物理化学实验 量子化学计算.ppt
- 格式:ppt
- 大小:4.54 MB
- 文档页数:50
物理化学中的量子化学计算方法近年来,随着计算科学的迅速发展,量子化学计算方法在物理化学领域中扮演着越来越重要的角色。
通过运用量子化学计算方法,我们可以研究物质的结构、性质和反应动力学,为实验提供重要的理论指导。
本文将介绍几种常见的量子化学计算方法及其应用,并探讨其在物理化学中的优势和局限性。
一、基于量子力学的方法在物理化学中,基于量子力学的计算方法是最常用的。
其中,薛定谔方程是解决分子、原子和离子的量子力学问题的基本方程。
然而,由于薛定谔方程的求解困难,科学家们提出了各种近似方法来简化计算。
1. 线性组合全构型法(CI)CI方法是一种基于量子力学的全构型方法,通过构建一个包含各种可能的电子构型的线性组合,来求解体系的波函数。
CI方法在计算分子的电子结构、振动能级和反应动力学等方面具有广泛应用。
2. 密度泛函理论(DFT)DFT方法通过求解电子密度分布的方程,近似计算体系的能量和其他性质。
DFT方法在计算大分子体系和固体材料的能带结构等方面具有重要应用。
3. 配分函数法配分函数法是一种统计力学方法,通过计算系统的配分函数来研究其热力学性质。
配分函数法在计算各种宏观性质,如能量、熵和自由能等方面具有广泛应用。
二、基于量子力学和经典力学相结合的方法基于量子力学和经典力学相结合的方法将量子力学和经典力学的优势相结合,通过描述体系的量子力学和经典力学耦合的过程,来研究复杂体系的性质。
1. 经典轨迹方法经典轨迹方法使用经典力学的数值模拟算法,通过计算分子或原子的轨迹来研究反应动力学和能量转移等过程。
2. 分子力场法分子力场法利用经典势能函数来描述分子的相互作用,通过求解势能函数的极小值来研究分子的结构和性质。
三、量子化学计算方法的应用量子化学计算方法在物理化学中有广泛的应用。
以下是其中几个典型的应用:1. 电子结构计算通过量子化学计算方法,我们可以计算分子的基态和激发态的电子结构,包括电子云分布、电子能级、电离势和亲和势等。
第5节 能量量子化核心素养物理观念科学思维科学探究1.了解黑体辐射和能量子的概念。
2.了解黑体辐射的实验规律。
3.知道能量子。
4.了解能级、跃迁、能量量子化以及基态、激发态等概念。
5.会计算原子跃迁时吸收或辐射光子的能量。
1.了解黑体辐射、一般辐射的特点。
2.理解能量量子化、轨道量子化,初步了解量子理论。
1.探究黑体辐射的实验规律。
2.探究量子理论形成的原因。
[观图助学]晒太阳使身体变暖,是通过什么方式改变人体内能的?冬天在火炉旁烤手是通过什么方式改变人体内能的?1.热辐射(1)定义:周围的一切物体都在辐射________,这种辐射与____________有关,所以叫热辐射。
(2)特点:热辐射强度按波长的分布情况随物体的________不同而有所不同。
2.黑体(1)定义:某种物体能够____________入射的各种波长的电磁波而不发生_______,这种物体就叫作黑体。
(2)黑体辐射特点:黑体辐射电磁波的强度按波长的分布只与黑体的_______有关。
电磁波物体的温度温度完全吸收反射温度[思考判断](1)热辐射只能产生于高温物体。
( )(2)能吸收各种电磁波而不反射电磁波的物体叫黑体。
( )(3)温度越高,黑体辐射电磁波的强度越大。
( )(4)黑体是一种客观存在的物质。
( )×√√×1.定义:普朗克认为,振动着的带电微粒的能量只能是某一最小能量值ε的________,当带电微粒辐射或吸收能量时,也是以这个最小能量值为单位____________地辐射或吸收的,这个不可再分的最小能量值ε叫作________。
2.能量子大小:ε=hν,其中ν是电磁波的频率,h 称为________常量。
h =6.626×10-34 J·s(一般取h =6.63×10-34 J·s)。
整数倍知识点二 能量子一份一份能量子普朗克3.能量的量子化:普朗克的假设认为微观粒子的能量是________的,或者说微观粒子的能量是________________的。
量子化学计算方法及应用吴景恒实验目的:(1)掌握Gaussian03W的基本操作(2)掌握 Gaussian03W进行小分子计算的方法,比较不同方法与基组对计算结果的影响,并比较同分异构体的稳定性(3)通过运用量子力学方法计算分子的总电子密度,自旋密度,分子轨道及静电势实验注意:(1)穿实验服;实验记录用黑色,蓝色或蓝黑色钢笔或签字笔记录;实验数据记录不需要画表格(2)实验前请先仔细阅读前面的软件使用介绍,然后逐步按照实验步骤所写内容进行操作(3)截图方法:调整视角至分子大小适中,按下键盘上的PrintScreen按键截图,从“Windows开始菜单”打开“画图”工具,按Ctrl+v或“编辑-粘贴”,去掉四周多余部分只留下分子图形,保存图片(4)所有保存的文件全部存在E盘或D盘根目录用自己学号命名的文件夹下,不要带中文命名,实验完毕全部删除,不得在计算用机上使用自己携带的U盘或其他便携存储设备!(5)HyperChem里面截图时候可以用工具栏以下几个工具调整视图:Rotate out-of-plane:平面外旋转工具,转换视角用Mgnify/Shrink:放大镜工具,转换视角用Gaussian03W使用介绍:(注意,下面只是界面示意图,实验時切勿按下图设置)输入文件:Gaussian输入文件,以GJF为文件后缀名联系命令行:设定中间信息文件(以CHK为后缀名)存放的位置、计算所需的内存、CPU数量等作业行:指定计算的方法,基组,工作类型,如:#P HF/6-31G(d) Scf=tight Opt Pop=full#作业行开始标记P 计算结果显示方式为详细, 选择还有T(简单)和 N(常规,默认)HF/6-31G(d) 方法/基组Opt对分子做几何优化Pop=full进行轨道布居分析,详尽输出轨道信息和能量电荷 多重态:分子总电荷及自旋多重态(2S+1, S=n/2, n为成单电子数)分子结构的表示1、直角坐标:元素符号X坐标Y坐标Z坐标(如上图所示)2、Z矩阵(参考后附内容):元素符号(原子一)原子二键长原子三键角原子四二面角GaussView使用介绍:主窗口(左),分子窗口(中)原子片段窗口(右):实验步骤:一、计算准备打开GaussView,在新建的分子窗口中画出给定的分子,点击右键选择Lables显示原子序号点击File – Save...,把分子保存为mol.gjf文件;用记事本打开mol.gjf文件,根据分子的对称性修改分子的Z矩阵,为相同环境的原子设置相同的键长并给出名称及初始值,如丙二烯的初始Z-矩阵:CC 1 B1H 2 B2 1 A1H 2 B3 1 A2 3 D1C 4 B4 2 A3 1 D2H 5 B5 4 A4 2 D3H 5 B6 4 A5 2 D4B1 1.35520000B2 1.07000000B3 1.07000000B4 3.37362449B5 1.07000000B6 1.07000000A1 120.22694612A2 119.88652694A3 44.15219753A4 118.94699673A5 118.62610381D1 -180.00000000D2 0.00000000D3 -99.10658593D4 98.97664937由于氢3,氢4与碳2的键长和氢6,氢7与碳5的键长均相等,所以B2、B3、B5、B6均可设定为键长CH(自定义名字,注意所有字母都用大写!),把下面的B2改为CH并把B3、B5、B6删除(数值不同不要紧,后面已为其给出相同的键长初始值);另外为了方便辨认把B1统一改为键长CC,B4改为键长CC2,键角二面角可无视;改好的Z矩阵如下:CC 1 CCH 2 CH 1 A1H 2 CH 1 A2 3 D1C 4 CC2 2 A3 1 D2H 5 CH 4 A4 2 D3H 5 CH 4 A5 2 D4CC 1.35520000CH 1.07000000CC2 3.37362449A1 120.22694612A2 119.88652694A3 44.15219753A4 118.94699673A5 118.62610381D1 -180.00000000D2 0.00000000D3 -99.10658593D4 98.97664937注意内坐标所有变量均在后面给出初始值,变量设值不能重复,数值必须带小数点,改好后保存,用GaussView点击File – Open尝试打开mol.gjf文件,如果打开有误请再检查和修改;打开无误后,把分子结构和原子编号,以及修改后的Z矩阵记录下来,并标明各键长二、量子力学方法几何优化计算比较(1)打开Gaussian03W,点击File – Open...打开刚才保存的mol.gjf文件,作如下修改(不需区分大小写):%Section部分全部删除,不需要关键词Route Section部分修改为:#T HF/3-21G Opt=(Z-matrix,Maxcycle=300) NoSymmTitle Section部分可不修改或改为自定义标题,如:AlleneCharge & Multipl.部分不需修改,按默认值:0 1Molecule Specification部分会读取分子Z矩阵,不需修改,注意开头不要有空行点击File – Save Job保存Gaussian输入文件;点击右边的Run按钮,保存输出文件为mol.out,点击“保存”开始计算作业;当计算窗口Run Progress上显示“Processing Complete.”且输出窗口末尾出现”Normal termination”字样时,表示计算正常结束(如计算出现“Error termination”或中途结束点击确定,点击File – Modify...正确修改输入文件后继续)计算结束后点击View – Editor -> Output File查看输出文件,从末尾开始找到”Job cpu time”记录计算时间;在倒数约第十行附近找到并记录能量值HF=...;往上找到”Dipole moment”记录总偶极矩Tot=...(不需要记录xyz方向上的偶极矩);找到”Optimized Parameters”一栏下”Value”一列,记录优化后的各键长值(只需要键长)(2)点击File – Modify...在Route Section一栏把3-21G 基组改为6-31G*,重复上述计算并记录各上述数据(3)点击File – Modify...基组保持修改后的6-31G*不变,把方法从HF改为MP2重复上述计算并记录各数据(能量数据为MP2=...),记录后把保存的mol.out复制出来备用(该步骤完成后在后面的计算进行时可顺便进行下面第四大点的步骤操作以节省时间)(4)点击File – Modify...,基组保持6-31G*不变,把MP2方法改为B3LYP,计算并记录上述数据(能量值依然为HF=...),并找到”Mulliken atomic charges”记录各原子电荷(原子环境相同的只需记下一个值)(5)点击File–Modify...在Route Section最后加上”Freq”关键词,即修改为“#T B3LYP/3-21G Opt=(Z-matrix,Maxcycle=300) NoSymm Freq”进行计算,通过查找并记录1Atm压力下的零点能(Zero-point correction)、0K内能U0K(Sum of electronic and zero-point Energies)、常温下内能U298.15K(Sum of electronic and thermal Energies),焓H298.15 K(Sum of electronic and thermal Enthalpies) 以及吉布斯自由能G298.15 K(Sum of electronic and thermal Free Energies),通过实验教材上的公式求出熵值并换算成kJ/mol写在数据记录上三、同分异构体稳定性比较用GaussView画出二氯乙烯的两种不同构型的同分异构体(二氯乙烯共有三种异构体,只需其中任意两个即可),分别保存为GJF文件后用记事本打开,复制Z-矩阵(不需要作出改动);在Gaussian03W点击File – Modify...把复制的Z 矩阵贴到Molecule Specification部分,修改Route Section部分为“#T B3LYP/6-31G* Opt(Maxcycle=300)”进行几何优化计算,记录最后所得能量值(只需要HF=...的能量值)四、描绘分子性质(1)打开GaussView软件,点击File – Open...在下拉菜单中选择Gaussian Output Files (*.out *.log)找到先前在第二大步第(3)小步保存的mol.out文件打开,然后点击Save...在下拉菜单中选择MDL Mol Files (*.mol)保存为mol.mol文件打开Hyperchem,点击File – Open...在下拉菜单中选择MDL Mol (*.mol),打开刚才保存的mol.mol文件点击Setup – Semi-empirical,选择“CNDO”作为计算方法;点击Options...,如图进行设置:点击OK,然后点击Compute - Single Point进行单点能计算,从状态栏(窗口最下面)读出并记录能量及梯度数值;下面作图中如Plot Molecular Properties Graph或Orbitals 为灰色,如上再进行一次单点能计算点击Display – Labels...在Atoms一栏选择Charge后点击OK,同上记录各不同类型的原子电荷(2)点击Compute - Plot Molecular Properties Graph,选择Electrostatic Potential及3D Isosurface,在Isosurface Rendering标签Rendering一栏中选择Translucent surface,点击OK绘制出三维静电势图,截图保存为3D_EP.png(截图及视角转换参照实验注意第五点,未选中工具栏视角转换工具前切勿在窗口点击任何按键!)(3)点击Compute - Plot Molecular Properties Graph,选择Total Charge Density,选择2D Contours绘制三维总电荷密度图,保存为2D_TD.png,在下方方框中输入0”,选择3D-Isosurface,点击OK绘制HOMO分(4)点击Compute – Orbitals,选中“HOMO-”“子轨道图,截图存为HOMO.png(5)点击Setup – Semi-empirical – Options...更改Total charge为1,Spin multiplicity为2,确定后点击Compute - Single Point再进行一次Single Point单点能计算,记录能量和梯度值;点击Compute - Plot Molecular Properties Graph,选择“Spin density”显示三维的单电子自旋密度图,存为3D_SD.png实验结束,检查下面数据是否已被正确记录:1、分子结构及修改后的Z矩阵表示2、分别记录 HF/3-21G, HF/6-31G*, MP2/6-31G*, B3LYP/6-31G*计算水平下分子几何优化后各项性质(计算时间、能量、总偶极矩以及各优化键长)3、B3LYP/6-31G*计算水平下分子的零点能、零度内能、内能、焓、吉布斯自由能和熵值4、MP2/6-31G*方法及CNDO方法所得不同环境的原子电荷5、二氯乙烯分子两个同分异构体在B3LYP/6-31G*水平下计算的能量数值6、分子各性质图像打开”网上邻居-综合 在 Zh00 上-2012-物化计算机实验”,找到以当天日期命名的文件夹,在下面新建以自己学号命名的文件夹,把3D_EP.png, 2D_TD.png, HOMO.png, 3D_SD.png复制到里面,把原始数据记录取至前台检查签名(原始数据记录请务必写上姓名!),签名后在前台用U盘把自己的实验图片复制下来或发送到自己邮箱里面(教师用计算机学生不得操作!)实验完毕删除自己在用机上所有留下的有关文件,关闭计算机,收拾桌椅并带好个人携带物品离开实验室实验报告:一、实验原始数据记录应附在实验报告的最后,不能直接作为实验报告的内容部分二、实验图片应打印好作为实验报告的内容部分并标上图片标题和注释,不能附在实验报告的最后三、实验报告所有数据必须用表格形式列出,并应对所有已记录的数据进行分析,所有能量在实验报告中均换算成单位kJ/mol(1Hartree=2625.5 kJ/mol),此外还应包括以下内容:1、查阅文献,查找所做分子的对应键长实验测量数值或使用更准确的理论计算方法所得数据2、比较并分析相同基组下HF,MP2,B3LYP方法的准确程度以及所耗时间3、比较并分析不同基组(3-21G, 6-31G*)下HF方法的准确程度4、比较并分析使用不同方法及基组所得能量数值的大小关系5、比较各方法所得的偶极矩及原子电荷,分析使用不同方法和基组下的计算结果及其合理性6、分析二氯乙烯同分异构体的稳定性大小四、思考题(连同给定的书本上的思考题写入实验报告):1、使用直角坐标和Z矩阵各有哪些优劣?考虑对称性会为计算带来哪些好处和坏处?2、除了给定电荷以外,为什么还要给定分子的自旋多重态?它能反映体系的哪些性质?3、你觉得该实验比较同分异构体的稳定性大小的方法结果可靠吗?请说明理由4、如果有人认为该实验比较同分异构体的稳定性大小的方法不够准确,你会有什么合理的方法进行改进?5、量子力学方法是怎样得到各原子的电荷的?各有哪些方法计算电荷?不同方法所得的电荷数值是否具有可比性,能否用于进行定性,半定性或定量分析?6、静电势、电荷密度、自旋密度和分子轨道都能体现分子内电子分布请况,请说出它们的具体定义,联系及区别7、本次计算在Gaussian03W中用到的各项关键词都是什么意思?试解释在该次实验中为什么使用到这些关键词附:Z矩阵采用采用内坐标(键长,键角和二面角)输入,便于保持分子的对称性,如NH3(对称性为C3V):NH1HNH1HN2 HNHH1HN3 HNH2DHNHN 1.HNH 109.47DNH-120.根据对称性设值可以减少计算量,上述内坐标根据对称性定义了三个变量分别为N-H键键长,H-N-H键角及四个原子所成的二面角,并在后面给出了它们的初始值。