九年级数学上册第4课时 黄金分割
- 格式:doc
- 大小:143.01 KB
- 文档页数:4
第4课时 黄金分割一、目标导航1.黄金分割定义:点C 把线段AB 分成两条线段AC 和BC ,如果AC :AB =BC :AC ,那么称线段AB 被点C 黄金分割.点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比. 2.618.0215≈-=AB AC.二、基础过关1.若点P 是AB 的黄金分割点,则线段AP 、PB 、AB 满足关系式 .2.黄金矩形的宽与长的比大约为________(精确到0.001).3.电视节目主持人在主持节目时,站在舞台的黄金分割点处最自然得体,若舞台AB 长为20m ,试计算主持人应走到离A 点至少 m 处?,如果他向B 点再走 m ,也处在比较得体的位置.(结果精确到0.1m )三、能力提升4.有以下命题:①如果线段d 是线段a , b ,c 的第四比例项,则有d cb a=;②如果点C 是线段AB 的中点,那么AC 是AB 、BC 的比例中项;③如比例中项;④如果点C 是线段AB 的黄金分割点,AC >BC ,且AB =2,则AC =5-1.其中正确的判断有( )A . 1个B .2个C .3个D .4个5.已知点M 将线段AB 黄金分割(AM >BM ),则下列各式中不正确的是( )A .AM ∶BM =AB ∶AM B .AM =215-AB C .BM =215-AB D .AM ≈0.618AB6.已知C 是线段AB 的黄金分割点(AC >BC ), 则AC ∶BC = ( )A . (5-1)∶2 B . (5+1)∶2 C .(3-5)∶2D .(3+5)∶27.在长度为1的线段上找到两个黄金分割点P,Q.则PQ=( )A .215- B .53- C .25- D .253-8.已知线段MN = 1,在MN 上有一点A ,如果AN = 253-.求证:点A是MN 的黄金分割点.四、聚沙成塔9.如图,以长为2的线段AB 为边作正方形ABCD ,取AB 的中点P ,连结PD ,在BA 的延长线上取点F ,使PF =PD ,以AF 为边作正方形AMEF ,点M在AD上.(1)求AM、DM的长.(2)求证:AM2=AD·DM.(3)根据(2)的结论你能找出图中的黄金分割点吗?10.如果一个矩形ABCD(AB<BC)中,215-=BCAB≈0.618,那么这个矩形称为黄金矩形,黄金矩形给人以美感.在黄金矩形ABCD内作正方形CDEF,得到一个小矩形ABFE(如图),请问矩形ABFE是否是黄金矩形?请说明你的结论的正确性.参考答案1.AP2=BP·AB或PB2=AP·AB;2.0.618;3.7.6,4.8;4.C;5.C;6.B;7.C;8证得AM2=AN·MN即可;9.⑴AM=5-1;DM=3-5;⑵略;⑶点M是线段AD的黄金分割点;10.通过计算可得215-=ABAE,所以矩形ABFE是黄金矩形.构建数学的知识网络学习数学,重要的是要构建一个数学的知识网络,将单一的知识都串联起来,这样有助于对综合型题目的解答。
4.4探索三角形相似的条件第4课时黄金分割教学目标【知识与能力】1.知道黄金分割的定义.2.会找一条线段的黄金分割点.3.会判断某一点是否为一条线段的黄金分割点.【过程与方法】通过找一条线段的黄金分割点,培养学生的理解与动手能力.【情感态度价值观】理解黄金分割的意义,并能动手找到和制作黄金分割点和图形,让学生认识数学与人类生活的密切联系对人类历史发展的作用.教学重难点【教学重点】了解黄金分割的意义,并能运用.【教学难点】找黄金分割点和画黄金矩形.课前准备课件.教学过程Ⅰ.创设问题情境,引入新课[师]生活中我们见到过许许多多的图形,形态各异,美观大方.那么这些漂亮的图形你能画出来吗?比如,右图是一个五角星图案,如何找点C 把AB 分成两段AC 和BC ,使得画出的图形匀称美观呢?本节课就研究这个问题.Ⅱ.讲授新课[师]在五角星图案中,大家用刻度尺分别度量线段AC 、BC 的长度,然后计算AB AC 、AC BC ,它们的值相等吗?[生]相等. [师]所以ACBC AB AC =. 1.黄金分割的定义一般地,点C 把线段AB 分成两条线段AC 和BC ,如果ACBC AB AC =,那么称线段AB 被点C 黄金分割(golden section ),点C 叫作线段AB 的黄金分割点,AC 与AB 的比叫作黄金比.其中AB AC ≈0.618.2. 计算黄金比.解:由AC AB =BC AC ,得∴AC 2=AB ·BC.设AB =1,AC =x ,则BC =1- x.∴x 2=1×(1-x )∴x 2+ x -1=0解这个方程,得x 1=-1+√52或x 2=-1-√52(不合题意,舍去), 所以,黄金比AC AB =√5-12≈0.618。
3.作一条线段的黄金分割点.如图,已知线段AB ,按照如下方法作图:(1)经过点B 作BD ⊥AB ,使BD =21AB . (2)连接DA ,在DA 上截取DE =DB .(3)在AB 上截取AC =AE .则点C 为线段AB 的黄金分割点. [师]你知道为什么吗?若点C 为线段AB 的黄金分割点,则点C 分线段AB 所成的两条线段AC 、BC 间须满足AC BC AB AC .下面请大家进行验证.自己有困难时可以互相交流.为了计算方便,可设AB =1. 证明:∵AB =1,AC =x ,BD =21AB =21 ∴AD =x +21 在Rt △ABD 中,由勾股定理,得(x +21)2=12+(21)2 ∴x 2+x +41=1+41 ∴x 2=1-x∴x 2=1·(1-x )∴AC 2=AB ·BC即:AC BC AB AC = 即点C 是线段AB 的一个黄金分割点,在x 2=1-x 中整理,得x 2+x -1=0 ∴x =2512411±-=+±- ∵AC 为线段长,只能取正 ∴AC =215-≈0.618 ∴ABAC ≈0.618 ∴黄金比约为0.618.3.想一想古希腊时期的巴台农神庙(Parthenom Temple ).把它的正面放在一个矩形ABCD 中,以矩形ABCD 的宽AD 为边在其内部作正方形AEFD ,那么我们可以惊奇地发现,BC AB BE BC =,点E 是AB 的黄金分割点吗?矩形ABCD 的宽与长的比是黄金比吗?[师]请大家互相交流.[生]因为四边形AEFD 是正方形,所以AD =BC =AE ,又因为BC AB BE BC =,所以AE AB BE AE =,即AEBE AB AE =,因此点E 是AB 的黄金分割点,矩形ABCD 宽与长的比是黄金比. [师]在上面这个矩形中,宽与长的比是黄金比,这个矩形叫作黄金矩形.你学会作了吗?Ⅲ.课时小结本节课学习了:1.黄金分割点的定义及黄金比.2.如何找一条线段的黄金分割点,以及会画黄金矩形.3.能根据定义判断某一点是否为一条线段的黄金分割点.Ⅳ.课后作业习题4.8Ⅴ.活动与探究要配制一种新农药,需要兑水稀释,兑多少才好呢?太浓太稀都不行.什么比例最合适,要通过试验来确定.如果知道稀释的倍数在1000和2000之间,那么,可以把1000和2000看作线段的两个端点,选择AB 的黄金分割点C 作为第一个试验点,C 点的数值可以算是1000+(2000-1000)×0.618=1618.试验的结果,如果按1618倍,水兑得过多,稀释效果不理想,可以进行第二次试验.这次的试验点应该选AC 的黄金分割点D ,D 的位置是1000+(1618-1000)×0.618,约等于1382,如果D 点还不理想,可以按黄金分割的方法继续试验下去.如果太浓,可以选DC 之间的黄金分割点;如果太稀,可以选AD 之间的黄金分割点,用这样的方法,可以较快地找到合适的浓度数据.这种方法叫作“黄金分割法”.用这样的方法进行科学试验,可以用最少的试验次数找到最佳的数据,既节省了时间,也节约了原材料.●板书设计黄金分割⎩⎪⎨⎪⎧定义:一般地,点C 把线段AB 分成两条线段AC和BC ,如果AC AB =BC AC ,那么称线段AB 被点C 黄金分割黄金分割点:一条线段有两个黄金分割点黄金比:较长线段:原线段=5-12:1。
编号:34445768428937925654158542
学校:摩歆市五镇淮子学校*
教师:高至发*
班级:天鹅参班*
第4课时黄金分割
【知识与技能】
1.理解黄金分割的定义;会找一条线段的黄金分割点.
2.会判断一点是否是线段的黄金分割点.
【过程与方法】
通过找一条线段的黄金分割点,培养学生理解能力和动手能力.
【情感态度】
理解黄金分割点的现实意义,动手制作相关图形,感受黄金分割的美,体会教学的应用价值.
【教学重点】
找一条线段的黄金分割点.
【教学难点】
黄金分割比的应用.
一、情境导入,初步认识
现实生活中存在许多优美的图画和建筑,例如古埃及金字塔、古希腊巴台农神庙,这些建筑的边长之间的比都接近某一个数,你知道这个数是多少吗?
【教学说明】利用来源于生活中的美丽图象或建筑吸引学生的注意力,营造一个感受美、关注美、探究美的氛围,唤醒学生对美的感受.
二、思考探究,获取新知
动手量一量,五角星图案中,线段AC、BC的长度,然后计算AC
AB
与
BC
AC
,
它们的值相等吗?
【教学说明】学生亲自动手操作,得到黄金比并加深对黄金分割的理解.
【归纳结论】在线段AB上,点C把线段AB分成两条线段AC和BC,如
果AC
AB
=
BC
AC
,那么称线段AB被点C黄金分割, 点C叫做线段AB的黄金分割点,
AC与AB的比叫做黄金比.
三、运用新知,深化理解
1.已知C是线段AB的一个黄金分割点,则AC∶AB为(D)
2.把2米的线段进行黄金分割,则分成的较短的线段长为0.764 米.
3.如图,在平行四边形ABCD中,点E是边BC上的黄金分割点,且BE>
CE,AE与BD相交于点F.那么BF∶FD的值为51 -
.
4.在人体躯干(脚底到肚脐的长度)与身高的比例上,肚脐是理想的黄金分割点,即比例越接近0.618越给人以美感.张女士的身高为1.68米,身体躯干(脚底到肚脐的高度)为1.02米,那么她应选择约多高的高跟鞋看起来更美.(精确到十分位)
解:设她应选择高跟鞋的高度是xcm,
则102
168
x
x
+
+
=0.618,
解得:x≈4.8cm.故答案为:4.8cm.
5.已知线段AB,求作线段AB的黄金分割点C,使AC>BC.
解:作法如下:
(1)延长线段AB至F,使AB=BF,分别以A、F为圆心,以大于线段
AB的长为半径作弧,两弧相交于点G,连接BG,则BG⊥AB,在BG上取点D,
使BD=1
2 AB;
(2)连接AD,在AD上截取DE=DB;
(3)在AB上截取AC=AE.如图,点C就是线段AB的黄金分割点.
【教学说明】通过例题分析使学生进一步理解定理的应用和黄金分割的意义.使学生能更好地掌握本节知识.
6.在矩形ABCD中,AB>BC,如图.若BC∶AB=51
2
-
∶1,那么这个矩形
成为黄金矩形.在黄金矩形ABCD内作正方形EBCF,则矩形AEFD是黄金矩形吗?试说明理由.
解:矩形AEFD是黄金矩形.理由如下:
设AB=1,由BC∶AB=51
-
∶1可知BC=
51
-
,
所以BE=51
2
-
,AE=1-
51
2
-
=3-52,
所以AE∶EF=35
-
∶
51
-
=
51
-
∶1.
故矩形AEFD是黄金矩形.
四、师生互动,课堂小结
如何找一条线段的黄金分割点,这节课你有哪些收获?
1.布置作业:教材“习题4.8”中第1 题.
2.完成练习册中相应练习.
本节课知识点较多,具有一定的抽象性,所以有一部分学生掌握的不够好.在今后的教学中将努力改变,铺设阶梯,给大多数同学发言、参与的机会,活跃课堂气氛.。