实对称矩阵的正交对角化
- 格式:doc
- 大小:22.50 KB
- 文档页数:4
实对称阵可对⾓化的⼏种证明及其推⼴实对称阵是⼀类常见的矩阵, 它与实⼆次型和实内积空间上的⾃伴随算⼦有着密切的联系. 任⼀实对称阵 A 均正交相似于对⾓阵, 即存在正交阵 P , 使得P ′AP =diag{λ1,λ2,⋯,λn }.实对称阵的这条重要性质, 通常在内积空间的框架中加以证明 (参考复旦⾼代教材第 9.5 节). 事实上, 这⼀性质既可以在引⼊矩阵可对⾓化的定义和判定准则后直接加以证明, 也可以利⽤ Jordan 标准型理论加以证明. 下⾯我们将给出实对称阵可对⾓化的⼏种证明, 为此先来证明三个简单的引理.引理 1 实对称阵的特征值都是实数.证明 设 A 为 n 阶实对称阵, λ0∈C 是 A 的任⼀特征值, α=(a 1,a 2,⋯,a n )′∈C n 是对应的特征向量, 即 A α=λ0α. 上式两边同时左乘 ¯α′, 则有 ¯α′A α=λ0¯α′α. 注意到 α 是⾮零向量, 故 ¯α′α=n∑i =1|a i |2>0. 注意到 A 为实对称阵, 故 ¯(¯α′A α)′=¯α′A α, 即 ¯α′A α 是⼀个实数, 从⽽λ0=¯α′A α¯α′α也是实数. ◻引理 2 设 A 为 n 阶实对称阵, 则 r (A )=r (A 2)=r (A 3)=⋯.证明 由⾼代⽩⽪书的例 3.72 可知 r (A )=r (A ′A )=r (A 2), 从⽽ r (A )=r (A 2m) (m ≥1). 再由矩阵相乘秩相等或变⼩的性质以及夹逼法可知 r (A )=r (A k )(k ≥1). ◻引理 3 设 A 为 n 阶实对称阵, 则 Ker A ∩Im A =0 并且 Ker A =Ker A 2=Ker A 3=⋯.证明 由引理 2 以及线性映射的维数公式即得. ◻定理 1 实对称阵可实对⾓化.证法 1 (有完全的特征向量系) 由引理 1 可设 A 的全体实特征值为 λ1,λ2,⋯,λn , 我们对特征值 λ1 来证明其代数重数等于其⼏何重数. 不失⼀般性, 可设 λ1=⋯=λm , 但 λj ≠λ1(m <j ≤n ), 即 λ1 的代数重数为 m . 由复旦⾼代教材的定理 6.1.2 及其后的注可知, 存在⾮异实矩阵 P , 使得 P −1AP =B C 0D, 其中 B 是主对⾓元为 λ1 的 m 阶上三⾓阵, D 是主对⾓元分别为 λm +1,⋯,λn 的上三⾓阵, 于是P −1(A−λ1I n )P =B −λ1I mC 0D −λ1I n −m.注意到 B −λ1I m 是主对⾓元全为零的上三⾓阵, 这是⼀个幂零阵, 故 (B −λ1I m )m =0, 从⽽P −1(A−λ1I n )m P=B −λ1I mC 0D −λ1I n −mm=0∗0(D −λ1I n −m )m.注意到 (D −λ1I n −m )m 是⼀个主对⾓元全不为零的上三⾓阵, 从⽽是⾮异阵, 于是 r ((A −λ1I n )m )=n −m . 注意到 A −λ1I n 为实对称阵, 再由引理2 可知, λ1 的⼏何重数为n −r (A −λ1I n )=n −r ((A −λ1I n )m )=n −(n −m )=m ,即⼏何重数等于代数重数.证法 2 (全空间等于特征⼦空间的直和) 任取 A 的实特征值 λ0, 由引理 3 可知Ker(A −λ0I n )=Ker(A −λ0I n )2=⋯,再由⾼代⽩⽪书的例 7.13 的证法 1 完全相同的讨论即得结论. 另外, 由 Ker(A −λ0I n )=Ker(A −λ0I n )n 可知, λ0 的⼏何重数 dimKer(A −λ0I n )等于其代数重数 dimKer(A −λ0I n )n , 即 A 有完全的特征向量系, 这⼀⽅法⽐证法 1 更加简洁.证法 3 (极⼩多项式⽆重根) 任取 A 的实特征值 λ0, 由引理 3 可知Ker(A −λ0I n )=Ker(A −λ0I n )2=⋯,()()()()再由⾼代⽩⽪书的例 7.13 的证法 2 完全相同的讨论即得结论.证法 4 (Jordan 标准型之⼀) 任取A的实特征值λ0, 由引理 3 可知Ker(A−λ0I n)∩Im(A−λ0I n)=0,再由⾼代⽩⽪书的例 7.13 的证法 3 完全相同的讨论即得结论.证法 5 (Jordan 标准型之⼆) 任取A的实特征值λ0, 由引理 2 可知r(A−λ0I n)=r((A−λ0)2), 再由⾼代⽩⽪书的例 7.14 的证法 2 完全相同的讨论即得结论.证法 6 (Jordan 标准型之三) 设P为⾮异实矩阵, 使得P−1AP=J=diag{J r1(λ1),⋯,J rk(λk)}.⽤反证法, 若A不可对⾓化, 则不妨设r1>1. 设P′P=(b ij), 则b12=b21并且b11是P的第⼀列元素的平⽅和, 由P的⾮异性可知b11>0. 注意到P′AP=P′PJ为对称阵, 但P′PJ的第 (1,2) 元为b11+λ1b12, 第 (2,1) 元为λ1b21, 这两者不相等, ⽭盾.证法 7 (内积空间理论) 参考复旦⾼代教材的定理 9.5.2 和推论 9.5.2. ◻事实上, 我们也可以这样来看. 由上⾯的讨论可知, 对任⼀n阶实对称阵A, 全空间 R n等于A的所有特征⼦空间的直和. 容易证明: 在 R n的标准内积下, A的属于不同特征值的特征向量必正交, 属于同⼀特征值的特征向量可以利⽤ Gram-Schmidt 正交化⽅法化成两两正交的单位特征向量. 因此我们可以找到A的n个两两正交的单位特征向量, 将这些向量拼成矩阵P, 则P是⼀个n阶正交阵, 使得P′AP=diag{λ1,λ2,⋯,λn}.这就是A的正交相似标准型, 它对于深⼊探讨实对称阵的正定性和半正定性有着重要的作⽤.注 1 本题是 15 级⾼代 II 每周⼀题第 10 题第 1 ⼩问以及 16 级⾼代 II 每周⼀题第 6 题. 给出上述证法的复旦数学学院学⽣为: 章俊鑫 (证法 1),何陶然 (类似证法 1), 徐钰伦 (证法 2), 杨锦⽂ (证法 2), 杨钊杰 (证法 2), 蒋亦凡 (证法 3), 胡晓波 (证法 5), 杨彦婷 (证法 5), 沈伊南 (类似证法 6).下⾯将实对称阵可对⾓化的⼏种证法进⾏适当地推⼴, 从⽽不利⽤⾣相似标准型理论也可以直接证明: 实反对称阵, Hermite 阵, 斜 Hermite 阵,正交阵, ⾣阵, 以及更⼀般的复正规阵均可复对⾓化. 这是 15 级⾼代 II 每周⼀题第 10 题第 2 ⼩问以及 17 级⾼代 II 每周⼀题第 7 题第 2 ⼩问.我们先给出前三个引理的推⼴.引理 4 Hermite 阵的特征值都是实数. 特别地, 斜 Hermite 阵 (实反对称阵) 的特征值都是 0 或纯虚数.证明 Hermite 阵情形的证明完全类似于实对称阵情形的证明 (参考引理 1). 设A为斜 Hermite 阵, 则 i A为 Hermite 阵, 从⽽ i A的特征值都是实数, 于是A的特征值都是 0 或纯虚数. 实反对称阵是⼀种特殊的斜 Hermite 阵, 故结论也成⽴. ◻引理 5 设A为n阶复正规阵, 则r(A)=r(A2)=r(A3)=⋯.证明由⾼代⽩⽪书的例 3.72 对应的复版本可知: 对任意的m×n阶复矩阵A, 有r(A)=r(¯A ′A)=r(A¯A′).特别地, 若A是 Hermite 阵, 则r(A)=r(A2), 再仿照引理 2 的证明即得结论. 若A是复正规阵, 即A ¯A′=¯A′A, 注意到A¯A′是 Hermite 阵, 故有r(A2)=r(A2¯A2′)=r(AA¯A′¯A′)=r(A¯A′A¯A′)=r((A¯A′)2)=r(A¯A′)=r(A),再仿照引理 2 的证明即得结论. ◻引理 6 设A为n阶复正规阵, 则 Ker A∩Im A=0 并且 Ker A=Ker A2=Ker A3=⋯.证明由引理 5 以及线性映射的维数公式即得. ◻定理 2 复正规阵可对⾓化. 特别地, 实反对称阵, Hermite 阵, 斜 Hermite 阵, 正交阵, ⾣阵均可复对⾓化.证明定理 1 的证法 1--证法 5 可完全平⾏地改写⽤于证明定理 2; 定理 1 的证法 6 适当地修改之后可以证明: 实反对称阵, Hermite 阵,斜 Hermite 阵均可复对⾓化; 我们把具体的证明过程留给感兴趣的读者⾃⾏完成. 证法 7 可参考复旦⾼代教材的定理 9.6.2 和定理 9.6.3. ◻注 2 本⽂中的相关思想可推⼴为⼀般的可对⾓化判定准则, 具体的内容请参考教学博⽂ [3].参考⽂献[1] ⾼代教材: 姚慕⽣, 吴泉⽔, 谢启鸿编著, ⾼等代数学 (第三版), 复旦⼤学出版社, 2014.[2] ⾼代⽩⽪书: 姚慕⽣, 谢启鸿编著, 学习⽅法指导书: ⾼等代数 (第三版), 复旦⼤学出版社, 2015.Processing math: 100%。
实对称矩阵正交对角化证明实对称矩阵正交对角化是线性代数中非常重要的一个结果,它将一个实对称矩阵通过一个正交矩阵相似变换为对角矩阵。
这个结果在矩阵理论、物理学等领域有着广泛的应用。
下面我们将通过引入必要的定义、定理和证明,来生动、全面地讨论实对称矩阵正交对角化的证明。
首先,我们需要引入一些必要的定义。
一个矩阵是实对称矩阵,当且仅当它是一个方阵,并且满足矩阵的转置等于它本身。
一个矩阵是正交矩阵,当且仅当它是一个方阵,并且满足矩阵的转置乘以矩阵等于单位矩阵。
一个矩阵是对角矩阵,当且仅当它是一个方阵,并且除了对角线上的元素外,其他元素都为零。
接下来,我们引入一个非常重要的定理,即实对称矩阵的特征值是实数,且特征向量对应不同特征值的特征向量是正交的。
这个定理的证明可以通过使用实对称矩阵对特征值问题的标准解法,即求解矩阵的特征多项式的根来完成。
我们不再详细证明这个定理。
有了上述定义和定理,我们可以开始证明实对称矩阵正交对角化的结论。
证明:对于一个n阶实对称矩阵A,我们需要证明存在一个正交矩阵P,使得P的逆矩阵乘以A再乘以P结果为一个对角矩阵。
首先,我们考虑实对称矩阵A的特征值和特征向量。
根据前面提到的定理,特征值都是实数,且对应特征值的特征向量是正交的,即如果特征值λ1和λ2不相等,则对应的特征向量v1和v2满足v1·v2=0,其中·表示向量的内积。
另外,不同特征值对应的特征向量也是线性无关的。
我们将这些特征向量组成一个矩阵P,其中每一列是一个特征向量。
显然,P是一个正交矩阵,因为P的每一列都是单位长度的,并且两两正交。
同时,由于不同特征值对应的特征向量是线性无关的,所以P是可逆的。
下面我们证明P的逆矩阵乘以A再乘以P结果为一个对角矩阵D。
对于P的第i列,设其对应的特征值为λi,则有AP=PD,其中D是一个对角矩阵,对角线上的元素就是A的特征值。
左乘P的逆矩阵P-1,我们得到了P-1AP=DP-1,即A=PDP-1。
实对称矩阵的正交对角化
摘要:实对称矩阵一定可以对角化,并且可以要求相似变换矩阵是正交矩阵,即实对称矩阵可以正交对角化。
本文对该正交矩阵的构成进行了说明,并做了详细的解释。
关键词:实对称矩阵;正交对角化;特征值;特征向量;正交规范化
作为数学基础课之一,线性代数是最抽象、最难的一门课。
线性代数的难点在于不同章节之间隐藏的联系,只有把这种联系在各个章节之间打通,才能真正地学好线性代数。
在学习的过程中,基础要扎实,遇到问题要寻根究底,对于一些证明过程要真正弄明白。
如果对一些本来就比较难的部分,证明过程解释的比较粗糙,学生就会对内容感觉似是而非,从而导致学生基础不牢,只能靠死记硬背。
因此,教师在上课过程中,应对一些重点内容进行必要的解释。
本文就实对称的正交对角化,正交矩阵的构成过程进行了详细的解释,希望能帮助学生真正地理解这部分内容。
Th设A是实对称矩阵,则A可正交对角化,即存在正交矩阵P,使P-1AP=PTAP=∧。
下面说明正交矩阵的求解过程:先求一般的相似变换矩阵P1,然后由P1构造正交矩阵P,使P仍然是相似变换矩阵。
(1)由|A-λE|=0求A的k(k≤n)个不同的特征值λ1,λ2,…,λk,重数分别为n1,n2,…,nk,则■ni=n。
(2)对于A的每一个ni重特征值λi,由(A-
λiE)x=0求基础解系Ii――含ni个向量。
Ii:αi1,αi2,…,αini
则Ii为A的对应于特征值λi的ni个线性无关的特征向量。
令P1=(I1,I2,…,Ik),
则P1可逆,且P-11AP1=∧=diag(■,■,…,■)。
(3)对上述每组基础解系Ii分别进行正交规范化得向量组Ji。
Ji:ei1,ei2,…,eini
则Ji为A的对应于特征值λi的ni个长度为1且两两正交的特征向量。
说明:由施密特正交化过程,Ii:αi1,αi2,…,αini
正交化得:
βi1=αi1,βi2=αi2-■βi1,…,βil=αil-■■βim(l=2,3,…,ni)
规范化得,
eil=■(l=1,2,,…,ni)
从上述过程易知,向量组Ji可由向量组Ii表出,即Ji中的任何向量都是αi1,αi2,…,αini的线性组合,从而一定是A的对应于特征值λi的特征向量。
(4)令P=(J1,J2,…,Jk),
则P为正交矩阵,且P-1AP=PTAP=∧=diag(■,■,…,■)。
说明:因为,P为正交矩阵?圳P的n个列向量是Rn的一组正交规范基,则从P中任取两列,必正交,因为有两种情况:(1)这两列是属于同一特征值的特征向量,因为这两列来自正交规范向量组,从而必正交。
(2)这两列是属于不同特征值的特征向量,因为实对称矩阵属于不同特征值的特征向量正交,从而必正交。
又每个向量都来自正交规范向量组,必是单位向量。
故P的n个列向量是Rn的一组正交规范基,从而P为正交矩阵。
定理的注释:正交矩阵P是不唯一的,一方面P
各列可以交换,同时对角矩阵主对角线相应元素进行交换,另一方面从P的构成上来看,由于J1,J2,…,Jk不唯一,P也不唯一。
参考文献:
1.居余马等.线性代数(第2版)[M].北京:清华大学出版社,200
2.
2.蔡光兴,李逢高.线性代数(第三版)[M].北京:科学出版社,2011.
(作者单位:湖北工业大学理学院)。