氧化铝柱净化和石油废物分离 气相色谱法US EPA 3611B-1996
- 格式:pdf
- 大小:59.39 KB
- 文档页数:7
2006年第37卷第9期《浙江化工》文章编号:1006-4184(2006)09-0003-02氧化铝柱层析分离磷脂工艺的洗脱研究*柳叶,吕秀阳(浙江大学化学工程与生物工程学系,浙江杭州310027)摘要:开展了不同洗脱液组成对氧化铝柱上磷脂洗脱曲线影响的实验研究。
分别用甲醇和甲醇-氨水体系做为洗脱剂进行洗脱,得到了最佳的洗脱液组成:甲醇:氨水=20:1(v/v)。
在此条件下,卵磷脂PC和脑磷脂PE的洗脱率分别达到了98.6%和32.3%。
这为用氧化铝柱层析来同时制备卵磷脂和脑磷脂的工艺的工业化研究奠定了重要基础。
关键词:氧化铝;洗脱;柱层析;卵磷脂;脑磷卵磷脂和脑磷脂是两种重要的磷脂,化学名称分别为磷脂酰胆碱(phosphotidylcholine,简称PC)和磷脂酰乙醇胺(PhosphatidylEthanolamine,简称PE)。
高纯度磷脂产品具有无异味、乳化性能强等特点,应用更为广阔,国内外需求量在逐年增加。
目前纯度大于95%的磷脂产品我国尚依赖进口,因此,开发出适合我国国情的高纯度磷脂制备方法具有重要的意义。
国内外对磷脂精制方法的研究较多[1 ̄5],其中柱层析法由于分离效果好、工艺简单、投资少、处理量较大,因而成为磷脂精制方法的研究热点。
近年来本课题组致力于高纯度磷脂制备方法的研究[5,6],本实验进一步对其洗脱特性进行了考察。
国内外未见相关的报道。
1实验部分1.1原料与试剂自制粗磷脂。
经高效液相色谱分析,其中PC含量为79.6%,PE含量为14.8%。
氧化铝(中性,颗粒尺寸0.074~0.15mm,上海五四化学试剂有限公司);在120℃下脱水活化12h,活化好的氧化铝转移至干燥器中,冷却后,加入8%去离子水。
密封存放72h以上,以备柱层析用。
此时氧化铝的含水量为8%(wt%)[6]。
HPLC用乙腈和甲醇(色谱纯,MERCK);其余为分析纯。
1.2仪器和设备R-201旋转蒸发器(上海申生科技有限公司);DZF-6021真空干燥器(上海精宏实验设备有限公司);色谱柱(1/2in×20cm,经水标定柱有效体积为23mL,天津科器高新技术公司);2J-W柱塞计量泵(杭州之江石化装备有限公司);Agilent1100型高效液相色谱仪(安捷伦科技有限公司)。
活性氧化铝柱气相色谱法测定工作场所空气中四烯的方法研究摘要采用活性氧化铝柱,气相色谱法对作业场所空气中乙烯、丙烯、丁烯、丁二烯进行活性炭采样,热解吸后进样分析,方法灵敏度高、柱填料简单,活性炭管对乙烯、丙烯、丁烯、丁二烯的吸附性好,解吸效率较高,样品损失率低。
乙烯、丙烯、丁烯、丁二烯的最低检出浓度分别为1mg/m3、、0.52mg/m3、0.83mg/m3、0.3mg/m3,可满足职业卫生检测的要求。
关键词活性氧化铝气相色谱法工作场所乙烯丙烯丁烯丁二烯乙烯、丙烯、丁烯、丁二烯简称“四烯”。
乙烯、丙烯常温下为无色、无臭、稍带甜味的气体,其中乙烯不溶于水、微溶于乙醇、酮、苯,溶于醚;丙烯微溶于水、溶于乙醇。
丁烯、丁二烯常温下为无色气体,丁烯稍有臭味、不溶于水、微溶于苯、乙醇、乙醚;丁二烯略带有甜味和芳香味气体、微溶于水、溶于丙酮、苯、乙酸、酯等多种有机溶剂。
乙烯、丙烯是合成塑料、合成纤维等化工产品的基本原料;丁烯、丁二烯是合成橡胶、特种塑料、ABS树脂等的基本化工原料。
乙烯、丙烯具有引起麻醉的作用,其中乙烯具有较强的麻醉作用,大量吸入可引起头痛,被美国ACGIH列为不可分类的人类致癌物;丁烯、丁二烯具有刺激和麻醉作用,丁烯较弱,其中丁二烯被我国列为可能人类致癌物〖1〗〖3〗〖5〗〖10〗。
我国于2007年11月1日实施了GBZ 2.1—2007《工作场所有害因素职业接触限值第一部分:化学有害因素》中制定了丁烯时间加权平均容许浓度(PC—TWA)为100mg/m3,丁二烯时间加权平均容许浓度(PC—TWA)为5mg/m3。
于2007年11月30日实施了GBZ/T 160—2007《工作场所空气有毒物质测定烯烃类化合物》中制定了丁烯直接进样—气相色谱法、丁二烯的溶剂解吸—气相色谱法,其中丁二烯溶剂解吸法中使用的二氯甲烷具有较强麻醉性,损害人体中枢神经和呼吸系统,被列为人类潜在致癌物;丁二烯直接进样法,采样后样品保存时间过短,需尽快测定(4小时内最佳),不适合大批量样品分析,丁烯、丁二烯且需分别采集样品,分别进样分析,浪费人力物力;目前我国尚未制定乙烯、丙烯的接触限值及监测方法。
CD-ROM 8091 - 1Revision 0December 1996METHOD 8091NITROAROMATICS AND CYCLIC KETONES BY GAS CHROMATOGRAPHY1.0SCOPE AND APPLICATION1.1Method 8091 is a gas chromatographic (GC) method used to determine the concentration of nitroaromatics and cyclic ketones. It describes wide-bore, open-tubular, capillary column gas chromatography procedures using either electron capture (ECD) or nitrogen-phosphorous (NPD)detectors. The following RCRA analytes can be determined by this method:CompoundCAS No.a 1,4-Dinitrobenzene 100-25-42,4-Dinitrotoluene 121-14-22,6-Dinitrotoluene 606-20-21,4-Naphthoquinone 130-15-4Nitrobenzene98-95-3Pentachloronitrobenzene82-68-8Chemical Abstract Service Registry Number.a1.2 The following non-RCRA analytes can also be determined by this method:CompoundCAS No.a Benefin 1861-40-1Butralin33629-47-91-Chloro-2,4-dinitrobenzene 97-00-71-Chloro-3,4-dinitrobenzene 610-40-21-Chloro-2-nitrobenzene 88-73-31-Chloro-4-nitrobenzene 100-00-52-Chloro-6-nitrotoluene 83-42-14-Chloro-2-nitrotoluene 89-59-84-Chloro-3-nitrotoluene 89-60-12,3-Dichloronitrobenzene 3209-22-12,4-Dichloronitrobenzene 611-06-33,5-Dichloronitrobenzene 618-62-23,4-Dichloronitrobenzene 99-54-72,5-Dichloronitrobenzene89-61-2Compound CAS No.aDinitramine29091-05-21,2-Dinitrobenzene528-29-01,3-Dinitrobenzene99-65-0Isopropalin33820-53-01,2-Naphthoquinone524-42-52-Nitrotoluene88-72-23-Nitrotoluene99-08-14-Nitrotoluene99-99-0Penoxalin (Pendimethalin)40487-42-1Profluralin26399-36-02,3,4,5-Tetrachloronitrobenzene879-39-02,3,5,6-Tetrachloronitrobenzene117-18-01,2,3-Trichloro-4-nitrobenzene17700-09-31,2,4-Trichloro-5-nitrobenzene89-69-02,4,6-Trichloronitrobenzene18708-70-8Trifluralin1582-09-81.3This method is restricted to use by, or under the supervision of, analysts experienced in the use of gas chromatographs and skilled in the interpretation of gas chromatograms. Each analyst must demonstrate the ability to generate acceptable results with this method.2.0SUMMARY OF METHOD2.1Method 8091 provides gas chromatographic conditions for the detection of ppb concentrations of nitroaromatics and cyclic ketones in water and soil or ppm concentrations in waste samples. Prior to use of this method, appropriate sample extraction techniques must be used for environmental samples (refer to Chapter Two and Method 3500). Both neat and diluted organic liquids (Method 3580) may be analyzed by direct injection. Analysis is accomplished by gas chromatography utilizing an instrument equipped with wide bore capillary columns and one or more electron capture detectors or nitrogen-phosphorus detectors (NPD).3.0INTERFERENCES3.1Refer to Method 3500, 3600, and 8000.3.2The electron capture detector responds to all electronegative compounds. Therefore, interferences are possible from other halogenated compounds, as well as phthalates and other oxygenated compounds such as organonitrogen, organosulfur, and organophosphorus compounds. Second column confirmation or GC/MS confirmation is necessary to ensure proper analyte identification unless previous characterization of the sample source will ensure proper identification.3.3Contamination by carryover can occur whenever high-concentration and low-concentration samples are sequentially analyzed. To reduce carryover, the syringe used for injection must be thoroughly rinsed between samples with solvent. Whenever a highly concentrated sample extract is encountered, it should be followed by the analysis of a solvent blank to check for CD-ROM8091 - 2Revision 0December 1996CD-ROM 8091 - 3Revision 0December 1996cross-contamination. Additional solvent blanks interspersed with the sample extracts should be considered whenever the analysis of a solvent blank indicates cross-contamination problems.3.4In certain cases some compounds coelute on either one or both columns. In these cases the compounds must be reported as coeluting. The mixture can be reanalyzed by GC/MS techniques if concentration permits (see Method 8270).3.4.1DB-5 column:2,4,6-trichloronitrobenzene/1,3-dinitrobenzene1-chloro-2,4-dinitrobenzene/1-chloro-3,4-dinitrobenzene/1,2,3-trichloro-4-nitrobenzene 3.4.2DB-1701 column:2,4-dichloronitrobenzene/4-chloro-3-nitrotoluene 2,4,6-trichloronitrobenzene/1,4-naphthoquinone1-chloro-2,4-dinitrobenzene/2,3,4,5-tetrachloronitrobenzene3.4.3In addition, on the DB-5 column, 2,5-dichloronitrobenzene is not well resolved from 4-chloro-3-nitrotoluene. Also, Trifluralin is not well resolved from Benefin. On the DB-1701 column, compound pairs that are not well resolved include 4-nitrotoluene/1-chloro-3-nitrobenzene and Trifluralin/Benefin.3.5Solvents, reagents, glassware, and other sample processing hardware may yield discrete artifacts and/or elevated baselines causing misinterpretation of gas chromatograms. All these materials must be demonstrated to be free from interferences under the conditions of the analysis,by analyzing reagent blanks.4.0APPARATUS AND MATERIALS4.1Gas chromatograph: An analytical system complete with a gas chromatograph suitable for on-column and split/splitless injection, and all accessories, including syringes, analytical columns,gases, electron capture detectors or nitrogen-phosphorus detectors. A GC equipped with a single GC column and detector or other configurations of column and detector is also acceptable. A data system for measuring peak areas and/or peak heights, and dual display of chromatograms is recommended.4.1.1Suggested GC Columns: Alternative columns may be used to provide the separation needed to resolve all target analytes listed in Sec. 1.1 of this method. Refer to Chapter One for additional information regarding column performance and QA requirements.4.1.1.1Column 1 - 30 m x 0.53 mm ID fused-silica open- tubular column,crosslinked and chemically bonded with 95 percent dimethyl and 5 percent diphenyl-polysiloxane (DB-5, RT -5, SPB-5, or equivalent), 0.83 µm or 1.5 µm film x thickness.4.1.1.2Column 2 - 30 m x 0.53 mm ID fused-silica open-tubular columncrosslinked and chemically bonded with 14 percent cyanopropylphenyl and 86 percent dimethyl-polysiloxane (DB-1701, RT -1701, or equivalent), 1.0 µm film thickness.xCD-ROM 8091 - 4Revision 0December 19964.1.2Splitter: If the splitter approach to dual column injection is chosen, following are three suggested splitters. An equivalent splitter is acceptable. See Sec. 7.5.1 for a caution on the use of splitters.4.1.2.1Splitter 1 - J&W Scientific press-fit Y-shaped glass 3-way union splitter(J&W Scientific, Catalog No. 705-0733).4.1.2.2Splitter 2 - Supelco 8-in glass injection tee, deactivated (Supelco,Catalog No. 2-3665M).4.1.2.3Splitter 3 - Restek Y-shaped fused-silica connector (Restek, Catalog No.20405).4.1.3Column rinsing kit (optional): Bonded-phase column rinse kit (J&W Scientific,Catalog No. 430-3000 or equivalent).4.2Microsyringes - 100 µL, 50 µL, 10 µL (Hamilton 701 N or equivalent), and 50 µL (Blunted,Hamilton 705SNR or equivalent).4.3Balances - Analytical, 0.0001 g, Top-loading, 0.01 g.4.4Volumetric flasks, Class A - 10 mL to 1000 mL.5.0REAGENTS5.1Reagent grade chemicals shall be used in all tests. Unless otherwise indicated, all reagents shall conform to the specifications of the Committee on Analytical Reagents of the American Chemical Society, where such specifications are available. Other grades may be used,provided it is first ascertained that the chemicals are of sufficiently high purity to permit their use without affecting the accuracy of the determinations.5.2Solvents 5.2.1Hexane, C H - Pesticide quality or equivalent.6145.2.2Acetone, CH COCH - Pesticide quality or equivalent.335.2.3Isooctane, (CH )CCH CH(CH ) - Pesticide quality or equivalent.332325.3Stock standard solutions (1000 mg/L): Can be prepared from pure standard materials or can be purchased as certified solutions.5.3.1Prepare stock standard solutions by accurately weighing about 0.0100 g of pure compound. Dissolve the compound in isooctane or hexane and dilute to volume in a 10 mL volumetric flask. (Isooctane is preferred because it is less volatile than hexane.) If compound purity is 96 percent or greater, the weight can be used without correction to calculate the concentration of the stock standard solution. Commercially prepared stock standard solutions can be used at any concentration if they are certified by the manufacturer or by an independent source.5.3.2For those compounds which are not adequately soluble in hexane or isooctane,dissolve the compound initially with a small volume of toluene, ethyl acetate or acetone and dilute to volume with isooctane or hexane.5.4Composite stock standard: Can be prepared from individual stock solutions. For composite stock standards containing less than 25 components, transfer exactly 1 mL of each individual stock solution at 1000 mg/L, add solvent, mix the solutions, and bring to volume in a 25 mL volumetric flask. For example, for a composite containing 20 individual standards, the resulting concentration of each component in the mixture, after the volume is adjusted to 25 mL, will be 40 mg/L. This composite solution can be further diluted to obtain the desired concentrations. For composite stock standards containing more than 25 components, use volumetric flasks of the appropriate volume (e.g., 50 mL, 100 mL).5.5Calibration standards: These should be prepared at a minimum of five concentrations by dilution of the composite stock standard with isooctane or hexane. The standard concentrations should correspond to the expected range of concentrations present in the field samples and should bracket the linear range of the detector.5.6Recommended internal standard: Prepare a solution of 1000 mg/L of hexachlorobenzene. For spiking, dilute this solution to 50 ng/µL. (This concentration may need to be more dilute depending on the detector chosen and its sensitivity. The internal standard response should be approximately 50 to 90% of full scale.) Use a spiking volume of 10.0 µL/mL of extract. The spiking concentration of the internal standards should be kept constant for all samples and calibration standards.5.7Recommended surrogate standard: Monitor the performance of the method using surrogate compounds. Surrogate standards are added to all samples, method blanks, matrix spikes, and calibration standards. Prepare a solution of 1000 mg/L of 1-chloro-3-nitrobenzene and dilute it to 10 ng/µL. (This concentration may need to be adjusted depending on the detector chosen and its sensitivity. The surrogate standard response should be approximately 100% of full scale.) Usea spiking volume of 100 µL for a 1 L aqueous sample.5.8Store the standard solutions (stock, composite, calibration, internal, and surrogate) at 4E C or cooler in polytetrafluoroethylene(PTFE)-sealed containers in the dark. All standard solutions must be replaced after six months or sooner if routine QC (Sec. 8.0) indicates a problem.6.0SAMPLE COLLECTION, PRESERVATION, AND HANDLING6.1See the introductory material to this chapter, Organic Analytes, Sec. 4.1.6.2Extracts must be stored in the dark at or below 4E C and analyzed within 40 days of extraction.7.0PROCEDURE7.1Extraction and Cleanup:7.1.1Refer to Chapter Two and Method 3500 for guidance on choosing the appropriateextraction procedure. In general, water samples are extracted at a pH between 5 to 9 with CD-ROM8091 - 5Revision 0December 1996methylene chloride, using either Method 3510 or 3520. Solid samples are extracted using any of the extraction methods for solids listed in Method 3500, as appropriate.7.1.2If necessary, the samples may be cleaned up using Method 3620 (Florisil) and/orMethod 3640 (Gel Permeation Chromatography). See Chapter Two, Sec. 2.0 and Method 3600 for general guidance on cleanup and method selection. Method 3660 is used for sulfur removal.7.1.3Prior to gas chromatographic analysis, the extraction solvent needs to beexchanged to hexane. The exchange is performed using the K-D procedures listed in each of the extraction methods. Any methylene chloride remaining in the extract will cause a very broad solvent peak.7.2Gas Chromatographic Conditions: Retention time information for each of the analytes is presented in Tables 1 and 3. The recommended GC operating conditions are provided in Tables 2 and 4. Figures 1, 2, and 3 illustrate typical chromatography of the method analytes for both columns when operated at the conditions specified.7.3Calibration:7.3.1Prepare calibration standards using the procedures in Sec. 5.0. Refer to Method8000, Sec. 7.0 for proper calibration procedures. The procedure for internal or external calibration may be used.7.3.2Refer to Method 8000, Sec. 7.0 for the establishment of retention time windows.7.4Gas chromatographic analysis:7.4.1Method 8000, Sec. 7.0 provides instructions on calibration, establishing retentiontime windows, the analysis sequence, appropriate dilutions, and identification criteria.7.4.2Automatic injections of 1 µL are recommended. Hand injections of no more than2 µL may be used if the analyst demonstrates quantitation precision less than or equal to 10percent relative standard deviation. The solvent flush technique may be used if the amount of solvent is kept at a minimum. If the internal standard calibration technique is used, add10 µL of the internal standard to each mL of sample extract prior to injection.7.4.3Tentative identification of an analyte occurs when a peak from a sample extractfalls within the absolute retention time window. Normally, confirmation is necessary.Confirmation techniques include analysis on a second column with dissimilar stationary phase, by GC/MS (full scan or SIM) or by using a different detector and getting comparable data. See Sec. 7.0 of Method 8000 on "Compound Identification" for further information.7.4.3.1If partially overlapping or coeluting peaks are present, install columnswith a dissimilar liquid phase or use a GC/MS technique. Interferences that preventanalyte identification and/or quantitation may possibly be removed by the cleanuptechniques mentioned above.7.4.4Record the volume injected to the nearest 0.05 µL and the resulting peak size inarea units or peak height. Using either the internal or the external calibration procedure (Method 8000), determine the quantity of each component peak in the sample chromatogram which corresponds to the compounds used for calibration purposes.CD-ROM8091 - 6Revision 0December 19967.4.4.1If the responses exceed the linear range of the system, dilute the extractand reanalyze. Peak height measurements are recommended, rather than peak areaintegration, when overlapping peaks may cause errors in area integration.7.4.4.2If the peak response is less than 2.5 times the baseline noise level, thevalidity of the quantitative result may be questionable. The analyst should consult withthe source of the sample to determine whether further concentration of the sample iswarranted.7.4.5Determine the concentration of each identified analyte using the calculationformulae in Sec. 7.0 of Method 8000.7.5Instrument Maintenance:7.5.1Injection of sample extracts from waste sites often leaves a high boiling residuein the injection port area, splitters when used, and the injection port end of the chromatographic column. This residue affects chromatography in many ways (i.e., peak tailing, retention time shifts, analyte degradation, etc.) and, therefore, instrument maintenance is very important. Residue buildup in a splitter may limit flow through one leg and therefore change the split ratios. If this occurs during an analytical run, the quantitative data may be incorrect.Proper cleanup techniques will minimize the problem and instrument QC will indicate when instrument maintenance is required.7.5.2Suggested chromatograph maintenance: Corrective measures may require anyone or more of the following remedial actions. Also see Sec. 7.0 in Method 8000 for additional guidance on corrective action for capillary columns and the injection port.7.5.2.1Splitter connections: For dual columns which are connected using apress-fit Y-shaped glass splitter or a Y-shaped fused-silica connector, clean anddeactivate the splitter or replace with a cleaned and deactivated splitter. Break off thefirst few inches (up to one foot) of the injection port side of the column. Remove thecolumns and solvent backflush according to the manufacturer's instructions. If theseprocedures fail to eliminate the degradation problem, it may be necessary to deactivatethe metal injector body and/or replace the columns.7.5.2.2Column rinsing: The column should be rinsed with several columnvolumes of an appropriate solvent. Both polar and nonpolar solvents are recommended.Depending on the nature of the sample residues expected, the first rinse might be water,followed by methanol and acetone; methylene chloride is a satisfactory final rinse and insome cases may be the only solvent required. The column should then be filled withmethylene chloride and allowed to remain flooded overnight to allow materials within thestationary phase to migrate into the solvent. The column is then flushed with freshmethylene chloride, drained, and dried at room temperature with a stream of ultrapurenitrogen passing through the column.8.0QUALITY CONTROL8.1Refer to Chapter One and Method 8000 for specific quality control (QC) procedures. Quality control procedures to ensure the proper operation of the various sample preparation and/or sample introduction techniques can be found in Methods 3500 and 5000. Each laboratory should CD-ROM8091 - 7Revision 0December 1996maintain a formal quality assurance program. The laboratory should also maintain records to document the quality of the data generated.8.2Quality control procedures necessary to evaluate the GC system operation are found in Method 8000, Sec. 7.0 and includes evaluation of retention time windows, calibration verification and chromatographic analysis of samples.8.3Initial Demonstration of Proficiency - Each laboratory must demonstrate initial proficiency with each sample preparation and determinative method combination it utilizes, by generating data of acceptable accuracy and precision for target analytes in a clean matrix. The laboratory must also repeat the following operations whenever new staff are trained or significant changes in instrumentation are made. See Method 8000, Sec. 8.0 for information on how to accomplish this demonstration.8.4Sample Quality Control for Preparation and Analysis - The laboratory must also have procedures for documenting the effect of the matrix on method performance (precision, accuracy, and detection limit). At a minimum, this includes the analysis of QC samples including a method blank, a matrix spike, a duplicate, and a laboratory control sample (LCS) in each analytical batch and the addition of surrogates to each field sample and QC sample.8.4.1Documenting the effect of the matrix should include the analysis of at least onematrix spike and one duplicate unspiked sample or one matrix spike/matrix spike duplicate pair.The decision on whether to prepare and analyze duplicate samples or a matrix spike/matrix spike duplicate must be based on a knowledge of the samples in the sample batch. If samples are expected to contain target analytes, then laboratories may use one matrix spike and a duplicate analysis of an unspiked field sample. If samples are not expected to contain target analytes, laboratories should use a matrix spike and matrix spike duplicate pair.8.4.2 A Laboratory Control Sample (LCS) should be included with each analytical batch.The LCS consists of an aliquot of a clean (control) matrix similar to the sample matrix and of the same weight or volume. The LCS is spiked with the same analytes at the same concentrations as the matrix spike. When the results of the matrix spike analysis indicate a potential problem due to the sample matrix itself, the LCS results are used to verify that the laboratory can perform the analysis in a clean matrix.8.4.3See Method 8000, Sec. 8.0 for the details on carrying out sample quality controlprocedures for preparation and analysis.8.5Surrogate recoveries - The laboratory must evaluate surrogate recovery data from individual samples versus the surrogate control limits developed by the laboratory. See Method 8000, Sec. 8.0 for information on evaluating surrogate data and developing and updating surrogate limits.8.6It is recommended that the laboratory adopt additional quality assurance practices for use with this method. The specific practices that are most productive depend upon the needs of the laboratory and the nature of the samples. Whenever possible, the laboratory should analyze standard reference materials and participate in relevant performance evaluation studies.CD-ROM8091 - 8Revision 0December 19969.0METHOD PERFORMANCE9.1Table 1 lists the retention times of the target analytes. Figure 1 shows a chromatogram of the target analytes eluted from a pair of DB-5/DB-1701 columns and detected using electron capture detectors (ECD) under the GC conditions listed in Table 2.9.2Table 3 provides the retention times and recovery data of the target analytes. GC conditions used during the recovery study are listed in Table 4. Chromatograms of the standard mixes used in the recovery study are provided in Figures 2 and 3.9.3The laboratory should perform a Method Detection Limit (MDL) study and generate its own performance data (precision and accuracy) for matrix spike and surrogate compounds. Refer to Method 8000 for guidance.10.0REFERENCES1.Lopez-Avila, V., Baldin, E., Benedicto, J, Milanes, J., Beckert, W.F., "Application ofOpen-Tubular Columns to SW 846 GC Methods", final report to the U.S. Environmental Protection Agency on Contract 68-03-3511, Mid-Pacific Environmental Laboratory, Mountain View, CA, 1990.2.Tsang, S., Marsden, P.J., Chau, N., "Performance Data for Methods 8041, 8091, 8111, and8121A", draft report to U.S. Environmental Protection Agency on Contract 68-W9-0011, Science Applications International Corp., San Diego, CA, 1992.CD-ROM8091 - 9Revision 0December 1996CD-ROM 8091 - 10Revision 0December 1996TABLE 1RETENTION TIMES OF THE NITROAROMATICS AND CYCLIC KETONESa ___________________________________________________________________________DB-5DB-1701Compound —————————————————poundCAS No.RT(min)RT(min)1Nitrobenzene 98-95-3 4.71 4.2322-Nitrotoluene 88-72-2 6.08 5.3233-Nitrotoluene 99-08-1 6.93 6.2244-Nitrotoluene99-99-07.35 6.7351-Chloro-3-nitrobenzene (Surr.)121-73-37.66 6.8561-Chloro-4-nitrobenzene 100-00-57.97.1571-Chloro-2-nitrobenzene 88-73-38.097.7882-Chloro-6-nitrotoluene 83-42-19.618.3294-Chloro-2-nitrotoluene 89-59-89.768.62103,5-Dichloronitrobenzene 618-62-210.42 8.84112,5-Dichloronitrobenzene 89-61-211.46 10.62122,4-Dichloronitrobenzene 611-06-311.7310.84134-Chloro-3-nitrotoluene 89-60-111.3110.84143,4-Dichloronitrobenzene 99-54-712.24 11.04152,3-Dichloronitrobenzene 3209-22-112.5812.01162,4,6-Trichloronitrobenzene 18708-70-813.97 12.31171,4-Naphthoquinone130-15-412.9812.31181,2,4-Trichloro-5-nitrobenzene 89-69-015.9714.46191,4-Dinitrobenzene 100-25-413.4114.72202,6-Dinitrotoluene 606-20-214.4415.16211,3-Dinitrobenzene99-65-013.9715.68221,2,3-Trichloro-4-nitrobenzene 17700-09-317.6116.51232,3,5,6-Tetrachloronitrobenzene 117-18-019.4117.11241,2-Dinitrobenzene 528-29-014.7617.51252,4-Dinitrotoluene121-14-216.9218.16261-Chloro-2,4-dinitrobenzene 97-00-717.8519.55272,3,4,5-Tetrachloronitrobenzene 879-39-021.5119.55281-Chloro-3,4-dinitrobenzene 610-40-217.8519.8529Trifluralin 1582-09-821.81 20.3130Benefin1861-40-121.9420.4631Pentachloronitrobenzene 82-68-825.1322.3332Profluralin 26399-36-025.3923.8133Dinitramine 29091-05-226.4527.0634Butralin 33629-47-932.4131.0335Isopropalin33820-53-032.7131.33(continued)CD-ROM 8091 - 11Revision 0December 1996TABLE 1 (continued)RT (min)Compound —————————— poundCAS No.DB-5 DB-170136Penoxalin (Pendimethalin)40487-42-133.0531.67371,2-Naphthoquinone 524-42-5 c c 382-Chloro-4-nitrotoluene 121-86-8 b b Int. Std.Hexachlorobenzene118-74-123.1818.72See Table 2 for operating conditions.a b Not available. c Not detected at 1 ng per injection.NOTE: These data are from Reference 1.TABLE 2DUAL COLUMN GC OPERATING CONDITIONS FOR NITROAROMATICSGC Instrument: Varian 6000 with dual electron capture detectors Column 1:Type: DB-5 (J&W Scientific)Dimensions: 30 m x 0.53 mm ID Film Thickness: 1.5 µm Column 2:Type: DB-1701 (J&W Scientific)Dimensions: 30 m x 0.53 mm ID Film Thickness: 1.0 µmType of splitter: J&W Scientific press-fit Y-shaped inlet splitter Carrier gas flowrate (mL/min): 6 (Helium)Makeup gas flowrate (mL/min): 20 (Nitrogen)Injector temperature: 250E C Detector temperature: 320E CTemperature program: 120E C (1.0 min hold) to 200E C (1 min hold) at 3E C/minthen to 250E C (4 min hold) at 8E C/min.Injection volume: 2 µLType of injection: Flash vaporization Solvent: Hexane Range: 10Attenuation: 64 (DB-1701)/64 (DB-5)CD-ROM 8091 - 12Revision 0December 1996RETENTION TIMES AND RECOVERY OF NITROAROMATICSAnalyte(ng/g)(%)R , minSpiking Conc.Recovery % RSDt MIX 11,2:3,4-diepoxy butane 3.235,0002218.1Nitrobenzene 11.515,00085 6.92-Nitrotoluene 14.135,00080 5.43-Nitrotoluene 15.525,00083 6.84-Nitrotoluene16.225,00097 6.21-Chloro-3-nitrobenzene 16.64100103 6.2a 2,3-Dichloronitrobenzene 22.481001027.31,4-Naphthoquinone 23.292003523.11,3-Dinitrobenzene 24.254008013.11,2-Dinitrobenzene 24.692009917.03-Nitroaniline 25.4410,0005417.82,4-Dinitrotoluene 26.952007513.94-Nitroaniline 28.915,0005329.6Trifluralin30.25200127 4.4Pentachloronitrobenzene 32.26100129 5.84-Nitroquinoline-1-oxide36.055,0006.718.5MIX 21-Chloro-3-nitrobenzene 16.6410098 3.0a 2-Nitroaniline 22.875,00088 3.61,4-Dinitrobenzene 23.82200142 2.92,6-Dinitrotoluene 24.49200192 6.25-Nitro-o-toluidine28.915,0006042Recommended Surrogate an = 5 samples NOTE:This table is from Reference 2. See Table 4 for operating conditions used in this table.GC OPERATING CONDITIONS USED FOR RECOVERY DATA IN TABLE 3 Column: DB-5 30 m x 0.53 mm ID.Carrier gas: Nitrogen at 6 mL/min with hydrogen at 30 mL/min.Total nitrogen flow: 60 mL/min (carrier and makeup).Injector: Packed, megabore liner at 200E C.Detector: ECD at 300E C.Temperature Program:70E C held for 1.5 minutes4E C/min to 170E C8E C/min to 275E C and held for 5.4 minutesThe total run time was 45 minutes.NOTE:This table is from Reference 2.CD-ROM8091 - 13Revision 0December 1996CD-ROM 8091 - 14Revision 0December 1996GC/ECD CHROMATOGRAM OF NITROAROMATICS ANALYZED ON A DB-5/DB-1701 FUSED-SILICA, OPEN-TUBULAR COLUMN PAIRSee Table 2 for operating conditions.CD-ROM 8091 - 15Revision 0December 1996See Table 4 for operating conditions.CD-ROM 8091 - 16Revision 0December 1996See Table 4 for operating conditions.CD-ROM 8091 - 17Revision 0December 1996METHOD 8091NITROAROMATICS AND CYCLIC KETONES BY GAS CHROMATOGRAPHY。
方法3610氧化铝柱净化1.0适用范围1.1范围:氧化铝是一种高度多孔的和粒状的氧化铝。
可在3个pH范围(碱性、中性、酸性)应用于柱色谱法中。
它可用于从不同化学极性的干扰化合物中分离出待测物。
1.2一般应用(Gordon和Ford)。
1.2.1碱性(B)pH(9~10):用途:碱性和中性化合物,对于碱、醇类、烃类、自族化合物类、生物碱类、天然颜料等是稳定的。
缺点:可引起聚合、缩合和脱水反应;不能用丙酮或乙酸乙酯作为洗脱液。
1.2.2中性(N):用途:醛类、酮类、醌类、酯类、内酯类、配糖物。
缺点:比碱性形式活性小很多。
1.2.3酸性(A)pH(4~5):用途:酸性颜料(天然的和合成的)、强酸类(在不同情况下对中性和碱性氧化铝有化学吸附)。
1.2.4活性等级:酸性、碱性或中性氧化铝根据Brockmann标准,通过向第I级中(在400~450℃加热至不再失水来制备)加水可以制备成不同的活性等级(I~V)。
Brockmann标准(Gordon和Ford,374页)转载于下:①加入水量(重量%):0、3、6、10、15;②活性等级:I、Ⅱ、Ⅲ、Ⅳ、V;错误!未找到引用源。
R F(对氨基偶氮苯):0.0、0.13、0.25、0.45、0.55。
1.3特殊应用.本法包括净化含有酞酸酯类和亚硝胺类的样品提取物的指导。
对于用氧化铝柱净化石油废物,参见方法3611。
2.0方法摘要2.1 用所需量的吸附剂装填柱。
上部装填吸水剂,然后负载待分析的样品。
待测物的洗脱用合适的溶剂以实现,使干扰化合物留于柱上,然后浓缩洗脱液。
3.0干扰3.1在使用此方法之前,对欲测定的化合物应作试剂空白。
在将此法应用于实际样品之前,干扰量必须低于方法检测限。
3.2除本法中所述之外的其它更多的方法对试剂纯化可能是需要的。
4.0仪器和设备4.1色谱柱。
300mm×10mm内径,底部有硬质玻璃棉和聚四氟乙烯活塞。
注意:烧结的玻璃圆盘在通过严重污染的提取物之后是很难去污的。
我国污染场地土壤石油烃环境质量标准体系的现状与趋势2014年公布的《全国土壤污染状况调查公报》显示,我国采油区土壤主要污染物为石油烃和多环芳烃(PAHs);化工类园区及周边土壤的主要污染物为PAHs[1]。
目前,石油烃污染场地已经成为国内外污染场地的重要关注类型之一。
为加强对土壤中石油烃类污染物的风险管控,生态环境部已将石油烃类列为土壤中的主要污染项目并加以限制。
继2016年《土壤污染防治行动计划》颁布以来,我国土壤污染防治相关标准和技术规范不断完善[2]。
然而由于石油烃组成复杂的,各组分的物理、化学、毒理性质差别很大,亟待推出土壤中石油烃的配套测定方法标准和石油烃类标准样品。
2018年最新颁布的《土壤环境质量建设用地土壤污染风险管控标准(试行)》(GB 36600—2018)(以下简称国家建设用地土壤标准)制定了基于人体健康的土壤污染风险筛选值,使土壤环境质量评估工作步入了一个崭新的阶段[3]。
为了兼顾分析方法的可操作性,此标准只对可萃取性石油烃(C10~C40)作了限值规定。
在前人研究的基础上,本文梳理了国内土壤环境质量标准体系的建立与发展历程,分析了石油烃类污染物检测方法的现状与趋势,并对比分析了各标准制定的石油烃及其指示化合物的风险评估筛选值,旨在为今后开展基于人体健康风险的土壤环境质量评估工作提供理论支撑,也为完善土壤石油烃及其指示化合物的环境质量评价标准体系提供一定的保障。
1 标准体系的建立与发展石油主要由碳、氢、硫、氮、氧等无机元素和多种微量金属元素组成,是一种含有多种烃类(正烷烃、支链烷烃、环烷烃、芳香烃)及少量其他有机物(硫化物、氮化物、环烷酸类等)的复杂混合物。
烃类是其中重要的组成成分,包括苯系化合物(BTEXs)、PAHs等。
由于每种烃类的组分含量测定不具有实际可操作性,因而常用总石油烃来衡量这类物质的总量。
较为常见的BTEXs、PAHs等烃类物质由于毒性较大且对生态环境具有极其严重的潜在危害,因而常常作为石油烃污染场地的指示化合物。
D0I:10.13822/ki.hxsj.2021007969化学试剂,2021,43(6),795~780固相萃取-气相色谱质谱法同时测定环境水体中79种半挥发性有机污染物王燕",朱卫平2(1.青海省地质矿产测试应用中心,青海西宁810000;2.青海省固体废物污染防治中心,青海西宁810000)摘要:建立了固相萃取-气相色谱质谱法(SPE-GC-MS)同时检测环境水体中不同极性范围的79种半挥发性有机污染物的分析方法。
样品经膜片式固相萃取装置,以50mL/min速率通过Empore C18膜片(47mm)净化和富集后GC-MS检测,内标法定量。
研究表明,79种半挥发性有机污染物在1~1000pg/L线性范围内相关系数R2>0.99;检测限和定量限分别为0.009~0,077ng/L和0.040~0,31ng/L;在3个添加水平下(10、100、500ng/L)79种半挥发性有机污染物在2种不同水体环境中的平均回收率为60.6%-137.3%,相对标准偏差(RSD)为0.8%~8.8%。
该方法操作简便、前处理流程快、方法灵敏度和准确度高、环保和通用性强,适用于河流、水库和化工污水样品的检测,在环境监测工作中有很强的实际应用价值。
关键词:气相色谱质谱;固相萃取;半挥发性有机污染物;环境水体中图分类号:X8文献标识码:A文章编号:0258-3283(2021)06-0795-06Simultaneous Determination of79Semi-volatile Organic Pollutants in Environmental Water by Solid Phase ExtractionGas Chromatography-Mass Spectrometry WANG Yan*1,ZHU Wei-ping2(l.Application of Geology and Mineral Resources Test Center in Qinghai Province,Xining810000,China;2.Solid Waste Pollution Prevention and Control Center in Qinghai Province, Xining810000,China),Huaxue Shiji,2021,43(6),795~780Abstract:A solid-phase extraction gas chromatography mass spectrometry(SPE-GC-MS)method was developed for the simultaneous determination of79semi-volatile organic pollutants(SVOCs)with different polar ranges in environmental waters.The sample was first purified and enriched by Empore C18membrane(47mm)at rate of50mL/min.The sample was detected by GC-MS and quantified by internal standard method.The results showed that the correlation coefficient(R2)of79SVOCs pollutants was greater than0.99in the linear range of1~1000pg/L.The MDL and LOQ were0.009〜0.077ng/L and0.040〜0.31ng/L,re-spectively.The average recoveries and relative standard deviations(RSDs)of the79SVOCs in two kinds of different environmental waters were60.6%~137.3%and0.8%~8.8%at3additive levels(10,100,and500ng/L).The method is easy to operate, fast in pretreatment process,high in sensitivity and accuracy,versatile in environmental protection.It is suitable for the detection of river,reservoir,and chemical wastewater samples,and has strong practical application values in monitoring environmental waters. Key words:gas chromatography-mass spectrometry(GC-MS);solid phase extraction;SVOCs;environmental water水环境是与人类密切接触的环境介质,具有较强的污染物迁移能力[l]o有机污染物可以通过污水排放、干湿沉降、农业灌溉径流、大气-水交换等方式最终进入水环境[2]o随着生态环境的恶化,水资源受到污染的程度日趋严重。
四唑嘧磺隆、氯吡嘧磺隆和嘧啶磺隆检测方法1.分析目标化合物农药成分物质 分析目标化合物 四唑嘧磺隆 四唑嘧磺隆氯吡嘧磺隆 氯吡嘧磺隆嘧啶磺隆 嘧啶磺隆2.仪器设备带紫外分光光度检测器的高效液相色谱仪及液相色谱-质谱仪。
3.试剂使用附录2所列试剂。
4.标准品四唑嘧磺隆:含四唑嘧磺隆99%以上,熔点为170℃~173℃。
氯吡嘧磺隆:含氯吡嘧磺隆99%以上,熔点为175℃~177℃。
嘧啶磺隆:含嘧啶磺隆99%以上,熔点为166℃~170℃。
5.试验溶液的制备a 提取方法谷类、种子类:样品粉碎,通过420μm标准网筛后,称取其10.0g,加入20mL 水,放置2小时。
水果、蔬菜:准确称取约1kg样品,必要时定量加入适量水,搅碎混合均匀后,称取相当于20.0g样品的量。
加入100mL丙酮,搅拌3分钟,用涂布有1cm厚硅藻土的滤纸,抽滤于磨口减压浓缩器中。
取出滤纸上的残留物,加入50mL丙酮,搅拌3分钟,与上述同样操作,合并滤液于减压浓缩器中,40℃以下浓缩至约30mL。
加入100mL 10%氯化钠溶液,用1mol/L盐酸调节pH3~4后,移入300mL分液漏斗中。
用50mL乙酸乙酯洗涤上述减压浓缩器的茄型瓶,洗液合并到上述分液漏斗。
用振荡器激烈振荡5分钟后,静置,乙酸乙酯层移入另一个300mL分液漏斗中。
水层中加入50mL乙酸乙酯,与上述同样操作,合并乙酸乙酯层于上述300mL分液漏斗中,加入100mL正己烷及50mL 2%的磷酸氢二钾溶液,用振荡器激烈振荡5分钟后,静置,水层转移到200mL烧杯中。
乙酸乙酯及正己烷层中加入50mL 2%的磷酸氢二钾溶液,与上述同样操作后,将水层合并在上述烧杯中。
水层搅拌均匀,用6mol/L盐酸调整pH3~4后,转移到另一个300mL分液漏斗中。
用50mL乙酸乙酯洗涤上述烧杯,合并洗液于分液漏斗中,加入10g氯化钠,用振荡器激烈振荡5分钟后,静置,乙酸乙酯层移入200mL三角瓶中。
方法361 1氧化铝柱净化和分离石油废物1.0适用范围1.1方法3611是本手册第二版中的方法3570。
1.2范围。
见方法3610第1.1节。
1.2一般应用(Gordon and Ford).见方法3610第1,2节。
1.3特殊应用。
本法包括将石油废物分离为脂肪族、芳香族和极性部分的指导。
2.0方法摘要见方法3610第2.0节。
3.0干扰3.1~3.2见方法3610第3.1~3.2节.3.3必须小心防止色谱柱的超负荷。
当任何这些类型的废物的柱负载达到300mg可提取有机物时。
分离的回收将受损。
如果怀疑会造成超负载,应在净化之前称量一等分碱-中性提取物并蒸发至干,此等分重量测定将表明样品中可提取有机物的重量。
4.0仪器和设备见方法3610第4.0节。
5.0试剂5.1硫酸钠。
(ACS)粒状,无水(在浅盘中于400℃加热4h予以纯化)。
5.2洗脱溶剂。
甲醇、己烷、二氯甲烷(农药级或相当规格)。
5.3氧化铝。
中性80~325 MCB色谱级或相当规格。
使用前在130℃将氧化铝干燥过夜。
5.4试剂水。
试剂水定义为:在欲测定的化合物方法检测限内,检测不出干扰物的水。
6.0样品的采集、保存和处理6.1见本章的前言,有机分析物第4.1节.7.0步骤7.1建议在氧化铝净化之前,按方法3650对样品提取物进行酸-碱分配净化.7.2用己烷装入玻璃色谱柱至大约20cm.。
称出10.0g氧化铝并将氧化铝加至柱中。
轻敲此柱使氧化铝均匀分布(使色谱空体积达最小)。
另外氧化铝的己烷悬浮液也可用于填充柱。
7.3让氧化铝沉下,然后加1.0g无水硫酸钠于氧化铝的顶部。
7.4用50ml已烷洗脱柱。
让溶剂流过柱直至柱中液面刚好在硫酸钠层之上。
关闭活塞以停止溶剂流出。
7.5转移1.0ml的样品提取物至柱上。
用lml己烷洗净提取瓶并立刻将其加至柱上。
为了避免柱超负荷,建议置于柱上可提取的有机物不超过300mg(参见第3.3节)。
l7.6当硫酸钠层将暴露于空气之前,用总体积为15ml的己烷洗脱柱子。
硅胶活性碳柱净化-气相色谱法测定茶叶中多种有机磷农药残
留量
谢文;丁慧瑛;郑自强;章晓氡
【期刊名称】《理化检验-化学分册》
【年(卷),期】2005(041)004
【摘要】介绍了应用配有FPD检测器的气相色谱仪测定茶叶中有机磷农药残留量的新方法.磨碎的试样加入少量氯化钠,用水浸泡,再用乙腈提取.活性炭和硅胶混合小柱净化,乙酸乙酯洗脱.以GC-FPD测定,外标法定量,测定结果用不同极性的毛细管柱验证.方法准确,重现性、精密度好,杂质干扰少.有机磷农药检出限小于欧盟对茶叶的MRL值.
【总页数】3页(P232-234)
【作者】谢文;丁慧瑛;郑自强;章晓氡
【作者单位】浙江出入境检验检疫局检验检疫技术中心,杭州 310012;浙江出入境检验检疫局检验检疫技术中心,杭州 310012;浙江出入境检验检疫局检验检疫技术中心,杭州 310012;浙江出入境检验检疫局检验检疫技术中心,杭州 310012
【正文语种】中文
【中图分类】O657.7
【相关文献】
1.气相色谱法测定茶叶中多种有机磷农药残留量 [J], 张莹;黄志强;李拥军
2.气相色谱-质谱法测定银杏叶中多种有机磷农药残留量 [J], 曹丽华;藏利国;张金
娥;崔官伟;唐波
3.气相色谱法测定茶叶中多种有机磷农药残留量 [J], 王雪
4.气相色谱法测定茶叶中多种有机磷农药残留量研究 [J], 李亚茹;黃雅嶔;张政雄
5.固相萃取-气相色谱法测定茶叶中多种有机磷农药残留量 [J], 梅文泉;董宝生;刘宏程;兰珊珊;白波
因版权原因,仅展示原文概要,查看原文内容请购买。
一种快速分离和富集萘系和菲系化合物的小型氧化铝柱层析法陈祖林;赵红静;张敏;刘海钰【摘要】使用了一种易于操作、成本低的小型柱色谱法将原油中萘系和菲系化合物快速分离的技术.色谱质谱检测结果表明,该技术能使原油中萘系和菲系化合物得到完整的分离和纯化富集,达到了芳烃单体烃在色谱-同位素质谱(GC-IRMS)中分析的要求,为测定芳烃单体烃同位素值提供一种较为可靠的前处理方法.【期刊名称】《石油天然气学报》【年(卷),期】2012(034)012【总页数】3页(P42-44)【关键词】芳烃;柱色谱;萘系物;菲系物【作者】陈祖林;赵红静;张敏;刘海钰【作者单位】长江大学地球环境与水资源学院,湖北武汉430100;长江大学地球环境与水资源学院,湖北武汉430100;长江大学地球环境与水资源学院,湖北武汉430100;长江大学地球环境与水资源学院,湖北武汉430100【正文语种】中文【中图分类】TE135芳烃是烃源岩中可溶有机质和原油的重要组成部分,平均质量分数在1%~45%之间。
芳香烃分子结构中包含丰富的地质地化信息,一直为地球化学家所关注[1]。
但由于芳烃的结构复杂,在地质体中所形成的同系物和异构体较多,因此在族组分分离出的芳烃化合物在色谱分析过程中常常会出现同系物和异构体共溢出现象,在色谱分析中很难得到单个化合物的信息[2~5],制约了对芳烃化合物单体烃同位素的进一步研究。
由此,在芳烃单体烃研究领域亟需发展一种易于操作的快速分离方法[6]。
针对这些问题,国内外有机地球化学家采取了一些对策,如利用高压液相色谱和薄层色谱等手段对芳烃馏分进一步分离纯化,以便能在色谱分析中解决共溢出现象,达到单个化合物分离出峰的效果,以便达到单个化合物的信息[4~7]。
笔者尝试采用一种小型填充柱色谱的方法,使原油芳烃中的萘系和菲系化合物组分得到完整的分离和纯化富集,不仅可深化沉积有机质中单体芳烃的研究,还可实现芳烃单体化合物的色谱-同位素质谱(GC-IRMS)测试。
介孔氧化铝净化-气相色谱法同时测定蔬菜、水果及茶叶中16种有机磷农药残留胡业琴;郗存显;曹淑瑞;王国民;李贤良;张雷;张云怀【摘要】A gas chromatographic method based on solid-phase extraction was developed for the simultaneous determination of 16 organophosphorous pesticides in vegetables,fruits and tea,including cabbage,lettuce,pumpkin,onion,tomato,turnip,apple,pear and tea. The samples were extracted with ethyl acetate,and clean-up with mesoporous alumina as solid-phase extraction adsorbent. The separation of target compounds was performed on a DB-1701 capillary column,and the quantitative analysis of the organophosphorous pesticides was carried out by gas chromatography with flame photometric detection. The results showed that the cali-bration curves of the 16 organophosphorous pesticides were linear in the range of 10-2 000μg/L with good correlation coefficients(R2﹥0. 997). The recoveries of the pesticides in differ-ent samples at three spiked levels ranged from 83. 2% to 103. 8% with the relative standard devi-ations of 2. 0%-9. 9%. This method has high sensitivity,high accuracy and good repeatability, and can be applied to the determination of the organophosphorus pesticide residues in vegeta-bles,fruits and tea.%利用气相色谱检测技术,建立了能应用于白菜、生菜、南瓜、洋葱、番茄、白萝卜、苹果、梨及茶叶等不同基质中16种有机磷农药残留的检测方法。
纳米氧化铝微柱富集ICP-AES测定大白口蘑中的痕量稀土元素刘鸿高;王元忠【期刊名称】《光谱学与光谱分析》【年(卷),期】2010(030)001【摘要】以负载了1-苯基-3-甲基-4-苯甲酰基-吡唑酮[5](PMBP)的纳米氧化铝为微柱吸附材料.采用电感耦合等离子体原子发射光谱法(ICP-AES),系统地研究了其在动态条件下对稀土离子Sc~(3+),Y~(3+)和La~(3+)的吸附性能,并确定了最佳吸附及解脱条件.实验结果表明:在pH为4.5时,分析物均可被上述吸附材料定量吸附;用0.5 mol·L~(-1)盐酸溶液可将吸附在微柱上的稀土离子完全解脱.该方法对Sc~(3+),Y~(3+)和La~(3+)的检出限分别为0.15,0.18和0.34 μg·L~(-1);相对标准偏差(RSD)分别为2.5%,3.0%和1.7%(n=12,c=0.5μg·L~(-1)).方法应用于大白口蘑(Tricholoma giganteum)中痕量Sc,Y和La的测定,结果满意.【总页数】3页(P259-261)【作者】刘鸿高;王元忠【作者单位】云南农业大学农学与生物技术学院,云南昆明650201;云南省农业科学院药用植物研究所,云南昆明650223【正文语种】中文【中图分类】O657.3【相关文献】1.纳米氧化铝微柱富集-ICP-AES测定绒柄牛肝菌中的痕量稀土元素 [J], 王元忠;刘鸿高;张金渝;李涛2.纳米氧化铝微柱在线预富集火焰原子吸收光谱法测定痕量银 [J], 熊文明;周方钦;江放明3.纳米氧化铝微柱富集-等离子体发射光谱法测定植物中痕量稀土元素 [J], 全光日;普旭力;江祖成;胡斌4.微晶萘负载PMBP微柱分离预富集与电热蒸发-电感耦合等离子体原子发射光谱联用测定痕量稀土元素 [J], 熊宏春;胡斌;黄卫红;彭天右;陈世忠;江祖成5.柱前衍生/流动注射微柱预富集和ICP-AES法测定高纯氧化钅兰中痕量非稀土元素 [J], 吉红念;刘炼;廖振环;江祖成因版权原因,仅展示原文概要,查看原文内容请购买。
METHOD 3611BALUMINA COLUMN CLEANUP AND SEPARATION OF PETROLEUM WASTES1.0SCOPE AND APPLICATION1.1Alumina is a highly porous and granular form of aluminum oxide. It is available in three pH ranges (basic, neutral, and acidic) for use in chromatographic cleanup procedures. Method 3611 utilizes neutral pH alumina to separate petroleum wastes into aliphatic, aromatic, and polar fractions.1.2Method 3611 was formerly Method 3570 in the Second Edition of this manual.1.3This method is restricted to use by or under the supervision of trained analysts. Each analyst must demonstrate the ability to generate acceptable results with this method.2.0SUMMARY OF METHOD2.1The column is packed with the required amount of adsorbent, topped with a water adsorbent, and then loaded with the sample to be analyzed. Elution of the analytes is effected with a suitable solvent(s), leaving the interfering compounds on the column. The eluate is then concentrated (if necessary).3.0INTERFERENCES3.1 A reagent blank should be performed for the compounds of interest prior to the use of this method. The level of interferences must be below the method detection limit before this method is performed on actual samples.3.2More extensive procedures than those outlined in this method may be necessary for reagent purification.3.3Caution must be taken to prevent overloading of the chromatographic column. As the column loading for any of these types of wastes approaches 0.300 g of extractable organics, separation recoveries will suffer. If overloading is suspected, an aliquot of the base-neutral extract prior to cleanup may be weighed and then evaporated to dryness. A gravimetric determination on the aliquot will indicate the weight of extractable organics in the sample.3.4Mixtures of petroleum wastes containing predominantly polar solvents, i.e., chlorinated solvents or oxygenated solvents, are not appropriate for this method.4.0APPARATUS AND MATERIALS4.1Chromatography column: 300 mm x 10 mm ID, with Pyrex® glass wool at bottom anda polytetrafluoroethylene (PTFE) stopcock.NOTE:Fritted glass discs are difficult to decontaminate after highly contaminated extracts have been passed through. Columns without frits may be purchased.Use a small pad of Pyrex® glass wool to retain the adsorbent. Prewash the CD-ROM3611B - 1Revision 2December 1996CD-ROM 3611B - 2Revision 2December 1996glass wool pad with 50 mL of acetone followed by 50 mL of elution solvent priorto packing the column with adsorbent.4.2Beakers: Appropriate sizes.4.3Reagent bottle: Appropriate sizes.4.4Muffle furnace.4.5Water bath: Heated with concentric ring cover, capable of temperature control (±5E C).The bath should be used in a hood.4.6Erlenmeyer flasks: 50 and 250 mL.5.0REAGENTS5.1Sodium sulfate: (granular, anhydrous), Na SO . Purify by heating at 400E C for 4 hours 24in a shallow tray, or by precleaning the sodium sulfate with methylene chloride. If the sodium sulfate is precleaned with methylene chloride, a method blank must be analyzed, demonstrating that there is no interference from the sodium sulfate.5.2Eluting solvents:5.2.1Methanol, CH OH - Pesticide quality or equivalent.35.2.2Hexane, C H - Pesticide quality or equivalent.6145.2.3Methylene chloride, CH Cl - Pesticide quality or equivalent.225.3Alumina: Neutral 80-325 MCB chromatographic grade or equivalent. Dry alumina overnight at 130E C prior to use.6.0SAMPLE COLLECTION, PRESERVATION, AND HANDLINGSee the introductory material to this chapter, Organic Analytes, Sec. 4.1.7.0PROCEDURE7.1It is suggested that Method 3650, Acid-Base Partition Cleanup, be performed on the sample extract prior to alumina cleanup.7.2Place approximately 10 g of alumina into a chromatographic column, tap to settle the alumina, and add 1 cm of anhydrous sodium sulfate to the top.7.3Pre-elute the column with 50 mL of hexane. Discard the eluate and, just prior to exposure of the sodium sulfate layer to the air, quantitatively transfer the 1 mL sample extract onto the column using an additional 1 mL of hexane to complete the transfer. To avoid overloading the column, it is suggested that no more than 0.300 g of extractable organics be placed on the column (see Sec. 3.3).7.4Just prior to exposure of the sodium sulfate to the air, elute the column with a total of 15 mL of hexane. If the extract is in 1 mL of hexane, and if 1 mL of hexane was used as a rinse, then 13 mL of additional hexane should be used. Collect the effluent in a 50 mL flask and label this fraction "base/neutral aliphatics." Adjust the flow rate to 2 mL/min.7.5Elute the column with 100 mL of methylene chloride and collect the effluent in a 250 mL flask. Label this fraction "base/neutral aromatics."7.6Elute the column with 100 mL of methanol and collect the effluent in a 250 mL flask. Label this fraction "base/neutral polars."7.7Following cleanup, concentrate the fractions to the final volumes listed in the appropriate determinative method, using the techniques described in an appropriate 3500 series method. Analysis follows as specified in the determinative procedure.8.0QUALITY CONTROL8.1Refer to Chapter One for specific quality control procedures and Method 3600 for cleanup procedures.8.2The analyst should demonstrate that the compounds of interest are being quantitatively recovered before applying this method to actual samples.8.3For sample extracts that are cleaned up using this method, the associated quality control samples must also be processed through this cleanup method.9.0METHOD PERFORMANCE9.1The precision and accuracy of the method will depend upon the overall performance of the sample preparation and analysis.9.2Rag oil is an emulsion consisting of crude oil, water, and soil particles. It has a density greater than crude oil and less than water. This material forms a layer between the crude oil and water when the crude oil is allowed to gravity separate at the refinery. A rag oil sample was analyzed by a number of laboratories according to the procedure outlined in this method. The results of these analyses by GC/MS for selected components in the rag oil are presented in Table 1. Reconstructed ion chromatograms from the GC/MS analyses are included as Figures 1 and 2. 10.0REFERENCES1.U.S. EPA 40 CFR Part 136, "Guidelines Establishing Test Procedures for the Analysis ofPollutants Under the Clean Water Act; Final Rule and Interim Final Rule and Proposed Rule,"October 26, 1984.CD-ROM3611B - 3Revision 2December 1996CD-ROM 3611B - 4Revision 2December 1996RESULTS OF ANALYSIS FOR SELECTED COMPONENTS IN RAG OIL ______________________________________________________________________________ Mean Standard AnalyteConc. (mg/kg)Deviation %RSD a b Naphthalene216 42 19Fluorene140 66 47Phenanthrene614 296 182-Methylnaphthalene673 120 18Dibenzothiophene1084 286 26Methylphenanthrene2908 2014 69Methyldibenzothiophene 2200 1017 46Average Surrogate RecoveryNitrobenzene-d 58.6 115Terphenyl-d 83.0 2.614Phenol-d 80.5 27.66Naphthalene-d 64.5 5.08______________________________________________________________________________Based on five determinations from three laboratories.a Percent Relative Standard Deviation.bDecember 1996December 1996CD-ROM 3611B - 7Revision 2December 1996METHOD 3611B ALUMINA COLUMN CLEANUP AND SEPARATION OF PETROLEUM WASTES。