化工原理第十三章其他分离过程
- 格式:pptx
- 大小:5.42 MB
- 文档页数:55
《化工原理》重点介绍各主要化工单元操作的基本原理、典型设备和相关汁算,内容包括绪论、流体流动、流体输送机械、非均相物系分离、传热、蒸发、吸收、蒸馏、干燥以及附录。
1.以流体流动(动量传递)为基础阐述流体输送、非均相物系分离相关单元操作;2.以热量传递为基础阐述换热器及蒸发单元操作;3.以质量传递为基础阐述吸收、精馏传质单元操作,4.具有热量、质量同时传递特点的干燥操作。
5.以物料衡算、能量衡算为主线,强调应用基本概念和原理分析、解决工程实际问题。
《化工原理》考试大纲考试内容:流体流动、流体输送机械、非均相物系的分离、传热、蒸馏、吸收、蒸馏和吸收塔设备、干燥、蒸发。
考试要求:一、流体流动(以柏努利方程为主线)通过本章的学习,掌握流体流动的基本规律、管内流动的规律,并应用这些原理和规律去分析和解决流动过程中的有关问题。
1、掌握流体静力学基本方程式及其应用;2、掌握连续性方程式及其应用;3、掌握柏努利方程的物理意义、应用范围及其解题计算;4、掌握流体阻力、流量、雷诺系数等之间的关系;5、掌握流动类型及其判断依据;6、掌握管路计算方法;7、掌握主要流量测量手段的基本原理、适用范围;8、了解管路串、并联的阻力、流量的关系。
二、流体输送机械通过本章的学习,了解掌握管路系统对输送机械的要求。
1、掌握常用泵的主要性能参数、特性曲线;2、掌握常用泵的使用操作要点,如串并联、开启、关闭等;3、了解常用泵和风机的基本性能和适用范围。
三、非均相物系的分离通过本章的学习,了解掌握沉降和过滤两种机械分离操作的基本原理、典型设备的结构与特性。
1、掌握沉降分离的原理、沉降过程及影响因素;2、掌握斯托克斯公式;3、掌握除尘设备的基本原理和选型;4、了解各种机械分离方法的优缺点及其适用范围;四、传热通过本章的学习,了解掌握传热的基本原理、传热规律,并运用其去分析和计算传热过程的有关问题。
1、掌握传热的基本方程式;2、掌握各种传热、导热系数的定义、单位及其差异;3、掌握单、多壁圆筒热传导速率方程及其应用;4、掌握列管换热器的计算;5、掌握强化换热的手段;6、了解傅立叶定律和辐射速率方程;7、了解边界层和保温层基本概念。
1.分离过程包括均相物系的分离和非均相物系的分离,其中均相物系不能通过简单的机械方法分离,需通过某种物理(或化学)过程实现分离。
2.相际传质过程:根据不同组分在各相中物性的差异,使某组分从一相向另一相转移:3.气液传质过程是指物质在气、液两相间的转移,它主要包括气体的吸收(或脱吸)、气体的增湿(或减湿)等单元操作过程。
4.汽液传质过程是指物质在汽、液两相间的转移,该汽相是由液相经过汽化而得,它主要包括蒸馏(或精馏)单元操作过程。
5.液液传质过程是指物质在两个不互溶的液相间的转移,它主要包括液体的萃取等单元操作过程。
6.液固传质过程是指物质在液、固两相间的转移,它主要包括结晶(或溶解)、液体吸附(或脱附)、浸取等单元操作过程。
7.气固传质过程是指物质在气、固两相间的转移,它主要包括气体吸附(或脱附)、固体干燥等单元操作过程。
8.平衡常数一般大于1,当偏离1时,便可采用平衡分离过程使均相混合物得以分离,越大越容易分离。
9.膜分离是指在选择性透过膜中,利用各组分扩散速度的差异,而实现混合物分离的单元操作过程。
包括:超滤、反渗透、渗析、点渗析10.场分离是指在外场(电场、磁场等)作用下,利用各组分扩散速度的差异,而实现混合物分离的单元操作过程。
包括:电泳、热扩散、高梯度磁场分离11.分离方法选择的原则:被分离物系的相态、被分离物系的特性、产品的质量要求、经济程度12.由于分子的无规则热运动而形成的物质传递现象——分子传质。
分子传质又称为分子扩散,简称为扩散。
分子传质在气相、液相和固相中均能发生。
13.描述分子扩散过程的基本定律——费克第一定律。
14.用示例说明:总体流动现象:(示例:用水吸收空气中的氨)设由A、B组成的二元气体混合物,其中A为溶质,可溶解于液体中,而B不能在液体中溶解。
这样,组分A可以通过气液相界面进入液相,而组分B不能进入液相。
由于A分子不断通过相界面进入液相,在相界面的气相一侧会留下“空穴”。
化工原理设计(水和乙醇的分离)水和乙醇是常用的工业溶剂,在化工生产中广泛应用,但因它们的物理性质相近,在分离过程中具有较高的难度。
本文将介绍水和乙醇的物理性质及其影响因素,然后介绍几种常用的分离方法,并根据实际情况进行设计选择。
1. 水和乙醇的物理性质水和乙醇的物理性质主要包括密度、沸点、溶解度等。
其中,密度和沸点可以用于分离这两种溶剂,而溶解度则会影响它们的混合物的分离效果。
1.1 密度水的密度为1 g/cm3,而乙醇的密度为0.789 g/cm3。
因此,在一定温度下,水和乙醇可以根据其密度的差异分离。
1.2 沸点水的沸点为100 ℃,而乙醇的沸点为78.5 ℃。
因此,在加热的过程中,水和乙醇的沸腾顺序也是有差异的,这也为它们的分离提供了一定的基础。
水和乙醇在一定温度下的溶解度也是有差异的。
在20 ℃时,乙醇的溶解度为90 g/100 mL,而水的溶解度仅为1 g/100 mL。
因此,如果想要分离一定比例的水和乙醇混合物,应选择能够有效控制溶解度的分离技术。
2. 分离方法及设计蒸馏是一种常用的水和乙醇分离方法,其原理基于两种溶质的沸点差异。
在蒸馏过程中,对于混合物在搅拌的情况下,当溶质一开始沸腾时,通过冷凝管冷却收集蒸汽,可以分离出相应的溶质。
该过程可用于分离大量的水和乙醇,但不适用于分离少量的这两种溶质。
设计时,应考虑收集溶液的方式。
若为小规模的实验,则可轻松进行。
但若为工业生产,收集和回收会较为困难,需要进行一定的后处理。
2.2 晶体化分离法晶体化分离法是一种通过控制溶解度来实现水和乙醇分离的方法。
其原理是将混合物加热至一定温度,然后缓慢降温,使部分溶质从溶液中结晶出来。
通过收集结晶物,便可实现水和乙醇的分离。
设计时需要考虑到晶体生长的条件,包括初液的质量组成、降温速率及晶体或母液的回收等。
同时还要注意控制晶体的物理形态和尺寸,并确保分离效果明显。
2.3 萃取法采用溶液萃取法,是一种常用的分离方法。
12.1 复习笔记一、结晶1.结晶操作的类型和经济性由蒸汽、溶液或熔融物中析出固态晶体的操作称为结晶。
结晶在工业生产中主要用于实现混合物的分离。
根据析出固体的原因不同,可将结晶操作分成若干类型。
工业上使用最广泛的是溶液结晶,即采用降温或浓缩的方法使溶液达到过饱和状态,析出溶质,以大规模地制取固体产品。
此外,还有熔融结晶、升华结晶、加压结晶、反应沉淀、盐析等多种类型。
与其他单元操作相比,结晶操作的特点:(1)能从杂质含量较多的混合液中分离出高纯度的晶体;(2)高熔点混合物、相对挥发度小的物系、共沸物、热敏性物质等难分离物系,可考虑采用结晶操作加以分离;(3)由于结晶热一般约为汽化热的1/3~1/7,过程的能耗较低。
2.晶系和晶习构成晶体的微观粒子(分子、原子或离子)按一定的几何规则排列,由此形成的最小单元称为晶格。
晶体可按晶格空间结构的区别分为不同的晶系。
同一种物质在不同的条件下可形成不同的晶系,或为两种晶系的混合物。
二、吸附分离1.吸附与解吸利用多孔固体颗粒选择性地吸附流体中的一个或几个组分,从而使流体混合物得以分离的方法称为吸附操作。
通常称被吸附的物质为吸附质,用作吸附的多孔固体颗粒称为吸附剂。
解吸的方法有多种,原则上是升温和降低吸附质的分压以改变平衡条件使吸附质解吸。
工业上根据不同的解吸方法,赋予吸附—解吸循环操作以不同的名称。
(1)变温吸附;(2)变压吸附;(3)变浓度吸附;(4)置换吸附。
除此之外,改变其他影响吸附质在流固两相之间分配的热力学参数,如pH值、电磁场强度等都可实现吸附解吸循环操作。
2.常用吸附剂化工生产中常用天然和人工制作的两类吸附剂。
天然矿物吸附剂有硅藻土、白土、天然沸石等。
虽然其吸附能力小,选择吸附分离能力低,但价廉易得,常在简易加工精制中采用,而且一般使用一次后即舍弃,不再进行回收。
人工吸附剂则有活性炭、硅胶、活性氧化铝、合成沸石等等。
三、膜分离1.膜分离的种类和特点利用固体膜对流体混合物中的各组分的选择性渗透从而分离各个组分的方法统称为膜分离。
第一章流体流动问题1. 什么是连续性假定? 质点的含义是什么? 有什么条件?答1.假定流体是由大量质点组成的、彼此间没有间隙、完全充满所占空间的连续介质。
质点是含有大量分子的流体微团,其尺寸远小于设备尺寸,但比起分子自由程却要大得多。
问题2. 描述流体运动的拉格朗日法和欧拉法有什么不同点?答2.前者描述同一质点在不同时刻的状态;后者描述空间任意定点的状态。
问题3. 粘性的物理本质是什么? 为什么温度上升, 气体粘度上升, 而液体粘度下降?答3.分子间的引力和分子的热运动。
通常气体的粘度随温度上升而增大,因为气体分子间距离较大,以分子的热运动为主;温度上升,热运动加剧,粘度上升。
液体的粘度随温度增加而减小,因为液体分子间距离较小,以分子间的引力为主,温度上升,分子间的引力下降,粘度下降。
问题4. 静压强有什么特性?答4.静压强的特性:①静止流体中任意界面上只受到大小相等、方向相反、垂直于作用面的压力;②作用于任意点所有不同方位的静压强在数值上相等;③压强各向传递。
问题5. 图示一玻璃容器内装有水,容器底面积为8×10-3m2,水和容器总重10N。
(1)试画出容器内部受力示意图(用箭头的长短和方向表示受力大小和方向);(2)试估计容器底部内侧、外侧所受的压力分别为多少?哪一侧的压力大?为什么?题5附图题6附图答5.1)图略,受力箭头垂直于壁面、上小下大。
2)内部压强p=ρgh=1000×9.81×0.5=4.91kPa;外部压强p=F/A=10/0.008=1.25kPa<内部压强4.91kPa。
因为容器内壁给了流体向下的力,使内部压强大于外部压强。
问题6.图示两密闭容器内盛有同种液体,各接一U形压差计,读数分别为R1、R2,两压差计间用一橡皮管相连接,现将容器A连同U形压差计一起向下移动一段距离,试问读数R1与R2有何变化?(说明理由)答6.容器A的液体势能下降,使它与容器B的液体势能差减小,从而R2减小。
《化工原理》课程设计说明书苯-苯乙烯分离过程浮阀精馏塔设计院系:化学与化工学院专业:化学工程与工艺班级:09化工2班学号:0906210201姓名:武金龙指导老师:李梅摘要本设计的任务是设计用于分离苯-苯乙烯的浮阀精馏塔。
精馏是多级分离过程,即同时进行多次部分汽化和部分冷凝的过程。
精馏装置包括精馏塔、原料预热器、再沸器、冷凝器、釜液冷却器和产品冷却器等设备。
热量自塔釜输入,物料在塔内经多次部分冷凝进行精馏分离,由冷凝器和冷却器中的冷却介质将余热带走。
根据加热方式来决定塔底是否设置再沸器,塔底设置再沸器时为间接加热,这种加热方式适用于各种物系,且被广泛使用。
由于本设计设置了再沸器,故采用间接加热。
板式塔的种类繁多,本设计采用浮阀塔,它是在泡罩塔的基础上发展起来的。
浮阀塔被广泛用于精馏、吸收以及脱吸等传质过程中,塔径从200mm到6400mm,使用效果较好。
它具有处理能力大,操作弹性大,塔板效率高,压强小,使用周期长等特点。
确定回流比有图解法和逐板计算法,本设计采用逐板计算法,虽然计算过程较为繁琐,但计算精度较高。
理论板确定后,计算实际板数,再设计塔和塔板中所有的参数,初选塔板间距并计算塔径,这些数据的计算都是以精馏段的数据为依据的。
设计中采用平直溢流堰,因为这样可以使得塔板上具有一定高度的均匀流动的液层。
浮阀塔的开孔率设计中要满足一定的要求,即要确定合适的浮阀数,浮阀的孔径是由所选浮阀的型号确定的,浮阀数通过上升蒸汽量、阀孔气速和孔径确定,阀孔的排列采用等腰三角形叉排。
最后是塔板负荷性能图中过量雾沫夹带线、液泛线、漏液线、液相负荷上、下限线的计算以及确定塔体结构。
目录第一部分概述 (5)一、设计目标 (5)二、设计任务 (5)三、设计条件 (5)四、设计内容 (5)第二部分工艺设计计算 (6)一、设计方案的确定 (6)二、精馏塔的物料衡算 (6)1.原料液及塔顶、塔底产品的摩尔分数 (6)2.原料液及塔顶、塔底产品的平均摩尔质量和质量分数 (6)3.物料衡算原料处理量 (7)三、塔板数的确定 (7)1.相对挥发度的求取 (7)2.进料状态参数的确定 (8)3.最小回流比的确定 (8)4.操作线方程的求取 (9)5.全塔效率的计算 (9)6.实际板层数的求取 (10)四、精馏塔的工艺条件及有关物性数据的计算 (10)1.操作压强计算 (10)2.操作温度计算 (10)3.平均摩尔质量计算 (11)4.平均密度计算 (11)5.液相平均表面张力计算 (12)6.求精馏塔的气、液相负荷 (13)五、精馏塔的塔体工艺尺寸计算 (14)1.塔径的计算 (14)2.精馏塔的有效高度的计算 (15)六、塔板主要工艺尺寸的计算 (15)1.溢流装置计算 (15)2.塔板布置 (18)3.浮阀数与开孔率 (19)七、塔板的流体力学验算 (20)1.气体通过干板的压降 (20)2.雾沫夹带量的验算 (21)3.液泛的验算 (21)4.漏液的验算 (22)八、塔板负荷性能图 (22)1.漏液线 (22)2.过量雾沫夹带线 (22)3.液相负荷下限线 (23)4.液相负荷上限线 (23)5.液泛线 (23)九、附属设备的设计 (25)1.接管尺寸 (25)2.回流管尺寸 (25)3.塔底进气管尺寸 (25)4.加料管尺寸 (25)5.料液排出管尺寸 (25)第三部分设计结果汇总 (26)一、设计结果一览表 (26)二、工艺流程图 (28)三、设计总结 (29)参考文献 (29)第一部分概述一、设计目标分离苯—苯乙烯混合液的浮阀式精馏塔设计二、设计任务试设计分离苯与苯乙烯混合物的浮阀精馏塔,年处理量为2.4万吨苯与苯乙烯混合液,要求气液混合进料。
化工原理绪论部分1. 单元操作:根据化工生产的操作原理,可将其归纳为应用较广的数个基本操作过程,如流体输送、搅拌、沉降、过滤、热交换、蒸发、结晶、吸收、蒸馏、萃取、吸附及干燥等,这些基本操作过程称为单元操作。
任何一种化工产品的生产过程都是由若干单元操作及化学反应过程组合而成的。
2.单元操作与“三传”过程:①动量传递过程。
③质量传递过程。
②热量传递过程。
3.单元操作计算:(1)物料衡算:它是以质量守恒定律为基础的计算:用来确定进、出单元设备(过程)的物料量和组成间的相互数量关系,了解过程中物料的分布与损耗情况,是进行单元设备的其它计算的依据。
(2)能量衡算:它是以热力学第一定律即能量守恒定律为基础的计算,用来确定进、出单元设备(过程)的各项能量间的相互数量关系,包括各种机械能形式的相互转化关系,为完成指定任务需要加入或移走的功量和热量、设备的热量损失、各项物流的焓值等。
第一章 流体流动1.流体:是由许多离散的彼此间有一定间隙的、作随机热运动的单个分子构成的。
通常是气体和液体的统称2.密度:单位体积流体所具有的质量称为流体的密度,单位为kg ,其表示式为 ρ=V/m 比容:单位质量流体所具有的体积,其单位为m 3/kg ,在数值上等于密度的倒数。
v=1/ρ 压强:垂直作用于单位面积上且方向指向此面积的力,称为压强,其表示式为 P=F/A3.等压面:在静止的、连续的同一液体内,处于同一水平面上的各点,因其深度相同,其压力亦相等。
4.流量与流速:(一)流量<1>.体积流量:单位时间内流经通道某一截面的流体体积,用V s ,表示,其单位为m 3/s(或 m 3/h)。
<2>.质量流量:单位时间内流经通道某一截面的流体质量,用W s 表示,其单位为kg/s(或 kg/h)。
当流体密度为ρ时,体积流量y ,与质量流量W s 的关系为: Ws =V s ρ(二) 流速:单位时间内流体微团在流动方向上流过的距离,其单位为m/s 。