4 + 0.00282x3 - 0.514x2 + 0.0232x + 0.0287 y =0.5001次多项式在2.8处的值。
答:matlab 程序 function[t,y0]=aitken(x,y,x0,t0) if nargin==3 t0=[]; endn0=size(t0,1);m=max(size(x)); n=n0+m;t=zeros(n,n+1);t(1:n0,1:n0+1)=t0; t(n0+1:n,1)=x; t(n0+1:n,2)=y; if n0==0 i0=2; elsei0=n0+1; endfor i=i0:nfor j=3:i+1t(i,j)=fun(t(j-2,1),t(i,1),t(j-2,j-1),t(i,j-1),x0); end endy0=t(n,n+1); returnfunction [y]=fun(x1,x2,y1,y2,x) y=y1+(y2-y1)*(x-x1)/(x2-x1); return%选取0、1、3、4四个节点,求三次插值多项式 x=[0,1,3,4];y=[0.5,1.25,3.5,2.75]; x0=2.8;[t,y0]=aitken(x,y,x0) t =0 0.5000 00 0 1.01.25002.6000 0 0 3.03.50003.29993.23000 4.02.75002.07502.28503.4190 y0 =3.41900000000000016、选取适当的函数y=f(x)和插值节点,编写matlab程序,分别利用lagrange插值方法,newton插值方法确定的插值多项式,并将函数y=f(x)的插值多项式和插值余项的图形画在同一坐标系中,观测节点变化对插值余项的影响。
第一章 绪论一、填空题1、 已知 71828.2e =,求x 的近似值a 的有效数位和相对误差:题号精确数xx 的近似数aa 的有效数位a 的相对误差⑴ e 2.7 ⑵ e 2.718 ⑶ e/100 0.027 ⑷e/1000.027182、 设原始数据x 1,x 2,x 3和x 4的近似值(每位均为有效数字)如下:a 1=1.1021,a 2=0.031,a 3=385.6,a 4=56.430则 ⑴ a 1+a 2+a 4= ,相对误差界为 ; ⑵ a 1a 2a 3= ,相对误差界为 ; ⑶ a 2/a 4= ,相对误差界为 。
二、为使20的近似值的相对误差小于0.01%,问应取多少位有效数字?三、当x 接近于0时,怎样计算xxsin cos 1-以及当x 充分大时,怎样计算x x -+1,才会使其结果的有效数字不会严重损失。
四、在数值计算中,为了减小误差,应该尽量避免的问题有哪些?并举出相应的实例.五、对于序列,1,0,9991=+=⎰n dx x x I nn ,试构造两种递推算法计算10I ,在你构造的算法中,那一种是稳定的,说明你的理由;第二章 插值法1、在互异的n+1个点处满足插值条件P(x i )=y i ,(i=0,1,…n)的次数不高于n 的多项式是( )的(A)存在且唯一 (B)存在 (C)不存在 (D)不唯一2、当f(x)是次数不超过n 的多项式时,f(x)的插值多项式是 ( )(A)不确定 (B)次数为n (C)f(x)自身 (D )次数超过n 3、 插值基函数的和∑=nj jx l)(= ( )(A)0 (B)1 (C)2 (D)不确定4、 设f(x)=x 3-x+5,则f[20,21,22,23]= ( ); f[20,21,22,23,24]= ( )(A)0 (B)1 (C)2 (D)不确定5、( )插值方法具有公式整齐、程序容易实现的优点,而( )插值方法计算灵活,如果节点个数变化时,不需要重新构造多项式,它们都是( )的方法(A)构造性 (B)解方程组 (C)拉格朗日 (D)牛顿6、一般地,内插公式比外推公式( ),高次插值比低次插值( ),但当插值多项式的次数高于七、八次时,最好利用( )插值公式 (A)粗糙 (B)精确 (C)分段低次 (D)高次7、整体光滑度高,收敛性良好,且在外型设计、数值计算中应用广泛的分段插值方法为( ).(A)分段线性插值 (B)分段抛物插值 (C)分段三次埃尔米特插值 (D)三次样条插值。
数值分析课后习题答案数值分析课后习题答案数值分析是一门应用数学的学科,主要研究用数值方法解决数学问题的理论和方法。
在学习数值分析课程时,习题是非常重要的一部分,通过解答习题可以加深对数值方法的理解和掌握。
下面将为大家提供一些数值分析课后习题的答案,希望能对大家的学习有所帮助。
1. 插值法是数值分析中常用的一种数值逼近方法。
给定一组已知数据点,我们希望通过插值方法找到一个函数,使得该函数在已知数据点上的取值与给定数据点的值尽可能接近。
常见的插值方法有拉格朗日插值法和牛顿插值法。
下面是一个使用拉格朗日插值法求解的习题:已知函数f(x)=sin(x),求在区间[0, π/2]上的插值多项式P(x),使得P(0)=0,P(π/2)=1。
解答:根据拉格朗日插值法的原理,我们需要构造一个满足条件的插值多项式。
首先,我们需要确定插值节点。
根据题目要求,我们取两个插值节点:x0=0,x1=π/2。
然后,我们需要确定插值多项式的系数。
设插值多项式为P(x)=a0+a1x,代入已知条件可得到两个方程:P(0)=a0=0P(π/2)=a0+a1(π/2)=1解方程组可得,a0=0,a1=2/π。
因此,插值多项式为P(x)=2x/π。
2. 数值积分是数值分析中的另一个重要内容。
它主要研究如何用数值方法计算函数的定积分。
常见的数值积分方法有梯形法则、辛普森法则等。
下面是一个使用梯形法则求解的习题:计算定积分∫[0, 1] e^(-x^2) dx。
解答:根据梯形法则的原理,我们可以将定积分转化为离散的求和问题。
首先,我们将积分区间[0, 1]等分为n个小区间,每个小区间的宽度为h=1/n。
然后,我们在每个小区间的两个端点上计算函数值,并将其加权求和。
根据梯形法则的公式,我们可以得到近似解为:∫[0, 1] e^(-x^2) dx ≈ h/2 * (f(0) + 2f(x1) + 2f(x2) + ... + 2f(x(n-1)) + f(1))其中,f(x)表示函数e^(-x^2)在点x处的取值。
第一章 绪论1.设0x >,x 的相对误差为δ,求ln x 的误差。
解:近似值*x 的相对误差为*****r e x xe x x δ-=== 而ln x 的误差为()1ln *ln *ln **e x x x e x =-≈进而有(ln *)x εδ≈2.设x 的相对误差为2%,求n x 的相对误差。
解:设()nf x x =,则函数的条件数为'()||()p xf x C f x = 又1'()n f x nx-=, 1||n p x nx C n n-⋅∴== 又((*))(*)r p r x n C x εε≈⋅且(*)r e x 为2((*))0.02n r x n ε∴≈3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:*1 1.1021x =,*20.031x =, *3385.6x =, *456.430x =,*57 1.0.x =⨯解:*1 1.1021x =是五位有效数字; *20.031x =是二位有效数字; *3385.6x =是四位有效数字; *456.430x =是五位有效数字; *57 1.0.x =⨯是二位有效数字。
4.利用公式(2.3)求下列各近似值的误差限:(1) ***124x x x ++,(2) ***123x x x ,(3) **24/x x .其中****1234,,,x x x x 均为第3题所给的数。
解:*41*32*13*34*151()1021()1021()1021()1021()102x x x x x εεεεε-----=⨯=⨯=⨯=⨯=⨯***124***1244333(1)()()()()1111010102221.0510x x x x x x εεεε----++=++=⨯+⨯+⨯=⨯ ***123*********123231132143(2)()()()()1111.10210.031100.031385.610 1.1021385.6102220.215x x x x x x x x x x x x εεεε---=++=⨯⨯⨯+⨯⨯⨯+⨯⨯⨯≈**24****24422*4335(3)(/)()()110.0311056.430102256.43056.43010x x x x x x xεεε---+≈⨯⨯+⨯⨯=⨯=5计算球体积要使相对误差限为1,问度量半径R 时允许的相对误差限是多少? 解:球体体积为343V R π=则何种函数的条件数为23'4343p R V R R C V R ππ===(*)(*)3(*)r p r r V C R R εεε∴≈=又(*)1r V ε=%1故度量半径R 时允许的相对误差限为εr (V ∗)=13∗1%=13006.设028Y =,按递推公式1n n Y Y -= (n=1,2,…)计算到100Y 27.982≈(5位有效数字),试问计算100Y 将有多大误差?解:1n n Y Y -=-10099Y Y ∴=9998Y Y =9897Y Y =……10Y Y =依次代入后,有1000100Y Y =-即1000Y Y =27.982≈, 100027.982Y Y ∴=-*310001()()(27.982)102Y Y εεε-∴=+=⨯100Y ∴的误差限为31102-⨯。
数值分析实验三:函数逼近与曲线拟合1曲线逼近方法的比较1.1问题描述曲线的拟合和插值,是逼近函数的基本方法,每种方法具有各自的特点和特定的适用范围,实际工作中合理选择方法是重要的。
考虑实验2.1中的著名问题。
下面的MATLAB程序给出了该函数的二次和三次拟合多项式。
x=-1:0.2:1;y=1./(1+25*x.*x);xx=-1:0.02:1;p2=polyfit(x,y,2);yy=polyval(p2,xx);plot(x,y,’o’,xx,yy);xlabel(‘x’);ylabel(‘y’);hold on;p3=polyfit(x,y,3);yy=polyval(p3,xx);plot(x,y,’o’,xx,yy);hold off;实验要求:(1) 将拟合的结果与拉格朗日插值及样条插值的结果比较。
(2) 归纳总结数值实验结果,试定性地说明函数逼近各种方法的适用范围,及实际应用中选择方法应注意的问题。
1.2算法设计对于曲线拟合,这里主要使用了多项式拟合,使用Matlab的polyfit函数,可以根据需要选用不同的拟合次数。
然后将拟合的结果和插值法进行比较即可。
本实验的算法比较简单,此处不再详述,可以参见给出的Matlab脚本文件。
1.3实验结果1.3.1多项式拟合1.3.1.1多项式拟合函数polyfit和拟合次数N的关系1 / 13首先使用polyfit函数对f(x)进行拟合。
为了便于和实验2.1相比较,这里采取相同的参数,即将拟合区间[-1,1]等分为10段,使用每一段区间端点作为拟合的数据点。
分别画出拟合多项式的次数N=2、3、4、6、8、10时,f(x)和多项式函数的图像,如图1所示。
Matlab 脚本文件为Experiment3_1_1.m。
Figure 1 多项式拟合与拟合次数N的关系可以看出,拟合次数N=2和3时,拟合效果很差。
增大拟合次数,N=4、6、8时,拟合效果有明显提高,但是N太大时,在区间两端附近会出现和高次拉格朗日插值函数类似的龙格现象。
第一章绪论习题一1.设x>0,x*的相对误差为δ,求f(x)=ln x的误差限。
解:求lnx的误差极限就是求f(x)=lnx的误差限,由公式(1.2.4)有已知x*的相对误差满足,而,故即2.下列各数都是经过四舍五入得到的近似值,试指出它们有几位有效数字,并给出其误差限与相对误差限。
解:直接根据定义和式(1.2.2)(1.2.3)则得有5位有效数字,其误差限,相对误差限有2位有效数字,有5位有效数字,3.下列公式如何才比较准确?(1)(2)解:要使计算较准确,主要是避免两相近数相减,故应变换所给公式。
(1)(2)4.近似数x*=0.0310,是 3 位有数数字。
5.计算取,利用:式计算误差最小。
四个选项:第二、三章插值与函数逼近习题二、三1. 给定的数值表用线性插值与二次插值计算ln0.54的近似值并估计误差限. 解:仍可使用n=1及n=2的Lagrange插值或Newton插值,并应用误差估计(5.8)。
线性插值时,用0.5及0.6两点,用Newton插值误差限,因,故二次插值时,用0.5,0.6,0.7三点,作二次Newton插值误差限,故2. 在-4≤x≤4上给出的等距节点函数表,若用二次插值法求的近似值,要使误差不超过,函数表的步长h 应取多少?解:用误差估计式(5.8),令因得3. 若,求和.解:由均差与导数关系于是4. 若互异,求的值,这里p≤n+1.解:,由均差对称性可知当有而当P=n+1时于是得5. 求证.解:解:只要按差分定义直接展开得6. 已知的函数表求出三次Newton均差插值多项式,计算f(0.23)的近似值并用均差的余项表达式估计误差.解:根据给定函数表构造均差表由式(5.14)当n=3时得Newton均差插值多项式N3(x)=1.0067x+0.08367x(x-0.2)+0.17400x(x-0.2)(x-0.3) 由此可得f(0.23) N3(0.23)=0.23203由余项表达式(5.15)可得由于7. 给定f(x)=cosx的函数表用Newton等距插值公式计算cos 0.048及cos 0.566的近似值并估计误差解:先构造差分表计算,用n=4得Newton前插公式误差估计由公式(5.17)得其中计算时用Newton后插公式(5.18)误差估计由公式(5.19)得这里仍为0.5658.求一个次数不高于四次的多项式p(x),使它满足解:这种题目可以有很多方法去做,但应以简单为宜。
第二章 插值法习题参考答案2.)12)(12()1)(1(4)21)(11()2)(1()3()21)(11()2)(1(0)(2+-+-⋅+------⋅-+-+-+⋅=x x x x x x x L3723652-+=x x . 3. 线性插值:取510826.0,693147.0,6.0,5.01010-=-===y y x x ,则620219.0)54.0()54.0(54.0ln 0010101-=-⋅--+=≈x x x y y y L ;二次插值:取510826.0,693147.0,916291.0,6.0,5.0,4.0210210-=-=-====y y y x x x ,则)54.0(54.0ln 2L ≈))(()54.0)(54.0())(()54.0)(54.0())(()54.0)(54.0(120210221012012010210x x x x x x y x x x x x x y x x x x x x y ----⋅+----⋅+----⋅==-0.616707 .6. i) 对),,1,0(,)(n k x x f k==在n x x x ,,,10 处进行n 次拉格朗日插值,则有)()(x R x P x n n k +=)())(()!1(1)(0)1(0n n ni k j j x x x x f n x x l --++=+=∑ ξ由于0)()1(=+ξn f,故有kni k j jxx x l≡∑=0)(.ii) 构造函数,)()(kt x x g -=在n x x x ,,,10 处进行n 次拉格朗日插值,有∑=-=ni j k j n x l t x x L 0)()()(.插值余项为 ∏=+-+=--nj j n n kx x n g x L t x 0)1()()!1()()()(ξ, 由于).,,2,1(,0)()1(n k g n ==+ξ故有 .)()()()(0∑=-==-ni j k j n kx l t x x L t x令,x t =即得 ∑==-ni j k jx l t x)()(.8. 截断误差].4,4[),)()((61)(2102-∈---=ξξx x x x x x e x R其中 ,,1210h x x h x x +=-= 则hx x 331+=时取得最大值321044392|))()((|max h x x x x x x x ⋅=---≤≤- .由题意, ,10)392(61|)(|6342-=⋅⋅≤h e x R所以,.006.0≤h16. ;1!7!7!7)(]2,,2,2[)7(71===ξf f .0!7)(]2,,2,2[)8(810==ξf f19. 采用牛顿插值,作均差表:i x)(i x f一阶均差 二阶均差0 1 20 1 11 0-1/2],,[))((],[)()()(210101000x x x f x x x x x x f x x x p x p --+-+=))()()((210x x x x x x Bx A ---++)2)(1()()2/1)(1(0--++--++=x x x Bx A x x x又由 ,1)1(,0)0(='='p p 得,41,43=-=B A 所以 .)3(4)(22-=x x x p第三章 函数逼近与计算习题参考答案4.设所求为()g x c =,(,)max(,),max (),min ()a x ba x bf g M c m c M f x m f x ≤≤≤≤∆=--==,由47页定理4可知()g x 在[],a b 上至少有两个正负交错的偏差点,恰好分别为()f x 的最大值和最小值处,故由1(),()2M c m c c M m -=--=+可以解得1()()2g x M m =+即为所求。
数值分析函数逼近与曲线拟合第三章函数逼近和曲线拟合 1 函数的逼近和基本概念1.1问题的提出多数计算机的硬件系统只提供加、减、乘、除四种算术运算指令,因此为了计算大多数有分析表达式的函数的值,必须产生可用四则运算进行计算的近似式,一般为多项式和有理分式函数.实际上,我们已经接触到两种逼近多项式,一种是泰乐多项式,一种是插值多项式.泰乐多项式是一种局部方法,误差分布不均匀,满足一定精度要求的泰乐多项式次数太高,不宜在计算机上直接使用.例如,设()f x 是[1,1]-上的光滑函数,它的Taylor 级数0()kk k f x a x ∞==∑,()(0)!k k f a k =在[1,1]-上收敛。
当此级数收敛比较快时,11()()()n n n n e x f x s x a x ++=-≈。
这个误差分布是不均匀的。
当0x =时,(0)0n e =,而x 离开零点增加时,()n e x 单调增加,在1x =±误差最大。
为了使[1,1]-的所有x 满足()()nf x s x ε-<,必须选取足够大的n ,这显然是不经济的。
插值函数出现的龙格现象表明,非节点处函数和它的插值多项式相差太大。
更重要的是,实际中通过观测得到的节点数据往往有各种误差,此时如果要求逼近函数过全部节点,相当于保留全部数据误差,这是不适宜的。
如图1所示,给出五个点上的实验测量数据,理论上的结果应该满足线性关系,即图1中的实线。
由于实验数据的误差太大,不能用过任意两点的直线逼近函数。
如果用过5个点的4次多项式逼近线性函数,显然误差会很大。
1.2范数和逼近一、线性空间及赋范线性空间要深入研究客观事物,不得不研究事物间的内在联系,给集合的元素之间赋予某种“确定关系”也正是这样的道理.数学上常把在各种集合中引入某些不同的确定关系称为赋予集合以某种空间结构,并将这样的集合称为空间。
最常用的给集合赋予一种“加法”和“数乘”运算,使其构成线性空间.例如将所有实n 维数对组成的集合,按照“加法”和“数乘”运算构成实数域上的线性空间,记作nR ,称为n 维向量空间.类似地,对次数不超过n 的实系数多项式全体,按通常多项式和多项式加法及数和多项式乘法也构成数域R 上一个线性空间,用n H 表示,称为多项式空间。
李庆扬数值分析第五版习题答案清华大学出版社Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】第一章 绪论1.设0x >,x 的相对误差为δ,求ln x 的误差。
解:近似值*x 的相对误差为*****r e x xe x x δ-=== 而ln x 的误差为()1ln *ln *ln **e x x x e x =-≈进而有(ln *)x εδ≈2.设x 的相对误差为2%,求n x 的相对误差。
解:设()n f x x =,则函数的条件数为'()||()p xf x C f x = 又1'()n f x nx-=, 1||n p x nx C n n-⋅∴== 又((*))(*)r p r x n C x εε≈⋅ 且(*)r e x 为2((*))0.02n r x n ε∴≈3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:*1 1.1021x =,*20.031x =, *3385.6x =, *456.430x =,*57 1.0.x =⨯解:*1 1.1021x =是五位有效数字;*20.031x =是二位有效数字; *3385.6x =是四位有效数字; *456.430x =是五位有效数字; *57 1.0.x =⨯是二位有效数字。
4.利用公式求下列各近似值的误差限:(1) ***124x x x ++,(2) ***123x x x ,(3) **24/x x .其中****1234,,,x x x x 均为第3题所给的数。
解:*41*32*13*34*151()1021()1021()1021()1021()102x x x x x εεεεε-----=⨯=⨯=⨯=⨯=⨯***124***1244333(1)()()()()1111010102221.0510x x x x x x εεεε----++=++=⨯+⨯+⨯=⨯ ***123*********123231132143(2)()()()()1111.10210.031100.031385.610 1.1021385.6102220.215x x x x x x x x x x x x εεεε---=++=⨯⨯⨯+⨯⨯⨯+⨯⨯⨯≈**24****24422*4335(3)(/)()()110.0311056.430102256.43056.43010x x x x x x x εεε---+≈⨯⨯+⨯⨯=⨯=5计算球体积要使相对误差限为1,问度量半径R 时允许的相对误差限是多少解:球体体积为343V R π= 则何种函数的条件数为23'4343p R V R R C V R ππ===(*)(*)3(*)r p r r V C R R εεε∴≈=又(*)1r V ε=故度量半径R 时允许的相对误差限为1(*)10.333r R ε=⨯≈ 6.设028Y =,按递推公式1n n Y Y -=(n=1,2,…) 计算到100Y27.982≈(5位有效数字),试问计算100Y 将有多大误差解:1n n Y Y -=10099Y Y ∴=9998Y Y =9897Y Y =……10Y Y =依次代入后,有1000100Y Y =-即1000Y Y =,若取27.982≈, 100027.982Y Y ∴=-*310001()()(27.982)102Y Y εεε-∴=+=⨯100Y ∴的误差限为31102-⨯。