自动控制原理第三次实验报告-线性系统的频率响应分析
- 格式:doc
- 大小:435.50 KB
- 文档页数:18
《自动控制原理》实验3.线性系统的频域分析实验三线性系统的频域分析一、实验目的1.掌握用MATLAB语句绘制各种频域曲线。
2.掌握控制系统的频域分析方法。
二、基础知识及MATLAB函数频域分析法是应用频域特性研究控制系统的一种经典方法。
它是通过研究系统对正弦信号下的稳态和动态响应特性来分析系统的。
采用这种方法可直观的表达出系统的频率特性,分析方法比较简单,物理概念明确。
1.频率曲线主要包括三种:Nyquist图、Bode图和Nichols图。
1)Nyquist图的绘制与分析MATLAB中绘制系统Nyquist图的函数调用格式为:nyquist(num,den) 频率响应w的范围由软件自动设定 nyquist(num,den,w) 频率响应w的范围由人工设定[Re,Im]= nyquist(num,den) 返回奈氏曲线的实部和虚部向量,不作图2s?6例4-1:已知系统的开环传递函数为G(s)?3,试绘制Nyquists?2s2?5s?2图,并判断系统的稳定性。
num=[2 6]; den=[1 2 5 2]; nyquist(num,den)极点的显示结果及绘制的Nyquist图如图4-1所示。
由于系统的开环右根数P=0,系统的Nyquist曲线没有逆时针包围(-1,j0)点,所以闭环系统稳定。
p =-0.7666 + 1.9227i -0.7666 - 1.9227i -0.4668图4-1 开环极点的显示结果及Nyquist图若上例要求绘制??(10?2,103)间的Nyquist图,则对应的MATLAB语句为:num=[2 6]; den=[1 2 5 2];w=logspace(-1,1,100); 即在10-1和101之间,产生100个等距离的点nyquist(num,den,w)2)Bode图的绘制与分析系统的Bode图又称为系统频率特性的对数坐标图。
Bode图有两张图,分别绘制开环频率特性的幅值和相位与角频率?的关系曲线,称为对数幅频特性曲线和对数相频特性曲线。
一、实验目的1. 理解并掌握自动控制原理的基本概念和基本分析方法。
2. 掌握典型环节的数学模型及其在控制系统中的应用。
3. 熟悉控制系统的时间响应和频率响应分析方法。
4. 培养实验操作技能和数据处理能力。
二、实验原理自动控制原理是研究控制系统动态性能和稳定性的一门学科。
本实验主要涉及以下几个方面:1. 典型环节:比例环节、积分环节、微分环节、惯性环节等。
2. 控制系统:开环控制系统和闭环控制系统。
3. 时间响应:阶跃响应、斜坡响应、正弦响应等。
4. 频率响应:幅频特性、相频特性等。
三、实验内容1. 典型环节的阶跃响应- 比例环节- 积分环节- 比例积分环节- 比例微分环节- 比例积分微分环节2. 典型环节的频率响应- 幅频特性- 相频特性3. 二阶系统的阶跃响应- 上升时间- 调节时间- 超调量- 峰值时间4. 线性系统的稳态误差分析- 偶然误差- 稳态误差四、实验步骤1. 典型环节的阶跃响应- 搭建比例环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的实验电路。
- 使用示波器观察并记录各个环节的阶跃响应曲线。
- 分析并比较各个环节的阶跃响应曲线,得出结论。
2. 典型环节的频率响应- 搭建比例环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的实验电路。
- 使用频率响应分析仪测量各个环节的幅频特性和相频特性。
- 分析并比较各个环节的频率响应特性,得出结论。
3. 二阶系统的阶跃响应- 搭建二阶系统的实验电路。
- 使用示波器观察并记录二阶系统的阶跃响应曲线。
- 计算并分析二阶系统的上升时间、调节时间、超调量、峰值时间等性能指标。
4. 线性系统的稳态误差分析- 搭建线性系统的实验电路。
- 使用示波器观察并记录系统的稳态响应曲线。
- 计算并分析系统的稳态误差。
五、实验数据记录与分析1. 典型环节的阶跃响应- 比例环节:K=1,阶跃响应曲线如图1所示。
- 积分环节:K=1,阶跃响应曲线如图2所示。
第1篇一、实验目的1. 了解系统频率特性的基本概念和测试方法。
2. 掌握使用示波器、频谱分析仪等设备进行系统频率测试的操作技巧。
3. 分析测试结果,确定系统的主要频率成分和频率响应特性。
二、实验原理系统频率特性是指系统对正弦输入信号的响应,通常用幅频特性(A(f))和相频特性(φ(f))来描述。
幅频特性表示系统输出信号幅度与输入信号幅度之比,相频特性表示系统输出信号相位与输入信号相位之差。
频率测试实验通常包括以下步骤:1. 使用正弦信号发生器产生正弦输入信号;2. 将输入信号输入被测系统,并测量输出信号;3. 使用示波器或频谱分析仪观察和分析输出信号的频率特性。
三、实验设备1. 正弦信号发生器2. 示波器3. 频谱分析仪4. 被测系统(如放大器、滤波器等)5. 连接线四、实验步骤1. 准备实验设备,将正弦信号发生器输出端与被测系统输入端相连;2. 打开正弦信号发生器,设置合适的频率和幅度;3. 使用示波器观察输入信号和输出信号的波形,确保信号正常传输;4. 使用频谱分析仪分析输出信号的频率特性,记录幅频特性和相频特性;5. 改变输入信号的频率,重复步骤4,得到一系列频率特性曲线;6. 分析频率特性曲线,确定系统的主要频率成分和频率响应特性。
五、实验结果与分析1. 幅频特性曲线:观察幅频特性曲线,可以发现系统存在一定频率范围内的增益峰值和谷值。
这些峰值和谷值可能对应系统中的谐振频率或截止频率。
通过分析峰值和谷值的位置,可以了解系统的带宽和选择性。
2. 相频特性曲线:观察相频特性曲线,可以发现系统在不同频率下存在相位滞后或超前。
相位滞后表示系统对输入信号的相位延迟,相位超前表示系统对输入信号的相位提前。
通过分析相位特性,可以了解系统的相位稳定性。
六、实验总结1. 通过本次实验,我们掌握了系统频率特性的基本概念和测试方法。
2. 使用示波器和频谱分析仪等设备,我们成功地分析了被测系统的频率特性。
3. 通过分析频率特性曲线,我们了解了系统的主要频率成分和频率响应特性。
3.1 线性系统的时域分析3.1.1 典型环节的模拟研究一. 实验目的1. 了解和掌握各典型环节模拟电路的构成方法、传递函数表达式及输出时域函数表达式2. 观察和分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响二.实验内容及步骤观察和分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响.。
改变被测环节的各项电路参数,画出模拟电路图,阶跃响应曲线,观测结果,填入实验报告。
1).观察比例环节的阶跃响应曲线典型比例环节模拟电路如图3-1-1所示。
图3-1-1 典型比例环节模拟电路传递函数:01(S)(S)(S)R R K KU U G i O ===;单位阶跃响应:K )t (U = 实验步骤:注:‘S ST ’用短路套短接! (1)将函数发生器(B5)所产生的周期性矩形波信号(OUT ),作为系统的信号输入(Ui );该信号为零输出时,将自动对模拟电路锁零。
(2)构造模拟电路:按图3-1-1安置短路套及测孔联线,表如下:(a )安置短路套(b )测孔联线(3打开虚拟示波器的界面,点击开始,按下信号发生器(B1)阶跃信号按钮(0→+4V 阶跃),观测A5B 输出端(Uo )的实际响应曲线。
示波器的截图详见虚拟示波器的使用。
实验数据纪录:2).观察惯性环节的阶跃响应曲线典型惯性环节模拟电路如图3-1-2所示。
图3-1-2 典型惯性环节模拟电路传递函数:C R T R R K TSKU U G i O 1011(S)(S)(S)==+==单位阶跃响应:)1()(0Tte K t U --=实验步骤:注:‘S ST ’用短路套短接! (1)将函数发生器(B5)所产生的周期性矩形波信号(OUT ),作为系统的信号输入(Ui ); (1)该信号为零输出时,将自动对模拟电路锁零。
(2)构造模拟电路:按图3-1-4安置短路套及测孔联线,表如下: (a(3)运行、观察、记录:打开虚拟示波器的界面,点击开始,按下信号发生器(B1)阶跃信号按钮时(0→+4V 阶跃),观测A5B输出端(Uo)响应曲线,等待完整波形出来后,移动虚拟示波器横游标到输出稳态值×0.632处,得到与输出曲线的交点,再移动虚拟示波器两根纵游标,从阶跃开始到输出曲线的交点,量得惯性环节模拟电路时间常数T。
实验名称:频率响应测试课程名称:自动控制原理实验目录(一)实验目的3(二)实验内容3(三)实验设备3(四)实验原理4(五)K=2频率特性试验结果4(六)K=2频率特性试验数据记录及分析7(七)K=5频率特性试验结果9(八)K=5频率特性试验数据记录及分析12(九)实验总结及感想错误!未定义书签。
图片目录图片1 系统结构图3图片2 系统模拟电路3图片3 K=2仿真对数幅相特性曲线4图片4 K=5仿真对数幅相特性曲线4图片5 f=0.7时输出波形及李沙育图形5图片6 f=1.4时输出波形及李沙育图形5图片7 f=2.1时输出波形及李沙育图形5图片8 f=2.8时输出波形及李沙育图形5图片9 f=3.5时输出波形及李沙育图形6图片10 f=4.2时输出波形及李沙育图形6图片11 f=4.9时输出波形及李沙育图形6图片12 f=5.6时输出波形及李沙育图形6图片13 f=6.3时输出波形及李沙育图形7图片14 f=7.0时输出波形及李沙育图形7图片15 k=2拟合频率特性曲线9图片16 f=0.9波形及李沙育图形9图片17 f=1.8波形及李沙育图形10图片18 f=2.7波形及李沙育图形10图片19 f=3.6波形及李沙育图形10图片20 f=4.5波形及李沙育图形10图片21 f=5.4波形及李沙育图形11图片22 f=6.3波形及李沙育图形11图片23 f=7.2形及李沙育图形11图片24 f=8.1波形及李沙育图形11图片25 f=9.0波形及李沙育图形12图片26 k=2拟合相频特性曲线14图表目录表格1 K=2电路元件参数7表格2 K=2实测电路数据处理7表格3 K=5电路元件参数12表格4 K=5实测电路数据处理12频率响应测试(一) 实验目的1. 掌握频率特性的测试原理及方法。
2. 学习根据所测定出的系统的频率特性,确定系统传递函数的方法。
(二) 实验内容测定给定环节的的频率特性,系统模拟电路、结构图分别如下所示:图片1系统结构图由图可知,系统的传递函数为:2100()10100k G s s s k =++,其中1Rk R =,实验中R 的取值分别为200k Ω,500k Ω,且1R 始终为100k Ω。
武汉工程大学 实验报告专业 班号 组别 指导教师 姓名 学号 实验名称 线性系统时域响应分析一、实验目的1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。
2.通过响应曲线观测特征参量ζ和n ω对二阶系统性能的影响。
3.熟练掌握系统的稳定性的判断方法。
二、实验内容1.观察函数step( )和impulse( )的调用格式,假设系统的传递函数模型为146473)(2342++++++=s s s s s s s G 可以用几种方法绘制出系统的阶跃响应曲线?试分别绘制。
2.对典型二阶系统2222)(nn n s s s G ωζωω++= 1)分别绘出)/(2s rad n =ω,ζ分别取0,0.25,0.5,1.0和2.0时的单位阶跃响应曲线,分析参数ζ对系统的影响,并计算ζ=0.25时的时域性能指标ss s p r p e t t t ,,,,σ。
2)绘制出当ζ=0.25, n ω分别取1,2,4,6时单位阶跃响应曲线,分析参数nω对系统的影响。
3.系统的特征方程式为010532234=++++s s s s ,试用两种判稳方式判别该系统的稳定性。
4.单位负反馈系统的开环模型为)256)(4)(2()(2++++=s s s s Ks G试用劳斯稳定判据判断系统的稳定性,并求出使得闭环系统稳定的K 值范围。
三、实验结果及分析1.观察函数step( )和impulse( )的调用格式,假设系统的传递函数模型为146473)(2342++++++=s s s s s s s G 可以用几种方法绘制出系统的阶跃响应曲线?试分别绘制。
方法一:用step( )函数绘制系统阶跃响应曲线。
程序如下:num=[0 0 1 3 7]; den=[1 4 6 4 1]; t=0:0.1:10;step(num,den) gridxlabel('t/s'),ylabel('c(t)')title('Unit-step Response of G(s)=s^2+3s+7/(s^4+4s^3+6s^2+4s+1)')方法二:用impulse( )函数绘制系统阶跃响应曲线。
自动控制原理实验报告(三)
频率特性测试
一.实验目的
1.了解线性系统频率特性的基本概念。
2.了解和掌握对数幅频曲线和相频曲线(波德图)的构造及绘制方法。
二.实验内容及步骤
被测系统是一阶惯性的模拟电路图见图3-2-1,观测被测系统的幅频特性和相频特性,填入实验报告。
本实验将正弦波发生器(B4)单元的正弦波加于被测系统的输入端,用虚拟示波器观测被测系统的幅频特性和相频特性,了解各种正弦波输入频率的被测系统的幅频特性和相频特性。
图3-2-1 被测系统的模拟电路图
实验步骤:
(1)将函数发生器(B5)单元的正弦波输出作为系统输入。
(2)构造模拟电路。
三.实验记录:
ω
ω=1
ω=1.6
ω=3.2
ω=4.5
ω=6.4
ω=8
ω=9.6
ω=16
实验分析:
实验中,一阶惯性环节的幅频特性)(ωL ,相频特性)(ωϕ随着输入频率的变化而变化。
惯性环节的时间常数T 是表征响应特性的唯一参数,系统时间常数越小,输出相应上升的越快,同时系统的调节时间越小。
一、实验目的1. 理解自动控制原理的基本概念,掌握自动控制系统的组成和基本工作原理。
2. 熟悉自动控制实验设备,学会使用相关仪器进行实验操作。
3. 通过实验验证自动控制理论在实际系统中的应用,加深对理论知识的理解。
二、实验原理自动控制原理是研究自动控制系统动态过程及其控制规律的科学。
实验主要验证以下原理:1. 线性时不变系统:系统在任意时刻的输入与输出之间关系可用线性方程表示,且系统参数不随时间变化。
2. 稳定性:系统在受到扰动后,能够逐渐恢复到稳定状态。
3. 控制器设计:通过控制器的设计,使系统满足预定的性能指标。
三、实验设备1. 自动控制实验台2. 计算机及控制软件3. 测量仪器(如示波器、信号发生器、数据采集器等)四、实验内容1. 线性时不变系统阶跃响应实验2. 线性时不变系统频率响应实验3. 控制器设计实验五、实验步骤1. 线性时不变系统阶跃响应实验(1)搭建实验电路,连接好相关仪器;(2)设置输入信号为阶跃信号,观察并记录输出信号;(3)分析阶跃响应曲线,计算系统动态性能指标。
2. 线性时不变系统频率响应实验(1)搭建实验电路,连接好相关仪器;(2)设置输入信号为正弦信号,改变频率,观察并记录输出信号;(3)分析频率响应曲线,计算系统频率特性指标。
3. 控制器设计实验(1)根据系统性能指标,选择合适的控制器类型;(2)搭建实验电路,连接好相关仪器;(3)调整控制器参数,观察并记录输出信号;(4)分析控制器效果,验证系统性能指标。
六、实验结果与分析1. 线性时不变系统阶跃响应实验(1)实验结果:绘制阶跃响应曲线,计算系统动态性能指标;(2)分析:与理论值进行对比,验证系统动态性能。
2. 线性时不变系统频率响应实验(1)实验结果:绘制频率响应曲线,计算系统频率特性指标;(2)分析:与理论值进行对比,验证系统频率特性。
3. 控制器设计实验(1)实验结果:调整控制器参数,观察并记录输出信号;(2)分析:验证系统性能指标,评估控制器效果。
自动控制原理实验报告实验二-频
率响应测试
自动控制原理实验报告实验二-频率响应测试是一个实验,用于测试一个系统的频率响应。
它包括了数学模型的描述,实验处理装置的设计,以及实验结果的分析。
实验前,我们需要对系统的频率响应特性进行数学模型分析,来确定具体实验中参数的取值,如时间常数、截止频率和放大器带宽等。
在实验中,根据实验要求,我们设计了一套实验处理装置,由PC机,通道放大器,放大器反馈回路,传感器,相应示波器以及控制软件组成。
在实验中,我们采用正弦信号作为输入,通过PC机的控制软件调节信号的频率和幅值,然后将信号输入到放大器中,放大器放大信号,输出到反馈回路中,反馈回路中的传感器检测反馈信号,将反馈信号输出到PC机,再通过相应示波器显示出来,以便观察系统的响应。
在实验中,我们对频率响应进行了测试,首先,我们使用定时器设置不同频率的正弦信号作为输入,观察系统的频率响应特性,并记录响应曲线;其次,我们使用扫频器模拟正弦信号,以每个正弦信号的频率进行不同振幅的扫描,观察系统的响应特性,并记录响应曲线;最后,我
们使用控制软件对系统进行调整,以提高系统的响应能力,并记录响应曲线。
实验结束后,我们对实验结果进行了分析,并将系统的频率响应与理论值进行比较,以验证实验结果的准确性。
根据分析结果,我们得出结论:系统的频率响应符合理论值,控制软件的调整有效提高了系统的响应能力。
总之,自动控制原理实验报告实验二-频率响应测试是一个有益的实验,它不仅帮助我们更好地了解系统的频率响应特性,而且也可以帮助我们更好地控制系统,以提高系统的响应能力。
实验三线性系统校正一、实验目的1.利用Z-N临界增益法则,初步调节PID控制器参数。
2.设计串联校正环节,使整个系统指标满足要求(附加题)。
二、实验内容与步骤1. 已知阀控缸电液位置伺服系统开环传递函数为用Z-N临界增益法则,设计串联PID控制器参数,对比校正前后闭环系统阶跃响应指标及幅频特性的变化。
试验步骤:(1)利用simulink构建闭环系统模型。
(2)构建P控制器(见图1),找出系统的临界稳定增益Kc,记录Kc值,并根据示波器Scope的图形求得系统临界稳定时的振荡周期Tc(见图2)。
图1 带有P控制器的系统模型(3)依据Z-N临界增益法(见图3),确定PID控制器参数图2 临界振荡阶跃响应曲线图3 Z-N临界增益法(4)构建PID控制器,测试校正后系统的阶跃响应。
2. 已知单位负反馈系统开环传递函数为设计串联校正环节,使系统的相角裕度不小于30度,wc不低于30rad/s。
试验步骤:(1) 写出校正后整个系统的传递函数()ysxs s s s G +++='1115.0100)(。
(2) 令30)(180,1)(=+=='c c G ωϕγω,用solve 函数解二元一次方程组。
(3) 校验:将得出的x 、y 值代入)(s G '中,验证相角裕度及幅值裕度是否满足要求。
sqrt 函数举例:21x + matlab: sqrt(1+x^2)atan 函数举例:u arctg matlab: atan(u)solve 函数举例:求()()()ys s xs G +++=111100剪切频率为20rad/s ,相角裕度为20º时的x 、y 值。
[x y]=solve(‘方程1’,’方程2’)方程1:()()1201201201100)20(222=+++=y x j G .matlab :100*sqrt(1+(x*20)^2)/(sqrt(1+20^2)*sqrt(1+(y*20)^2))=1方程2:20)20()20()20(18020)(180=--+⇒=+=y arctg arctg x arctg c ωϕγmatlab :180+atan(x*20)*180/3.1416-atan(20)*180/3.1416-atan(y*20)*180/3.1416=20 运行后,结果为x=0.005, y=0.246.验证:()()()s s s G 246.011005.01100+++= matlab: num=[100*0.005 100];den=conv([1 1],[0.246 1]);sys=tf(num,den);margin(sys); 可知,此时系统剪切频率为20rad/s ,相角裕度为20.1º。