整数规划分支定界算法matlab通用源程序
- 格式:doc
- 大小:26.50 KB
- 文档页数:3
Matlab求解线性规划和整数规划问题标题:Matlab求解线性规划和整数规划问题引言概述:Matlab是一种功能强大的数值计算软件,广泛应用于各个领域的数学建模和优化问题求解。
本文将介绍如何使用Matlab求解线性规划和整数规划问题,并结合实例详细阐述求解过程。
一、线性规划问题的求解1.1 定义线性规划问题:线性规划是一种优化问题,目标函数和约束条件均为线性函数。
通常包括最大化或最小化目标函数,并满足一系列约束条件。
1.2 确定决策变量和约束条件:根据问题的实际情况,确定需要优化的决策变量和约束条件。
决策变量表示问题中需要求解的未知量,约束条件限制了决策变量的取值范围。
1.3 使用Matlab求解线性规划问题:利用Matlab提供的优化工具箱,使用线性规划函数linprog()进行求解。
通过设置目标函数系数、约束条件和边界条件,调用linprog()函数得到最优解。
二、整数规划问题的求解2.1 定义整数规划问题:整数规划是在线性规划的基础上,决策变量限制为整数值。
整数规划问题在实际应用中更具有实际意义,例如资源分配、路径选择等。
2.2 确定整数规划问题的特点:整数规划问题通常具有离散性和复杂性,需要根据实际情况确定整数规划问题的特点,如整数变量的范围、约束条件等。
2.3 使用Matlab求解整数规划问题:Matlab提供了整数规划函数intlinprog(),通过设置目标函数系数、约束条件和整数变量的范围,调用intlinprog()函数进行求解。
三、线性规划问题实例分析3.1 实例背景介绍:以某公司的生产计划为例,介绍线性规划问题的具体应用场景。
3.2 定义决策变量和约束条件:确定决策变量,如产品的生产数量,以及约束条件,如生产能力、市场需求等。
3.3 使用Matlab求解线性规划问题:根据实例中的目标函数系数、约束条件和边界条件,调用linprog()函数进行求解,并分析最优解的意义和解释。
Matlab求解线性规划和整数规划问题线性规划是一种数学优化问题,通过线性函数的最大化或者最小化来实现目标函数的优化。
整数规划是线性规划的一种特殊情况,其中变量被限制为整数值。
在Matlab中,我们可以使用优化工具箱中的函数来求解线性规划和整数规划问题。
下面将详细介绍如何使用Matlab来求解这些问题。
1. 线性规划问题的求解首先,我们需要定义线性规划问题的目标函数、约束条件和变量范围。
然后,我们可以使用linprog函数来求解线性规划问题。
例如,考虑以下线性规划问题:目标函数:最大化 2x1 + 3x2约束条件:x1 + x2 <= 10x1 - x2 >= 2x1, x2 >= 0在Matlab中,可以按照以下步骤求解该线性规划问题:1. 定义目标函数的系数向量c和约束矩阵A,以及约束条件的右侧向量b。
c = [2; 3];A = [1, 1; -1, 1];b = [10; -2];2. 定义变量的上下界向量lb和ub。
lb = [0; 0];ub = [];3. 使用linprog函数求解线性规划问题。
[x, fval] = linprog(-c, A, b, [], [], lb, ub);运行以上代码后,可以得到最优解x和目标函数的最优值fval。
2. 整数规划问题的求解对于整数规划问题,我们可以使用intlinprog函数来求解。
与线性规划问题类似,我们需要定义整数规划问题的目标函数、约束条件和变量范围。
然后,使用intlinprog函数求解整数规划问题。
例如,考虑以下整数规划问题:目标函数:最小化 3x1 + 4x2约束条件:2x1 + 5x2 >= 10x1, x2为非负整数在Matlab中,可以按照以下步骤求解该整数规划问题:1. 定义目标函数的系数向量f和约束矩阵A,以及约束条件的右侧向量b。
f = [3; 4];A = [-2, -5];b = [-10];2. 定义变量的整数约束向量intcon。
Matlab求解线性规划和整数规划问题Matlab是一种功能强大的数学软件,可以用于求解线性规划和整数规划问题。
在本文中,我将详细介绍如何使用Matlab来解决这些问题。
首先,让我们来了解一下线性规划和整数规划的概念。
线性规划是一种数学优化方法,用于在给定的一组线性约束条件下,寻觅使目标函数最优化的变量取值。
整数规划是线性规划的一种扩展,要求变量的取值必须为整数。
在Matlab中,我们可以使用优化工具箱来求解线性规划和整数规划问题。
优化工具箱提供了一系列函数和工具,可以匡助我们定义问题、设置约束条件和求解最优解。
首先,我们需要定义目标函数和约束条件。
目标函数是我们希翼最小化或者最大化的函数,约束条件是对变量的限制条件。
在Matlab中,我们可以使用符号变量来定义目标函数和约束条件。
例如,假设我们有一个线性规划问题,目标函数为最小化函数f(x) = 2x1 + 3x2,约束条件为2x1 + x2 >= 10,x1 + 3x2 >= 15,x1 >= 0,x2 >= 0,其中x1和x2是变量。
在Matlab中,我们可以使用sym函数来定义符号变量。
代码示例如下:```matlabsyms x1 x2f = 2*x1 + 3*x2;constraint1 = 2*x1 + x2 >= 10;constraint2 = x1 + 3*x2 >= 15;```接下来,我们需要将目标函数和约束条件转换为优化工具箱可以理解的形式。
我们可以使用matlabFunction函数将目标函数和约束条件转换为Matlab函数。
代码示例如下:```matlabf = matlabFunction(f);constraint1 = matlabFunction(constraint1);constraint2 = matlabFunction(constraint2);```现在,我们可以使用优化工具箱中的linprog函数来求解线性规划问题。
Matlab求解线性规划和整数规划问题标题:Matlab求解线性规划和整数规划问题引言概述:线性规划和整数规划是数学中常见的优化问题,通过Matlab可以方便地求解这些问题。
本文将介绍如何使用Matlab求解线性规划和整数规划问题,包括问题的建模、求解方法和实际操作步骤。
一、线性规划问题的建模和求解1.1 确定优化目标:线性规划问题的目标是最大化或者最小化一个线性函数,通常表示为目标函数。
1.2 约束条件建模:线性规划问题还需要满足一系列线性约束条件,这些约束条件可以通过不等式或者等式表示。
1.3 使用Matlab求解:在Matlab中,可以使用linprog函数来求解线性规划问题,将目标函数和约束条件输入函数即可得到最优解。
二、整数规划问题的建模和求解2.1 确定整数规划问题:整数规划是线性规划的一个扩展,其中变量需要取整数值。
2.2 整数规划建模:整数规划问题可以通过将变量限制为整数来建模,通常使用0-1整数变量表示。
2.3 使用Matlab求解:Matlab中提供了intlinprog函数来求解整数规划问题,输入目标函数、约束条件和整数变量的取值范围即可得到最优解。
三、线性规划和整数规划问题的实际操作步骤3.1 准备数据:首先需要准备问题的数据,包括目标函数系数、约束条件系数和整数变量范围。
3.2 建立模型:将数据输入Matlab中的相应函数,建立线性规划或者整数规划模型。
3.3 求解问题:调用Matlab函数求解问题,得到最优解和最优值。
四、Matlab求解线性规划和整数规划问题的优势4.1 高效性:Matlab提供了高效的优化算法,能够快速求解复杂的线性规划和整数规划问题。
4.2 灵便性:Matlab支持多种约束条件和整数变量类型,可以灵便应对不同类型的优化问题。
4.3 可视化:Matlab还可以将优化结果可视化展示,匡助用户更直观地理解问题和解决方案。
五、总结通过本文的介绍,我们了解了如何使用Matlab求解线性规划和整数规划问题,包括建模方法、求解步骤和优势。
matlab解决整数规划问题(蒙特卡洛法)整数规划:clc,clear;c = [-40;-90];A = [9 7;7 20];b = [56;70];lb = zeros(2,1);[x,fval]= intlinprog(c,1:2,A,b,[],[],lb);fval = -fvalx分⽀定界法或者割平⾯法求解纯或者混合整数线性规划问题;输出:当条件A,B之间不是且关系⽽是或的时候:固定成本问题(最优化函数中含有与xi⽆关的常量,相当于固定成本,优化函数可以写成总固定成本加上总可变成本之和):0-1整数规划问题(过滤隐枚举法,分枝隐枚举法)指派问题(0-1规划特殊情形:匈⽛利法)蒙特卡洛法(求解各种类型规划)下⾯主要介绍蒙特卡洛法(随机取样法):例题:如果⽤显枚举法试探,需要计算1010个点,计算量巨⼤。
但是⽤蒙特卡洛去计算106个点便可以找到满意解。
前提:整数规划的最优点不是孤⽴的奇点;⽽采集106个点后,我们有很⼤把握最优值点在106个点之中;function [f,g] = mengte(x);f = x(1)^2+x(2)^2+3*x(3)^2+4*x(4)^2+2*x(5)-8*x(1)-2*x(2)-3*x(3)-...x(4)-2*x(5);g = [sum(x)-400x(1)+2*x(2)+2*x(3)+x(4)+6*x(5)-8002*x(1)+x(2)+6*x(3)-200x(3)+x(4)+5*x(5)-200];rand('state',sum(clock));p0 = 0;ticfor i = 1:10^6x = 99*rand(5,1);x1 = floor(x);x2 = ceil(x);[f,g] = mengte(x1);if sum(g<=0)==4if p0<=fx0 = x1;p0=f;endend[f,g] = mengte(x2);if sum(g<=0)==4if p0 <= fx0 = x2;p0 = f;endendendx0,p0toc输出:蒙特卡洛法得到的解为最优解的近似解,10^6个数据已经⽤了将近7s的时间,所以如果增加⼗倍,可能得70s时间才能得到结果。
Matlab求解线性规划和整数规划问题线性规划和整数规划是数学规划中的两个重要分支,广泛应用于运筹学、经济学、工程学等领域。
Matlab作为一种功能强大的数值计算软件,提供了丰富的工具箱和函数,可以方便地求解线性规划和整数规划问题。
一、线性规划问题的求解线性规划问题是在一组线性约束条件下,求解线性目标函数的最优值的问题。
通常可以表示为如下形式的标准线性规划问题:Maximize (or Minimize) Z = c'xSubject to: Ax ≤ bx ≥ 0其中,c是长度为n的目标函数系数向量,x是长度为n的决策变量向量,A是m×n的系数矩阵,b是长度为m的约束条件向量。
在Matlab中,可以使用线性规划工具箱(Linear Programming Toolbox)中的函数linprog来求解线性规划问题。
linprog函数的基本语法如下:[x, fval, exitflag, output, lambda] = linprog(c, A, b, Aeq, beq, lb, ub, x0, options)其中,c是目标函数系数向量,A和b是不等式约束条件的系数矩阵和约束条件向量,Aeq和beq是等式约束条件的系数矩阵和约束条件向量,lb和ub是决策变量的下界和上界,x0是初始解向量,options是求解选项。
linprog函数的输出结果包括最优解x、最优目标函数值fval、退出标志exitflag、输出信息output和拉格朗日乘子lambda。
二、整数规划问题的求解整数规划问题是在线性规划问题的基础上,要求决策变量取整数值的问题。
通常可以表示为如下形式的标准整数规划问题:Maximize (or Minimize) Z = c'xSubjec t to: Ax ≤ bx ≥ 0x为整数在Matlab中,可以使用整数规划工具箱(Integer Programming Toolbox)中的函数intlinprog来求解整数规划问题。
Matlab求解线性规划和整数规划问题Matlab是一种强大的数学软件,可以用于求解线性规划和整数规划问题。
线性规划是一种优化问题,其目标是在一组线性约束条件下最大化或者最小化线性目标函数。
整数规划是线性规划的一种扩展,要求变量的取值必须是整数。
在Matlab中,我们可以使用优化工具箱(Optimization Toolbox)来求解线性规划和整数规划问题。
下面将详细介绍如何使用Matlab进行求解。
首先,我们需要定义线性规划或者整数规划的目标函数和约束条件。
目标函数是我们希翼最大化或者最小化的线性函数,约束条件是一组线性不等式或者等式。
在Matlab中,可以使用符号变量(symbolic variable)来表示变量,并使用线性代数表达式来定义目标函数和约束条件。
例如,假设我们有一个线性规划问题,目标是最小化目标函数 f(x) = c'*x,其中 c 是一个 n 维列向量,x 是一个 n 维列向量,表示变量。
同时,我们有一组线性不等式约束条件 A*x <= b,其中 A 是一个 m×n 的矩阵,b 是一个 m 维列向量。
在Matlab中,我们可以使用 sym 函数来定义符号变量,使用 transpose 函数来转置矩阵,然后使用 linprog 函数来求解线性规划问题。
具体代码如下:```matlabsyms x1 x2; % 定义符号变量x = [x1; x2]; % 定义变量向量c = [1; 2]; % 定义目标函数系数向量A = [1, -1; 3, 1]; % 定义约束条件系数矩阵b = [1; 2]; % 定义约束条件右侧向量f = c'*x; % 定义目标函数options = optimoptions('linprog', 'Display', 'iter'); % 设置求解选项[x, fval, exitflag, output] = linprog(f, A, b, [], [], zeros(size(x)), [], [], options); % 求解线性规划问题disp('最优解为:');disp(x);disp('目标函数最小值为:');disp(fval);```上述代码中,我们首先使用 sym 函数定义了两个符号变量 x1 和 x2,然后将它们组合成变量向量 x。
如何使用Matlab进行线性规划与整数规划引言在现代科技逐渐发展的背景下,线性规划和整数规划作为一种数学优化方法,被广泛应用于各个领域。
Matlab作为一种强大的数值计算工具,提供了各种优化工具箱,可以方便地进行线性规划和整数规划的求解。
本文将详细介绍如何使用Matlab进行线性规划和整数规划求解,并结合实例进行说明。
一、线性规划的基本概念线性规划是一种数学规划方法,其目标是在一组线性约束条件下寻找一组变量的最优解,使得目标函数值达到最大或最小。
线性规划的标准形式可以表示为:min/max f(x) = c^T * xs.t. A * x <= bAeq * x = beqlb <= x <= ub其中,f(x)为线性目标函数,c为其系数向量;x为变量向量;A、b、Aeq、beq 分别为不等式约束和等式约束的系数矩阵和向量;lb和ub分别为变量的下界和上界。
二、使用Matlab进行线性规划求解Matlab提供了优化工具箱,其中的linprog函数可以方便地求解线性规划问题。
以下是使用linprog函数求解线性规划问题的基本步骤:Step 1: 定义目标函数和约束条件首先,需要定义目标函数和约束条件的系数。
假设我们要最小化目标函数 f(x) = 2x1 + 3x2,约束条件为 2x1 + x2 <= 10,x1 + 3x2 <= 15,x1和x2的取值范围均为非负实数。
c = [2; 3]; % 目标函数的系数向量A = [2, 1; 1, 3]; % 不等式约束的系数矩阵b = [10; 15]; % 不等式约束的右侧系数向量lb = [0; 0]; % 变量的下界Step 2: 调用linprog函数求解线性规划问题然后,可以使用linprog函数求解线性规划问题。
该函数的基本语法为:[x, fval] = linprog(c, A, b, [], [], lb);其中,x为求解得到的最优解,fval为最优解对应的目标函数值。
Matlab求解线性规划和整数规划问题Matlab是一种强大的数学软件工具,可以用于求解各种数学问题,包括线性规划和整数规划问题。
在本文中,我们将详细介绍如何使用Matlab来求解这两类问题,并提供一些示例和数据来帮助您更好地理解。
一、线性规划问题的求解线性规划问题是指在一定的约束条件下,求解一个线性目标函数的最大值或最小值。
在Matlab中,可以使用线性规划工具箱来解决这类问题。
1. 定义线性规划问题首先,我们需要定义线性规划问题的目标函数和约束条件。
目标函数是我们希望最大化或最小化的线性表达式,约束条件是一组线性不等式或等式。
例如,我们考虑以下线性规划问题:```最大化目标函数:f(x) = 3x1 + 5x2约束条件:2x1 + x2 <= 10x1 + 3x2 <= 12x1, x2 >= 0```2. 求解线性规划问题在Matlab中,可以使用`linprog`函数来求解线性规划问题。
该函数的基本语法如下:[x, fval] = linprog(f, A, b, Aeq, beq, lb, ub)```其中,`f`是目标函数的系数矩阵,`A`和`b`是不等式约束条件的系数矩阵和常数向量,`Aeq`和`beq`是等式约束条件的系数矩阵和常数向量,`lb`和`ub`是变量的下界和上界。
对于上述线性规划问题,我们可以使用以下代码进行求解:```matlabf = [-3; -5];A = [-2, -1; -1, -3];b = [-10; -12];lb = [0; 0];[x, fval] = linprog(f, A, b, [], [], lb);```3. 解释结果求解得到的结果保存在变量`x`和`fval`中。
其中,`x`是最优解向量,`fval`是最优解对应的目标函数值。
对于上述线性规划问题,求解结果如下:```x = [2; 4]fval = -26这表示在满足约束条件的情况下,目标函数的最大值为-26,最优解为x1=2,x2=4。
分支定界法的思想是:首先确定目标值的上下界发布人:chengxu0921 发布时间:2008-7-21 18:16:27 新闻类别:分支-界限法例1:设有A,B,C,D,E 5人从事j1,j2,j3,j4,j5 5项工作每人只能从事一项,它们的效益表如下:求最佳安排,使效益最高?原文代码重写如下,希望增加点可读性。
program PlanJob;const MAX_SIZE = 20;typeTIntArray = array[1..MAX_SIZE] of Integer;PNode = ^Node;Node = recordJob2Man: TIntArray; // Job2Man[n] = m, job-n assign to person-m Man2Job: TIntArray; // Man2Job[n] = m, person-n assign to job-m UpperVal: Integer; // upper valueJobsDep: Integer; // jobs decided, as search depthNext: PNode;end;varCurNode: PNode; // Current nodeNewNode: PNode; // New branch nodeDelNode: PNode; // for deleteGoalNode: PNode; // the goalGoalMaxVal: Integer; // goal max valueCurMan, CurJob: Integer; // Current Man and Job of current NodeSize: Integer; // Person number, also task numberValues: array[1..MAX_SIZE, 1..MAX_SIZE] of Integer;function CalUpperValue(ANode: PNode): Integer;varRes: Integer;Man, Job: Integer;JobMaxVal: Integer;beginRes := 0;with ANode^ dobeginfor Job := 1 to Size dobeginif Job <= JobsDep thenbeginMan := Job2Man[Job];Res := Res + Values[Man, Job];Continue;end;// else find the max value for JobJobMaxVal := 0;for Man := 1 to Size dobeginif (JobMaxVal < Values[Man,Job]) and (Man2Job[Man] = 0) then JobMaxVal := Values[Man,Job];end;Res := Res + JobMaxVal;end; // for Jobend; // with ANode^CalUpperValue := Res;end;function InitNode(): PNode;varMan, Job: Integer;FInput: Text;Res: PNode;beginAssign(FInput, 'input.txt');Reset(FInput);Read(FInput, Size);Readln(FInput);for Man := 1 to Size dobeginfor Job := 1 to Size doRead(FInput, Values[Man,Job]);Readln(FInput);New(Res);with Res^ dobeginfor Man := 1 to Size dobeginMan2Job[Man] := 0;Job2Man[Man] := 0;end;JobsDep := 0;UpperVal := CalUpperValue(Res);Next := nil;end;InitNode := Res;end;procedure Insert(ANode: PNode; From: PNode);varPrevNode, NextNode: PNode;beginNextNode := From;repeatPrevNode := NextNode;NextNode := PrevNode^.Next;until (NextNode = nil) or (ANode^.UpperVal >= NextNode^.UpperVal); PrevNode^.Next := ANode;ANode^.Next := NextNode;end;procedure PrintNode(ANode: PNode);varMan, Job: Integer;AllJobAssigned: Boolean;beginAllJobAssigned := true;for Job := 1 to Size dobeginMan := ANode^.Job2Man[Job];if 0 <> Man thenWriteln('Job ', Job, ' assign to man ',Man, ', value ', Values[Man, Job])elseAllJobAssigned := false;Writeln;if AllJobAssigned thenWriteln('Value = ', ANode^.UpperVal)elseWriteln('UpperVal = ', ANode^.UpperVal);end;beginCurNode := InitNode();GoalMaxVal := 0;repeatCurJob := CurNode^.JobsDep + 1;for CurMan := 1 to Size dobeginif CurNode^.Man2Job[CurMan] <> 0 thenContinue;// New search branchNew(NewNode);NewNode^ := CurNode^;NewNode^.JobsDep := CurJob;NewNode^.Man2Job[CurMan] := CurJob;NewNode^.Job2Man[CurJob] := CurMan;NewNode^.UpperVal := CalUpperValue(NewNode);if NewNode^.UpperVal < GoalMaxVal thenDispose(NewNode) // discard this branch if smaller than limit elseInsert(NewNode, CurNode);if CurJob < Size then Continue; // for CurMan// all job assigned, update goalif NewNode^.UpperVal > GoalMaxVal thenbeginGoalNode := NewNode;GoalMaxVal := GoalNode^.UpperValend; // ifend; // for CurManDelNode := CurNode;CurNode := CurNode^.Next;Dispose(DelNode);until (CurNode^.UpperVal <= GoalMaxVal)or (CurNode = nil); // end of repeatPrintNode(GoalNode);Readln;end.input.txt:513 11 10 4 713 10 10 8 55 9 7 7 415 12 10 11 510 11 8 8 4output:Job 1 assign to man 4, value 15Job 2 assign to man 5, value 11Job 3 assign to man 2, value 10Job 4 assign to man 3, value 7Job 5 assign to man 1, value 7Value = 50如果扩展为10*10,input.txt:1013 11 10 4 7 13 11 10 4 713 10 10 8 5 13 10 10 8 55 9 7 7 4 5 9 7 7 415 12 10 11 5 15 12 10 11 5 10 11 8 8 4 10 11 8 8 413 11 10 4 7 13 11 10 4 713 10 10 8 5 13 10 10 8 55 9 7 7 4 5 9 7 7 415 12 10 11 5 15 12 10 11 5 10 11 8 8 4 10 11 8 8 4运行约两分钟。
整数规划_分支定界法_MATLAB程序整数规划分支定界法MATLAB程序 1.这种方法绝对能都解出答案,而且答案正确 function [x,val]=fzdj(n,f,a,b,aeq,beq,lb,ub)x=zeros(n,1);x1=zeros(n,1);m1=2;m2=1;[x1,val1]=linprog(f,a,b,aeq,beq,lb,ub);if (x1==0)x=x1;val=val1;elseif (round(x1)==x1)x=x1;val=val1;elsee1={0,a,b,aeq,beq,lb,ub,x1,val1}; e(1,1)={e1};zl=0;zu=-val1;while (zu~=zl)for c=1:1:m2if (m1~=2)if (cell2mat(e{m1-1,c}(1))==1) e1={1,[],[],[],[],[],[],[],0};e(m1,c*2-1)={e1};e(m1,c*2)={e1};continue;end;end;x1=cell2mat(e{m1-1,c}(8)); x2=zeros(n,1);s=0;s1=1;s2=1;lb1=cell2mat(e{m1-1,c}(6)); ub1=cell2mat(e{m1-1,c}(7));lb2=cell2mat(e{m1-1,c}(6)); ub2=cell2mat(e{m1-1,c}(7)); for d=1:1:n if (abs((round(x1(d))-x1(d)))>0.0001)&(s==0)s=1;lb1(d)=fix(x1(d))+1;if (a*lb1<=b)s1=0;end;ub2(d)=fix(x1(d));if (a*lb2<=b)s2=0;end;end;end;e1={s1,a,b,aeq,beq,lb1,ub1,[],0}; e2={s2,a,b,aeq,beq,lb2,ub2,[],0}; e(m1,c*2-1)={e1};e(m1,c*2)={e2};end;m1=m1+1;m2=m2*2;for c=1:1:m2if (cell2mat(e{m1-1,c}(1))==0) [x1,val1]=linprog(f,cell2mat(e{m1-1,c}( 2)),cell2mat(e{m1-1,c}(3)),cell2mat(e{m1-1,c}(4)),cell2 mat(e{m1-1,c}(5)),cell2mat(e{m1-1,c}(6)),cell2mat(e{m1-1,c}(7)));e1={cell2mat(e{m1-1,c}(1)),cell2mat(e{m1-1,c}(2)),cell2mat(e{m1-1,c}(3)),cell2mat(e{m1-1,c}(4)),cell2mat(e{m1-1,c}(5)),cell2mat(e{m1-1,c}(6)),cell2mat(e{m1-1,c}(7)),x1,val1};e(m1-1,c)={e1};end;z=val1;if ((-z)<(-zl))e1={1,[],[],[],[],[],[],[],0}; e(m1-1,c)={e1};elseif (abs(round(x1)-x1)<=0.0001) zl=z;end;end;for c=1:1:m2if (cell2mat(e{m1-1,c}(1))==0) zu=cell2mat(e{m1-1,c}(9));end;end;for c=1:1:m2if (-cell2mat(e{m1-1,c}(9))>(-zu)) zu=cell2mat(e{m1-1,c}(9));end;end;end;for c=1:1:m2if (cell2mat(e{m1-1,c}(1))==0)&(cell2mat(e{m1-1,c}(9))==zu)x=cell2mat(e{m1-1,c}(8));end;end;val=zu;end;2.这种方法是课本上的程序,但是不能解题,希望高手能将它改进function [x,y]=IntLp(f,G,h,Geq,heq,lb,ub,x,id,options) %整数线性规划分支定界法,可求解全整数线性或混合整数线性规划%y=min f'*x subject to:G*x<=h Geq*x=heq x为全整数%数或混合整数列向量%用法% [x,y]=IntLp(f,G,h)% [x,y]=IntLp(f,G,h,Geq,heq)% [x,y]=IntLp(f,G,h,Geq,heq,lb,ub) %[x,y]=IntLp(f,G,h,Geq,heq,lb,ub,x) %[x,y]=IntLp(f,G,h,Geq,heq,lb,ub,x,id) %[x,y]=IntLp(f,G,h,Geq,heq,lb,ub,x,id,options) %参数说明% x:最优解列向量;y:目标函数最小值;f:目标函数系数列向量% G:约束不等式条件系数矩阵;h:约束不等式条件右端列向量% Gep:约束等式条件系数矩阵;heq:约束等式条件右端列向量% lb:解的下界列向量(Default:-inf)% ub:解得上界列向量(Default:inf)% x:迭代初值列向量;% id:整数变量指标列向量,1—整数,0—实数(default:1)% options的设置请参见 optimset或linprog%例 min z=x1+4x2%s.t. 2x1+x2<=8% x1+2x2>=6% x1,x2>=0且为整数%先将 x1+x2>=6 化为 -x1-2x2<=-6%[x,y]=IntLp([1;4],[2 1;-1 -2],[8;-6],[],[],[0;0]) global upper opt c x0 A b Aeq beq ID options; ifnargin<10,options=optimset({});options.Display='off';rgeScale='off';endif nargin<9,id=ones(size(f));endif nargin<8,x=[];endif nargin<7|isempty(ub),ub=inf*ones(size(f));end ifnargin<6|isempty(lb),lb=zeros(size(f));end if nargin<5,heq=[];end if nargin<4,Geq=[];endupper=inf;c=f;x0=x;A=G;b=h;Aeq=Geq;beq=heq;ID=id;ftemp=IntLp(lb(:),ub(:));x=opt;y=upper;%以下为子函数function ftemp=IntLp(vlb,vub)global upper opt c x0 A b Aeq beq ID options;[x,ftemp,how]=linprog(c,A,b,Aeq,beq,vlb,vub,x0,options);if how<=0return;end;if ftemp-upper>0.00005%in order to avoid errorreturn;end;if max(abs(x.*ID-round(x.*ID)))<0.00005if upper-ftemp>0.00005%in order to avoid erroropt=x';upper=ftemp;return;elseopt=[opt;x'];return;end;end;notintx=find(abs(x-round(x))>0.00005); %in order to avoid error intx=fix(x);tempvlb=vlb;tempvub=vub; ifvub(notintx(1,1),1)>=intx(notintx(1,1),1)+1tempvlb(notintx(1,1),1)=intx(notintx(1,1),1)+1;ftemp=IntLp(tempvlb,vub);end;if vlb(notintx(1,1),1)<=intx(notintx(1,1),1)tempvub(notintx(1,1),1)=intx(notintx(1,1),1);ftemp=IntLp(vlb,tempvub);end;3.这种方法是我网上搜的,也不能解题,希望高手改进function [y,fval]=BranchBound(c,A,b,Aeq,beq) NL=length(c); UB=inf;LB=-inf;FN=[0];AA(1)={A};BB(1)={b};k=0;flag=0;while flag==0;[x,fval,exitFlag]=linprog(c,A,b,Aeq,beq);if (exitFlag == -2) | (fval >= UB) FN(1)=[];if isempty(FN)==1flag=1;elsek=FN(1);A=AA{k};b=BB{k};endelsefor i=1:NLif abs(x(i)-round(x(i)))>1e-7kk=FN(end);FN=[FN,kk+1,kk+2];temp_A=zeros(1,NL);temp_A(i)=1;temp_A1=[A;temp_A];AA(kk+1)={temp_A1};b1=[b;fix(x(i))];BB(kk+1)={b1};temp_A2=[A;-temp_A];AA(kk+2)={temp_A2};b2=[b;-(fix(x(i))+1)];BB(kk+2)={b2};FN(1)=[];k=FN(1);A=AA{k};b=BB{k};break;endendif (i==NL) & (abs(x(i)-round(x(i)))<=1e-7)UB=fval;y=x;FN(1)=[];if isempty(FN)==1flag=1;elsek=FN(1);A=AA{k};b=BB{k};endendendendy=round(y);fval=c*y;以上程序都是我网上搜到的,还有自己从课本上自己敲的,第一个程序能成功解出答案,后两个不能,也许是程序有问题,也许是我不会调用,希望高手指点,帮助更多朋友们能够应用这三个程序~~~。
26. 整数规划全部变量限制为整数的规划问题,称为纯整数规划;部分变量限制为整数的规划问题,称为混合整数规划;变量只取0或1的规划问题,称为0-1整数规划。
整数规划问题,建议使用Lingo 软件求解。
常用的整数规划问题解法有:(1)分枝定界法:可求纯或混合整数线性规划; (2)割平面法:可求纯或混合整数线性规划;(3)隐枚举法:用于求解0-1整数规划,有过滤法和分枝法; (4)匈牙利法:解决指派问题(0-1规划特殊情形); (5)蒙特卡罗法:求解各种类型规划。
一、分枝定界法分支定界法的基本思想是:设有最大化的整数规划问题A ,先解与之相应的线性规划问题B ,若B 的最优解不符合A 的整数条件,那么B 的最优目标函数必是A 的最优目标函数z*的上界,记作z2, 而A 的任意可行解的目标函数值将是z*的一个下界z1, 分支定界法就是将B 的可行域分成子区域(称为分支)的方法,逐步减小z2和增大z1, 最终求到z*。
例1 分枝定界法原理示例:1212120max 58s. t. 65945 () 0, Z (1,2)i i z x x x x x x P x x i =++≤+≤≥∈=用Lingo软件求解:代码:max 5x1+8x2stx1+x2<=65x1+9x2<=45endgin 2运行结果:Global optimal solution found.Objective value: 40.00000Objective bound: 40.00000 Infeasibilities: 0.000000Extended solver steps: 0Total solver iterations: 0Variable Value Reduced CostX1 0.000000 -5.000000X2 5.000000 -8.000000Row Slack or Surplus Dual Price1 40.00000 1.0000002 1.000000 0.0000003 0.000000 0.000000二、0-1整数规划变量x i只能取值0,1,该约束条件可表示为:0≤x i≤1, x i∈N 或x i (1-x i)=0 1. 隐枚举法例2求解下列0-1规划问题:1231231231223 max 325s. t. 2 2 () 4 4 () 3 () 4 6 z x x x x x x a x x x b x x c x x =-++-≤++≤+≤+≤123 () ,,0 1d x x x =或求解思路:(1)先试探性地求一个可行解,易看出(x1, x2, x3)=(1, 0, 0)满足约束条件,故是一个可行解,相应的目标函数值为z=3.(2)由于是求极大值,故目标值z<3的解,不必检验是否满足约束条件即可删除,于是可增加一个约束条件(称为过滤条件):1233253x x x -+≥ (e)(3)用全部枚举法,3个变量共23=8种可能的组合,用过滤条件(并计算目标函数值,不断改进过滤条件)筛选每个可能的组合,最终得到问题的最优解。
名字由和两词的前个字母MATLAB Matrix Laboratory 3组合而成。
起于世纪年代后期,现在研究和设计中,2070被认为是进行高效研究、开发的首选软件工具。
MATLAB 在国际学术界,已经被确认为准确、可靠的科学MATLAB 计算标准软件。
在数学上提供了大量的优化计算命令。
线性规MALAB 划中,提供了相关函数,但是对于变量取整数的MATLAB 线性规划,即线性整数规划,并没有提供相关函MATLAB 数。
线性整数规划是介于计算机算法和最优化方法中的问题,在实际工程中有着广泛的应用。
本文通过计算机算法中分支限界法的思想解决此类方法。
线性整数规划的求解,是离散型优化问题求解,即指在有限多个可行方案中寻找一个符合目标的方案,常用的技术之一是将整个搜索的范围划分为若干个互不重叠并且完备的子范围,试图找到两个明确结论之一:所要找的最优解(1)肯定不在这个子范围内,如已知所要找的最小值不超过而a,在此范围内最小值超过则问题的解不在此范围内;原问a,(2)题的最小值在该子范围内,则找到该最小值,或者继续划分该子范围,直到找到最小值为止,这样原问题的解就自然得到。
解线性整数规划是一类具体的离散优化问题。
离散优化的问题都可以使用穷举法,在线性整数规划上,这个解空间很大。
显然在实际使用中,使用穷举法时间消耗很大。
在计算机的计算过程中,通常使用回朔的方法,然而仍然需要遍历整个树,然后在所有满足条件的值中找到最优的值。
树的遍历是个递归过程,如果使用递归算法,在每次进行递归调用中,需要保存当前的状态和当前的所有变量,仍然需要很大的空间和时间消耗。
本文通过堆栈的方式,改进递归过程,这将改进整个算法的执行效率。
分支限界法的算法思想1 分支限界法是一种在问题的解空间树上搜索问题界的算法,其目的是找出满足约束条件的一个解,或者是在满足约束条件的解中找出使目标函数值达到极大或极小的解,即最优解。
分支限界法以广度优先或者以最小耗费优先的方式搜索解空间树,分支限界法的策略是,在扩展结点处,先生成其所有的儿子结点,以加速搜索进程,在每一活结点处,计算一个函数值,并根据这些已经计算出的函数值,从当前活结点表中选择一个最有利的结点作为扩展结点,使搜索向着解空间树上最优解的分支推进,以便尽快找出一个最优解。