3函数逼近与曲线拟合
- 格式:ppt
- 大小:777.50 KB
- 文档页数:53
曲线拟合实验报告[优秀范文5篇]第一篇:曲线拟合实验报告数值分析课程设计报告学生姓名学生学号所在班级指导教师一、课程设计名称函数逼近与曲线拟合二、课程设计目的及要求实验目的: ⑴学会用最小二乘法求拟合数据的多项式,并应用算法于实际问题。
⑵学会基本的矩阵运算,注意点乘与叉乘的区别。
实验要求: ⑴编写程序用最小二乘法求拟合数据的多项式,并求平方误差,做出离散函数与拟合函数的图形;⑵用MATLAB 的内部函数polyfit 求解上面最小二乘法曲线拟合多项式的系数及平方误差,并用MATLAB的内部函数plot作出其图形,并与(1)结果进行比较。
三、课程设计中的算法描述用最小二乘法多项式曲线拟合,根据给定的数据点,并不要求这条曲线精确的经过这些点,而就是拟合曲线无限逼近离散点所形成的数据曲线。
思路分析 : 从整体上考虑近似函数)(x p 同所给数据点)(i iy x , 误差i i iy x p r -=)(的大小,常用的方法有三种:一就是误差i i iy x p r -=)(绝对值的最大值im ir≤≤ 0max ,即误差向量的无穷范数;二就是误差绝对值的与∑=miir0,即误差向量的 1成绩评定范数;三就是误差平方与∑=miir02的算术平方根,即类似于误差向量的 2 范数。
前两种方法简单、自然,但不便于微分运算,后一种方法相当于考虑 2 范数的平方,此次采用第三种误差分析方案。
算法的具体推导过程: 1、设拟合多项式为:2、给点到这条曲线的距离之与,即偏差平方与:3、为了求得到符合条件的 a 的值,对等式右边求偏导数,因而我们得到了:4、将等式左边进行一次简化,然后应该可以得到下面的等式5、把这些等式表示成矩阵的形式,就可以得到下面的矩阵:⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡∑∑∑∑∑∑∑∑∑∑∑=====+==+====niininiiknikinikinikinikiniiniinikiniiyyyaax x xx x xx x11i11012111111211 1an MMΛM O M MΛΛ 6.将这个范德蒙得矩阵化简后得到⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡n kkn nkkyyyaaax xx xx x M MΛM O M MΛΛ21102 21 1111 7、因为 Y A X = * ,那么 X Y A / = ,计算得到系数矩阵,同时就得到了拟合曲线。
三次多项式曲线拟合算法
三次多项式曲线拟合是一种用来拟合数据的算法,通过使用三次多项式函数来逼近给定的数据点,从而得到一个平滑的曲线。
它通常用于拟合非线性的数据集。
以下是一个简单的三次多项式曲线拟合的算法步骤:
1. 假设有一组给定的数据点 (x, y),其中 x 是自变量,y 是因
变量。
2. 创建一个三次多项式函数模型:f(x) = a*x^3 + b*x^2 + c*x + d,其中 a、b、c 和 d 是待求解的系数。
3. 使用最小二乘法来估计模型的参数。
最小二乘法通过最小化残差的平方和来找到最佳拟合曲线的参数值。
残差是实际观测值与模型预测值之间的差异。
4. 可以使用一些常见的优化算法,如牛顿法或梯度下降法,来最小化残差的平方和,从而得到最佳的参数估计值。
5. 根据得到的参数估计值,计算模型的预测值。
6. 使用得到的参数和预测值,绘制拟合曲线。
7. 可以评估拟合曲线的质量,如计算拟合误差、残差分析等。
需要注意的是,三次多项式曲线拟合算法可能会存在过拟合的问题,即拟合曲线过度匹配了训练数据,导致在未知数据上的预测性能较差。
为了解决这个问题,可以使用交叉验证技术来选择合适的模型复杂度,或者使用正则化方法来约束模型的复杂度。
此外,三次多项式曲线拟合算法还可以扩展到更高次的多项式
拟合,例如四次多项式或更高次的多项式拟合。
不过随着多项式的次数增加,模型的复杂度也会增加,因此需要谨慎选择合适的多项式次数以避免过拟合问题。
函数逼近的几种算法及其应用汇总函数逼近是数值计算中非常重要的技术之一,它主要用于用已知函数逼近未知函数,从而得到未知函数的一些近似值。
在实际应用中,函数逼近广泛用于数据拟合、插值、信号处理、图像处理等领域。
下面将介绍几种常用的函数逼近算法及其应用。
1. 最小二乘法(Least Square Method)最小二乘法将函数逼近问题转化为最小化离散数据与拟合函数之间的残差平方和的问题。
它在数据拟合和插值中应用广泛。
例如,最小二乘法可以用于拟合数据点,找出最佳拟合曲线;也可以用于信号处理中的滤波器设计。
2. 插值法(Interpolation)插值法旨在通过已知数据点之间的连线或曲线,来逼近未知函数在这些数据点上的取值。
常见的插值方法有拉格朗日插值、牛顿插值和分段线性插值等。
插值法在图像处理中广泛应用,例如可以通过已知的像素点来重构图像,提高图像的质量和分辨率。
3. 最小二乘曲线拟合(Least Square Curve Fitting)最小二乘曲线拟合是一种将渐近函数与离散数据拟合的方法,常见的函数包括多项式、指数函数、对数函数等。
最小二乘曲线拟合可以在一定程度上逼近原始数据,从而得到曲线的一些参数。
这种方法在数据分析和统计学中经常使用,在实际应用中可以拟合出模型参数,从而做出预测。
4. 正交多项式逼近(Orthogonal Polynomial Approximation)正交多项式逼近是一种通过正交多项式来逼近未知函数的方法。
正交多项式具有良好的性质,例如正交性和递推关系,因此可以用于高效地逼近函数。
常见的正交多项式包括勒让德多项式、拉盖尔多项式和切比雪夫多项式等。
正交多项式逼近广泛应用于数值计算和信号处理中,例如用于图像压缩和数据压缩。
5. 插值样条曲线(Interpolating Spline)插值样条曲线是将多个局部的多项式插值片段拼接在一起,从而逼近未知函数的方法。
插值样条曲线在实现光滑拟合的同时,还能逼近离散数据点。
数值分析期末复习资料数值分析期末复习题型:一、填空 二、判断 三、解答(计算) 四、证明第一章误差与有效数字一、有效数字1、定义:若近似值X*的误差限是某一位的半个单位,该位到x*的第一位非零数字共有n 位,就说x*有n 位有效数字。
2、两点理解:(1) 四舍五入的一定是有效数字(2) 绝对误差不会超过末位数字的半个单位eg. ・§丄% 3、 定理1 (P6):若x*具有n 位有效数字,则其相对误差虧疗茲T 4、考点:(1)计算有效数字位数:一个根据定义理解,一个根据定理1 (P7例题3) 二、避免误差危害原则 1、原则:(1) 避免大数吃小数(方法:从小到大相加;利用韦达定理:xl*x2= c / a ) 避免相近数相减(方法:有理化)eg. V777-77 =c ・2 X2sin7 或 减少运算次数(方法:秦九韶算法)eg.P20习题14 三. 数值运算的误差估计 1、公式:(1) 一元函数:I £*( f 3))1 Q |「(於)1・| £*(力|或其变形公式求相对误差(两边同时除以f (卅))eg. P19习题1、2、5(2) (3) ln(x + £)- In x = In 1;1 — cos X =(2)多元函数(P8) eg. P8例4, P19习题4第二章插值法一、插值条件1、定义:在区间[a, b]上,给定n+1个点,aWxoVx[V・・・VxWb的函数值yi=f(xi),求次数不超过n的多项式P(x),饋兀)=儿 i =0,1,2,…,力2、定理:满足插值条件、n+1个点、点互异、多项式次数Wn的P(x)存在且唯一二、拉格朗日插值及其余项1、n次插值基函数表达式(P26 (2.8))2、插值多项式表达式(P26 (2.9))3、插值余项(P26 (2.12)):用于误差估计4、插值基函数性质(P27 (2. 17及2. 18)) eg. P28例1三、差商(均差)及牛顿插值多项式1、差商性质(P30):(1)可表示为函数值的线性组合(2)差商的对称性:差商与节点的排列次序无关(3)均差与导数的关系(P31 (3.5))2、均差表计算及牛顿插值多项式例:已知X=1,4,9的平方根为1,2,3,利用牛顿基本差商公式求"的近似值。
函数逼近的几种算法及其应用函数逼近是数值计算中的一种重要技术,用于在给定的函数空间中找到与目标函数最相近的函数。
函数逼近算法可以在不知道目标函数解析表达式的情况下,通过对给定数据进行处理来逼近目标函数的结果。
这篇文章将介绍几种常见的函数逼近算法及其应用。
1.多项式逼近:多项式逼近是一种利用多项式函数逼近目标函数的方法。
多项式逼近算法有很多种,常见的有最小二乘法、拉格朗日插值法和牛顿插值法等。
多项式逼近广泛应用于数据拟合、信号处理和图像处理等领域。
最小二乘法是一种通过最小化实际观测值与多项式模型之间的差异来确定多项式系数的方法。
最小二乘法可以用于拟合非线性和线性函数。
拉格朗日插值法和牛顿插值法是通过插值多项式来逼近目标函数的方法,可以用于填充缺失数据或者生成曲线过程中的中间点。
2.三角函数逼近:三角函数逼近是一种利用三角函数来逼近目标函数的方法。
三角函数逼近算法有傅里叶级数逼近和小波变换等。
傅里叶级数逼近是一种利用三角函数的线性组合来逼近目标函数的方法。
这种方法广泛应用于信号处理、图像处理和数学建模等领域。
小波变换是一种通过特定的基函数来逼近目标函数的方法。
小波变换可以用于信号去噪、图像压缩和模式识别等应用。
3.插值逼近:插值逼近是一种通过已知数据点在给定区间内的函数值来确定目标函数的方法。
常见的插值逼近方法有拉格朗日插值法、牛顿插值法和差值多项式法等。
插值逼近广泛应用于任何需要通过已知数据点来逼近目标函数的领域。
在实际应用中,函数逼近常用于数据分析和模型构建。
例如,在金融领域,函数逼近可以用于确定股票价格走势的模型和预测。
在工程领域,函数逼近可以用于建立复杂系统的模型和优化控制。
在计算机图形学领域,函数逼近可以用于生成真实感图像和动画。
总结起来,函数逼近是一种重要的数值计算技术,有多种算法可供选择。
多项式逼近、三角函数逼近和插值逼近是常见的函数逼近算法。
函数逼近广泛应用于数据分析、模型构建和优化控制等领域,对于解决实际问题具有重要作用。
curvefitting拟合三元函数曲线拟合是一种数学处理方法,旨在通过选择最佳拟合曲线来描述数据集的趋势和关系。
对于三元函数的曲线拟合,我们需要考虑三个变量之间的关系,并找到最适合数据的曲线模型。
一般而言,三元函数可以表示为f(x,y)=z,其中x、y和z分别是自变量和因变量。
我们的目标是找到合适的函数形式来描述x、y和z之间的关系。
根据数据集的分布情况,我们可以选择适当的函数模型进行拟合。
以下是一些常见的三元函数模型:1. 线性函数:f(x, y) = ax + by + c,其中a、b和c是拟合曲线的系数。
这个模型适合于变量之间的简单线性关系。
2. 多项式函数:f(x, y) = ax² + bxy + cy² + dx + ey + f。
这个模型适合于拟合包含二次或更高次项的数据。
3. 指数函数:f(x, y) = ab^(cx) + dy。
这个模型适用于自变量和因变量之间存在指数增长或衰减的情况。
4. 对数函数:f(x, y) = a + bln(x) + cln(y)。
这个模型适用于数据集呈现出对数增长或衰减的情况。
5.样条函数:样条函数是一种灵活的曲线拟合方法,适用于数据集呈现出复杂的曲线形状。
它通过在数据集中插入节点来逼近拟合曲线。
选择合适的函数模型后,我们需要使用数值优化方法来估计模型的参数。
最常用的方法之一是最小二乘法,它通过最小化观测值和拟合值之间的差异来确定最佳拟合曲线。
一旦拟合曲线的参数确定,我们可以使用这个曲线模型来预测和分析其他数据。
最后,我们需要评估拟合结果的质量。
可以使用统计指标如均方根误差(RMSE)或确定系数(R²)来衡量拟合曲线对原始数据的拟合程度。
总结起来,曲线拟合是一种重要的数学处理方法,用于找到最佳拟合曲线来描述三元函数数据集的关系。
它可以帮助我们理解和预测变量之间的关联性,并为进一步的分析和预测提供基础。
选择合适的函数模型、使用数值优化方法进行参数估计以及评估拟合结果的质量是进行曲线拟合的关键步骤。
河北联合大学第2012-2013-1学期《数值计算方法》教学大纲依据我校章程,特制定了适合我校理工科各专业本科生的《数值计算方法》教学大纲。
一、课程计划课程名称:数值计算方法Numerical Calculation Methods开课单位:理学院课程类型:专业必修课开设学期:第五学期讲授学时:共15周,每周4学时,共60学时学时安排:课堂教学44学时+实验教学16学时适用专业:信科、数学、统计理科专业本科生教学方式:讲授(多媒体为主)+上机考核方式:闭卷40% +上机实验20%+课程报告20% +平时成绩10%学分:4学分与其它课程的联系预修课程:数学分析、高等代数、常微分方程、计算机高级语言等。
后继课程:偏微分方程数值解及其它专业课程。
二、课程介绍数值计算方法也称为数值分析,是研究用计算机求解各种数学问题的数值方法及其理论的一门学科。
随着计算科学与技术的进步和发展,科学计算已经与理论研究、科学实验并列成为进行科学活动的三大基本手段,作为一门综合性的新科学,科学计算已经成为了人们进行科学活动必不可少的科学方法和工具。
数值计算方法是科学计算的核心内容,它既有纯数学高度抽象性与严密科学性的特点,又有应用的广泛性与实际实验的高度技术性的特点,是一门与计算机使用密切结合的实用性很强的数学课程。
主要介绍数值计算的误差、插值法、函数逼近与曲线拟合、线性方程组迭代解法、数值积分与数值微分、非线性方程组解法、矩阵特征值与特征向量数值计算以及常微分方程数值解,并特别加强实验环节的训练以提高学生动手能力。
通过本课程的学习,不仅能使学生初步掌握数值计算方法的基本理论知识,了解算法设计及数学建模思想,而且能使学生具备一定的科学计算能力和分析与解决问题的能力,不仅为学习后继课程打下良好的理论基础,也为将来从事科学计算、计算机应用和科学研究等工作奠定必要的数学基础。
教学与实验教学课堂教学实验教学论文报告机动课内学时课外学时学时数44 16 8 2 60 10三、重点难点课程重点:理解各种常用数值计算方法的数学原理和理论分析过程,掌握各种数值计算方法的示范性上机程序,学会设计数值算法的基本思路、一般原理和各种数值算法的程序实现。
曲线拟合的实用方法与原理曲线拟合是一种常用的数据分析方法,它可以通过寻找最佳拟合曲线来描述一组数据的趋势和关系。
在科学研究、工程技术、金融分析等领域中,曲线拟合被广泛应用于数据模型的建立、预测和优化等方面。
本文将介绍曲线拟合的实用方法和原理,帮助读者更好地理解和运用这一分析工具。
一、曲线拟合的基本概念曲线拟合是指通过一组已知数据点,寻找一条函数曲线来逼近这些数据点的过程。
拟合曲线的选择通常基于拟合误差最小化的原则,即找到一条曲线,使得它与实际数据点之间的误差最小。
二、常见的曲线拟合方法1. 最小二乘法最小二乘法是一种常见的曲线拟合方法,它通过最小化拟合曲线与实际数据点之间的残差平方和来确定最佳拟合曲线。
最小二乘法在实际应用中较为简单和灵活,能够拟合各种类型的曲线,如线性曲线、多项式曲线、指数曲线等。
2. 多项式拟合多项式拟合是一种通过多项式函数来拟合数据点的方法。
它可以通过最小二乘法来确定多项式的系数,从而得到最佳拟合曲线。
多项式拟合可以适用于不同阶数的多项式,阶数越高,拟合曲线越复杂,能够更好地逼近实际数据。
3. 曲线拟合工具除了最小二乘法和多项式拟合外,还有一些专门的曲线拟合工具可供使用。
例如,MATLAB和Python中的Scipy库提供了丰富的曲线拟合函数,可以根据实际需求选择合适的拟合方法和工具。
三、曲线拟合的实际应用曲线拟合在各个领域都有广泛的应用。
以下是几个典型的实际应用案例:1. 经济数据分析曲线拟合可以用于分析经济数据的趋势和关系。
例如,通过对历史GDP数据进行曲线拟合,可以预测未来的经济增长趋势,为政策制定和投资决策提供参考。
2. 工程建模在工程领域,曲线拟合可以用于建立物理模型和优化设计。
例如,通过对实验数据进行曲线拟合,可以得到物质的力学性质曲线,从而优化材料的设计和使用。
3. 股票价格预测曲线拟合可以用于股票价格的预测和交易策略的制定。
通过对历史股票价格数据进行曲线拟合,可以找到潜在的趋势和周期性,从而为投资者提供决策依据。