电工电子技术半导体二极管和三极管
- 格式:ppt
- 大小:3.84 MB
- 文档页数:58
二极管和三极管的导通条件二极管和三极管是电子元器件中常见的两种器件,它们在电路中起着重要的作用。
在了解二极管和三极管的导通条件之前,我们先来了解一下它们的基本结构和工作原理。
1. 二极管的导通条件二极管是一种只能允许电流在一个方向上通过的器件。
它由P型半导体和N型半导体组成,中间有一个P-N结。
当P端的电压高于N 端时,二极管处于正向偏置状态,此时二极管导通。
反之,当P端的电压低于N端时,二极管处于反向偏置状态,此时二极管截止。
具体来说,二极管的导通条件是:当正向电压大于二极管的正向压降(一般为0.6-0.7V)时,二极管导通。
这是因为当正向电压作用于二极管时,会使得P端的空穴和N端的电子向P-N结扩散,形成电流。
2. 三极管的导通条件三极管是一种具有放大功能的电子元器件,它由三个掺杂不同的半导体构成,分别是发射极(Emitter)、基极(Base)和集电极(Collector)。
三极管具有两个PN结,即发射结和集电结。
三极管的导通条件是:当基极与发射极之间的电压大于0.6-0.7V,并且发射极与集电极之间的电压大于0.2-0.3V时,三极管处于导通状态。
这是因为当基极电压大于0.6-0.7V时,会将电子注入到基区,形成电流。
而当发射极与集电极之间的电压大于0.2-0.3V时,该电流会被放大并输出到集电极。
3. 二极管和三极管的应用二极管和三极管广泛应用于各种电子设备和电路中。
二极管常用于整流电路中,用于将交流电转换为直流电。
此外,二极管还可用于电压限制、电压调节等电路中。
而三极管则常用于放大电路和开关电路中。
在放大电路中,三极管可以将微弱的信号放大成较大的信号,以便驱动负载。
在开关电路中,三极管可以控制电流的通断,实现开关的功能。
总结:二极管和三极管的导通条件分别是:二极管的导通条件是正向电压大于正向压降;三极管的导通条件是基极与发射极之间的电压大于0.6-0.7V,并且发射极与集电极之间的电压大于0.2-0.3V。
实训二二极管、三极管的判别与检测一、实训目的1.学会用万用表判别晶体二极管和三极管的管脚。
2.学会用万用表检测晶体二极管和三极管质量的好坏。
二、实训原理1.晶体二极管(1)晶体二极管(以下简称二极管)是内部具有一个PN结,外部具有两个电极的一种半导体器件。
对二极管进行检测,主要是鉴别它的正、负极性及其单向导电性能。
通常其正向电阻小为几百欧,反向电阻大为几十千欧至几百千欧。
(2)二极管极性的判别根据二极管正向电阻小,反向电阻大的特点可判别二极管的极性。
指针式万用表:将万用表拨到R⨯100或R⨯1k的欧姆档,表棒分别与二极管的两极相连,测出两个阻值,在测得阻值较小的一次测量中,与黑表棒相接的一端就是二极管的正极。
同理在测得阻值较大的一次测量中,与黑表棒相接的一端就是二极管的负极。
数字式万用表:红表笔插在“V·Ω”插孔,黑表笔插在“COM”插孔。
将万用表拨到二极管档测量,用两支表笔分别接触二极管两个电极,若显示值为几百欧,说明管子处于正向导通状态,红表笔接的是正极,黑表笔接的是负极;若显示溢出符号“1”,表明管子处于反向截止状态,黑表笔接的是正极,红表笔接的是负极。
(3)二极管质量的检测一个二极管的正、反向电阻差别越大,其性能就越好。
用上述方法测量二极管时,如果双向电阻值都较小,说明二极管质量差,不能使用;如果双向阻值都为无穷大,说明该二极管已经断路;如果双向阻值均为零,则说明二极管已被击穿。
在这三种情况下二极管就不能使用了。
2.晶体三极管(1)三极管的结构可以看成是两个背靠背的PN结,如图2-1所示。
对NPN管来说,基极是两个PN结的公共阳极,对PNP管来说,基极是两个PN结的公共阴极。
图2-1 晶体三极管结构示意图(2)三极管基极与管型的判别将指针式万用表拨到R⨯100或R⨯1k欧姆档,用黑表棒接触某一管脚,用红表棒分别接触另两个管脚,如表头读数都很小,则与黑表棒接触的那一管脚是基极,同时可知此三极管为NPN型。
二极管、三极管、晶体管概念和用途一、二极管的概念和用途二极管是一种具有两个电极的半导体器件,它具有单向导电特性。
当施加正向电压时,二极管正向导通,电流通过;当施加反向电压时,二极管反向截止,电流基本不通过。
二极管主要用于整流、稳压、开关和检波等电路中。
1、整流在交流电路中,二极管可以将交流信号转换为直流信号。
通过二极管整流,可以将交流电源转换为直流电源,以满足电子设备对直流电源的需求。
2、稳压二极管还可以作为稳压器使用。
在稳压电路中,通过合理连接二极管和电阻,可以实现对电压的稳定。
3、开关由于二极管具有导通和截止的特性,可以将其应用到开关电路中。
在开关电路中,二极管可以控制电流的通断,实现对电路的控制。
4、检波二极管还可以用作检波器。
在无线电接收机中,二极管可以将射频信号转换为音频信号,实现信息的接收和解调。
二、三极管的概念和用途三极管是一种具有三个电极的半导体器件,分为发射极、基极和集电极。
三极管具有放大、开关等功能,是现代电子设备中不可或缺的器件。
1、放大在放大电路中,三极管可以对输入信号进行放大处理。
通过合理设置电路参数,可以实现对电压、电流和功率等信号的放大。
2、开关与二极管类似,三极管也可以用作开关。
通过控制基极电流,可以实现对集电极与发射极之间的电流通断控制。
3、振荡在振荡电路中,三极管可以实现信号的自激振荡。
通过反馈电路的设计,可以使三极管产生稳定的振荡信号。
4、调制在通信系统中,三极管可以用于信号的调制。
通过三极管的放大和调制功能,可以实现对射频信号等信息的传输。
三、晶体管的概念和用途晶体管是一种半导体器件,是二极管的发展和改进,是现代电子技术的重要组成部分,被广泛应用于放大、开关、振荡和数字逻辑电路等领域。
1、放大晶体管可以作为放大器使用,实现对信号的放大处理。
晶体管的放大能力较强,可以应用于音频放大、射频放大等领域。
2、开关晶体管也可以用作开关。
与三极管类似,晶体管可以实现对电路的控制,用于开关电源、数码电路等领域。
电子元器件知识:二极管、三极管与场效应管。
一、半导体二极管2、半导体二极管的分类分类:a 按材质分:硅二极管和锗二极管;b按用途分:整流二极管,检波二极管,稳压二极管,发光二极管,光电二极管,变容二极管。
3、半导体二极管在电路中常用“D”加数字表示,如:D5表示编号为5的半导体二极管。
4、半导体二极管的导通电压是:a;硅二极管在两极加上电压,并且电压大于0.6V时才能导通,导通后电压保持在0.6-0.8V之间.B;锗二极管在两极加上电压,并且电压大于0.2V时才能导通,导通后电压保持在0.2-0.3V之间.5、半导体二极管主要特性是单向导电性,也就是在正向电压的作用下,导通电阻很小;而在反向电压作用下导通电阻极大或无穷大。
6、半导体二极管可分为整流、检波、发光、光电、变容等作用。
7、半导体二极管的识别方法:a;目视法判断半导体二极管的极性:一般在实物的电路图中可以通过眼睛直接看出半导体二极管的正负极.在实物中如果看到一端有颜色标示的是负极,另外一端是正极.b;用万用表(指针表)判断半导体二极管的极性:通常选用万用表的欧姆档(R﹡100或R﹡1K),然后分别用万用表的两表笔分别出接到二极管的两个极上出,当二极管导通,测的阻值较小(一般几十欧姆至几千欧姆之间),这时黑表笔接的是二极管的正极,红表笔接的是二极管的负极.当测的阻值很大(一般为几百至几千欧姆),这时黑表笔接的是二极管的负极,红表笔接的是二极管的正极.c;测试注意事项:用数字式万用表去测二极管时,红表笔接二极管的正极,黑表笔接二极管的负极,此时测得的阻值才是二极管的正向导通阻值,这与指针式万用表的表笔接法刚好相反。
8、变容二极管是根据普通二极管内部“PN结”的结电容能随外加反向电压的变化而变化这一原理专门设计出来的一种特殊二极管。
变容二极管在无绳电话机中主要用在手机或座机的高频调制电路上,实现低频信号调制到高频信号上,并发射出去。
在工作状态,变容二极管调制电压一般加到负极上,使变容二极管的内部结电容容量随调制电压的变化而变化。
二极管和三极管原理二极管原理:二极管是一种有两个电极(即阴极和阳极)的半导体器件。
它基于PN结的特性,PN结是由P型半导体和N型半导体直接相接而形成的结构。
在正向偏置电压下,P型半导体为正极,N型半导体为负极,形成正向电流。
而在反向偏置电压下,P型半导体为负极,N型半导体为正极,形成反向电流。
二极管的主要原理是PN结的单向导电性。
当二极管正向偏置时,P区与N区之间的电子就会向前移动,同时空穴则向后移动,形成正向电流。
而在反向偏置时,由于PN结上有一个势垒,阻碍了电子和空穴的移动,所以几乎没有电流通过。
因此,二极管可以用来控制电流的流向。
二极管的特性使其在电子设备中有广泛的应用。
例如,它可以用作整流器,将交流电转换为直流电。
当正弦波信号通过二极管时,只有正半周期能通过,负半周期将被阻止,从而将交流电转换为直流电。
此外,二极管还可用于稳压电路、振荡器等。
三极管原理:三极管是一种三个电极(即基极、发射极和集电极)的半导体器件。
它是由两个PN结(即P型和N型)组成的。
PNP型和NPN型是两种常见的三极管。
PNP型的集电极和基极为负极,发射极为正极;NPN型的集电极和基极为正极,发射极为负极。
三极管的原理是基于PNP或NPN结的放大作用。
当三极管的基极接受到一个小信号电流时,这个电流通过PN结的放大作用,导致大量的电子或空穴流向集电极。
这样,三极管就能够将小信号放大成大信号。
具体来说,当三极管处于截止状态时,集电极和发射极之间的电流非常小。
当三极管处于饱和状态时,集电极和发射极之间的电流非常大。
通过控制基极电流的大小,可以在截止和饱和之间控制三极管的工作状态,从而实现对信号的放大。
三极管具有放大、开关、振荡等功能,因此在电子电路中有广泛的应用。
例如,三极管可以用于构建放大器,将小信号放大到足够大的程度。
此外,它还可以用于逻辑门电路、时钟发生器等。
二极管和三极管的形成机理和工作原理二极管和三极管是电子技术中非常重要的两种元件,它们的作用和原理非常复杂。
下面将对二极管和三极管的形成机理和工作原理进行详细说明。
一、二极管的形成机理和工作原理二极管是一种最简单的半导体器件,主要由P型和N型半导体材料构成。
N型半导体材料中的杂质原子的价电子比原本的主体原子多一个,形成了自由电子;而P型半导体材料中的杂质原子的价电子比原本的主体原子少一个,形成了空穴。
当P型材料和N型材料相接触,发生了电子扩散,使得P型材料中的自由电子向N型材料移动,而N型材料中的空穴则向P型材料移动。
这种电子扩散形成的区域称为PN结。
形成PN结后,会形成内部电场,这个电场会阻碍自由电子和空穴的进一步扩散。
当PN结两边的杂质浓度均匀时,内部电场相互抵消,形成了稳定的平衡状态;当外加电势作用于PN结时,内部电场会发生改变,使得自由电子和空穴受到不同的驱动力。
在二极管中,当P端接入正向电压(即P端连接正电源,N端连接负电源),则PN结的内部电场会减弱,使得自由电子和空穴能够进一步扩散,形成电流流动的通道。
这种情况下,二极管处于导通状态,可以通过电流信号。
而当P端接入反向电压(即P端连接负电源,N端连接正电压),则PN结的内部电场会增强,进一步阻塞自由电子和空穴的扩散,电流无法通过。
此时,二极管处于截止状态,不允许电流通过。
所以,二极管的主要作用是将电流按照正向或反向进行选择性传导,实现信号整流和保护电路的功能。
二、三极管的形成机理和工作原理三极管也是一种半导体器件,由薄的P型和N型半导体材料构成。
它具有三个引线,分别是基极(B)、发射极(E)和集电极(C)。
三极管是由两个PN结组成的,其中一个PN结称为发射结,另一个PN结称为集电结。
发射结是由P型材料和N型材料构成,集电结是由N型材料和P型材料构成。
在正常工作状态下,三极管的基极和发射极之间接入一个小电流,称为输入信号。
基极-发射极电流的大小是发射极-集电极电流的放大倍数,用HFE表示。
二极管三极管的工作原理及应用一、二极管的工作原理二极管是一种最简单的电子元件,由正负两个端口组成。
它由一个P型半导体和一个N型半导体组成,两种半导体通过P-N结相互接触而形成。
二极管的工作原理主要基于PN结的特性。
当二极管被正向偏置时,也就是P端连接正电压,N端连接负电压,PN结会形成一个导电通路。
此时,电流可以自由通过PN结,这个状态被称为正向导通状态。
当二极管被反向偏置时,也就是P端连接负电压,N端连接正电压,PN结会形成一个电势差,使得电流不能通过二极管。
这个状态被称为反向截至状态。
二极管的工作原理可以简单归纳为两个关键特性:正向导通和反向截至。
这两个特性赋予了二极管应用中的许多重要功能。
二、二极管的应用转换和整流二极管最常见的应用是在电源转换和整流器电路中。
例如,在交流电源到直流电源的转换中,二极管被用来将交流电转换为单向流的直流电。
在整流电路中,二极管只允许正向电流通过,从而使得交流电的负半周被截取,得到纯直流电。
激光二极管激光二极管也是二极管的应用之一。
它是一种将电能转化为激光光束的电子元件。
激光二极管通过将电流通过PN结,从而产生一个具有频率稳定性和高光亮度的激光输出。
光电二极管光电二极管是一种能够将光能转化为电能的元件。
在光电二极管中,光照射到PN结上,激发电子从价带跃迁到导带,从而产生电流。
这种原理被广泛应用于光电传感、光通信和光测量等领域。
温度传感器二极管还可以用作温度传感器。
根据二极管的温度特性,可以通过测量二极管的反向饱和电流来确定温度。
这种应用在温度控制和温度测量中非常常见。
三、三极管的工作原理三极管是一种由P型半导体和两个N型半导体组成的三电极器件。
它的工作基于PNP或NPN结构。
三极管的工作原理与二极管类似,但具有更多的电极。
其中,分为基极(B)、发射极(E)和集电极(C)。
当三极管处于放大状态时,向基极输入微小的电流变化,于是放大电流从集电极到发射极流过。
这个工作原理使得三极管可以用作放大器、开关和正弦波产生器。