分布函数为
F ( x) p( x)dx
随机变量的数字特征: 期望:大多数随机变量集中(出现)的位置。 方差:随机变量偏离期望(均值)值的程度。 Kolmogorov强大数定律:
设k是互相独立的随机变量,且 Dk /k2 < , 则 1/n(k - E k)0
Linderberg-Levy中心极限定理:
称S(m)/r=为平均利润,其中b/g 是赔偿金占 机票价格的比例。 问题1 设: n=300, a=0.6, p=0.05, b/g=0.2. 求最佳m, 使S(m)最大,P5(m)最小 采用解析模拟方法
s=[];f5=[]; for m=300:360 s1=((1-0.05)*m-(1+0.2)*sum(((m-300):1:1).*binopdf(0:m-300-1,m,0.05)))/180-1; s=[s,s1]; if m<=305 f=0; else f=sum(binopdf(0:m-300-6,m,0.05)); end f5=[f5 f]; end x=300:360; plot(x,s,x,f5),grid
P( t k )
k
k!
e
t k
k!
e t
指数分布
e t , t 0 泊松过程的随机事件陆续发 p (t ) 0, t 0 生的时间间隔,
(已知平均时间间隔为1/)
1 e t , t 0 F (t ) 0, t 0
均匀分布
t X 1 X n n 1 x e lim P t ( t ) n 2 n
2
/2
dx