【半导体单晶炉】半导体第三讲-下-单晶硅生长技术
- 格式:ppt
- 大小:2.25 MB
- 文档页数:34
硅基半导体的制备技术硅基半导体是一种在电子行业中广泛应用的材料,其制备技术一直是研究的热点之一。
本文将介绍硅基半导体的制备技术,包括传统的硅基半导体制备方法和新型制备技术的发展趋势。
一、传统硅基半导体制备技术1. 单晶硅生长技术单晶硅是硅基半导体的主要材料,其生长技术是制备硅基半导体的关键步骤之一。
传统的单晶硅生长技术包括气相淀积法、溶液法和熔融法等。
其中,气相淀积法是最常用的方法,通过化学气相沉积(CVD)或物理气相沉积(PVD)在衬底上沉积硅薄膜,然后通过退火等工艺形成单晶硅。
2. 晶圆加工技术晶圆加工技术是将单晶硅切割成薄片并进行加工的过程,包括光刻、蚀刻、离子注入、扩散、金属化等步骤。
这些步骤是制备硅基半导体器件的基础,对器件性能和稳定性有重要影响。
3. 氧化硅膜沉积技术氧化硅膜是硅基半导体器件中常用的绝缘层材料,其沉积技术包括热氧化、PECVD等方法。
氧化硅膜的质量和厚度对器件的绝缘性能和电学特性有重要影响。
二、新型硅基半导体制备技术1. 氮化硅薄膜技术氮化硅薄膜是一种新型的绝缘层材料,具有优异的绝缘性能和热稳定性,逐渐取代传统的氧化硅膜。
氮化硅薄膜的制备技术包括PECVD、ALD等方法,可以实现高质量、均匀的薄膜沉积。
2. 低温多晶硅技术传统的单晶硅生长需要高温长时间的退火过程,成本高且能耗大。
低温多晶硅技术采用PECVD等方法在低温下生长多晶硅薄膜,可以降低制备成本并提高生产效率。
3. 柔性硅基半导体技术柔性硅基半导体是一种新型的硅基材料,具有高柔韧性和可弯曲性,适用于柔性电子器件的制备。
柔性硅基半导体技术包括薄膜剥离、柔性衬底等方法,为柔性电子器件的发展提供了新的可能性。
三、硅基半导体制备技术的发展趋势随着电子行业的不断发展,硅基半导体制备技术也在不断创新。
未来硅基半导体制备技术的发展趋势包括:1. 高性能材料的研究:开发新型硅基半导体材料,提高器件性能和集成度。
2. 绿色环保技术的应用:推广低能耗、低污染的硅基半导体制备技术,减少对环境的影响。
单晶硅生长炉原理单晶硅生长炉原理首先,把高纯度的多晶硅原料放入高纯石英坩埚,通过石墨加热器产生的高温将其熔化;然后,对熔化的硅液稍做降温,使之产生一定的过冷度,再用一根固定在籽晶轴上的硅单晶体(称作籽晶)插入熔体表面,待籽晶与熔体熔和后,慢慢向上拉籽晶,晶体便会在籽晶下端生长;接着,控制籽晶生长出一段长为100m单晶硅生长炉m左右、直径为3~5mm的细颈,用于消除高温溶液对籽晶的强烈热冲击而产生的原子排列的位错,这个过程就是引晶;随后,放大晶体直径到工艺要求的大小,一般为75~300mm,这个过程称为放肩;接着,突然提高拉速进行转肩操作,使肩部近似直角;然后,进入等径工艺,通过控制热场温度和晶体提升速度,生长出一定直径规格大小的单晶柱体;最后,待大部分硅溶液都已经完成结晶时,再将晶体逐渐缩小而形成一个尾形锥体,称为收尾工艺;这样一个单晶拉制过程就基本完成,进行一定的保温冷却后就可以取出。
直拉法,也叫切克劳斯基(J.Czochralski)方法。
此法早在1917年由切克劳斯基建立的一种晶体生长方法,用直拉法生长单晶的设备和工艺比较简单,容易实现自动控制,生产效率高,易于制备大直径单晶,容易控制单晶中杂质浓度,可以制备低电阻率单晶。
据统计,世界上硅单晶的产量中70%~80%是用直拉法生产的。
单晶硅生长炉现状目前国内外晶体生长设备的现状如下:美国KAYEX公司国外以美国KAYEX公司为代表,生产全自动硅单晶体生长炉。
KAYEX公司是目前世界上最大,最先进的硅单晶体生长炉制造商之一。
KAYEX的产品早在80年代初就进入中国市场,已成为中国半导体行业使用最多的品牌。
该公司生长的硅晶体生长炉从抽真空-检漏-熔料-引晶-放肩-等径-收尾到关机的全过程由计算机实行全自动控制。
晶体产品的完整性与均匀性好,直径偏差在单晶全长内仅±1mm。
主要产品有CG3000、CG6000、KAYEX100PV、KAYEX120PV、KEYEX150,Vision300型,投料量分别为30kg、60kg、100kg、120kg、150kg、300kg。
半导体制造工艺之晶体的生长概述晶体生长是半导体制造中至关重要的一步,它决定了半导体材料的质量和性能。
本文将概述半导体晶体的生长工艺,包括单晶生长、多晶生长和薄膜生长。
首先,单晶生长是制备高纯度单晶材料最常用的方法之一、单晶生长过程包括溶液法、气相法和陶瓷法等。
其中,溶液法是最早发展起来的单晶生长方法之一、在溶液法中,首先制备出含有半导体材料的溶液,然后通过控制溶液中的温度、浓度和溶液与环境接触的界面等条件来实现晶体的生长。
气相法利用气体中的半导体材料蒸汽沉积在基片上,并在其上形成单晶。
陶瓷法是将半导体材料粉末压制成形状可控的块状,并在高温下进行烧结,从而实现晶体的生长。
其次,多晶生长是制备大尺寸半导体材料的一种方法。
它通过在固态下将多个晶核生长成晶粒,形成多晶的材料。
多晶生长一般分为凝固法和熔融法。
凝固法中,通过一定条件下的凝固过程将原料直接转变为多晶体。
凝固法的一个典型例子是铸造法,即将熔化的半导体材料注入到石膏型中,随后通过凝固过程获得多晶体。
熔融法中,通过将原料加热至熔点,然后冷却成形,实现多晶体的生长。
最后,薄膜生长是一种制备半导体薄膜的方法。
薄膜生长涉及多种技术,包括物理气相沉积(Physical Vapor Deposition, PVD)、化学气相沉积(Chemical Vapor Deposition, CVD)、分子束外延(Molecular Beam Epitaxy, MBE)等。
在物理气相沉积中,通过将半导体材料直接蒸发或溅射到基片上来形成薄膜。
在化学气相沉积中,通过化学反应使气体中的原子或分子转变为沉积在基片上的固态材料。
分子束外延是利用高纯度蒸发源,在真空环境下瞄准并发射精细束流的精确方法,将气体分子形成薄膜。
以上是半导体制造工艺中晶体生长的概述。
不同的晶体生长方法适用于不同的材料和应用,选择合适的生长方法对于获得高质量的晶体是至关重要的。
随着技术的发展,对晶体生长方法的研究也在不断进步,为半导体工业带来了更高效、更精确的制造工艺。
单晶硅的生长方法1. 直拉法呀,就像我们小时候搭积木一样,一点点把单晶硅拉起来。
你看,在一个高温的坩埚里,把多晶硅熔化,然后用一根细细的籽晶去慢慢往上提拉,哇,单晶硅就这么神奇地生长出来啦!就像盖高楼一样,一层一层的。
2. 区熔法呢,这可有意思了,就好比是在一个局部区域进行一场特殊的“培育”。
把一根多晶硅棒固定,然后用一个加热环在上面移动,加热的地方就熔化啦,慢慢移动过去,单晶硅不就长出来了嘛!是不是很神奇呀!3. 外延生长法,哎呀呀,就好像给单晶硅穿上一件新衣服一样。
在一个已经有单晶硅的衬底上,让气态的反应物沉积上去,形成新的单晶硅层,这就像给它装饰打扮一番呢!4. 气相沉积法,就如同是在空中“变魔术”,让那些气体中的硅原子乖乖地聚集在一起变成单晶硅。
比如把含硅的气体通入反应室,它们就会乖乖地在合适的地方沉积下来成为单晶硅啦,多奇妙呀!5. 分子束外延法,这可是个精细活儿呀,就像一个细心的工匠在雕琢一件艺术品。
通过精确控制分子束的流量和方向,让单晶硅完美地生长出来,厉害吧!6. 固相晶体生长法,这就像是在一个安静的角落默默努力的小伙伴。
在固体状态下,通过一些特殊的条件,让单晶硅悄悄地生长,给人一种很踏实的感觉呢!7. 助熔剂法,好比是有了一个好帮手一样。
加入助熔剂来帮助单晶硅生长,就像有人在旁边助力,让单晶硅长得更好更快呢!8. 水热法,哇哦,就如同在一个温暖的水中“孕育”着单晶硅。
在特定的温度和压力下,让单晶硅在水中生长,是不是很特别呀!9. 熔盐法,这就好像是在一个充满魔法的盐世界里让单晶硅现身。
利用熔盐作为介质,单晶硅就神奇地冒出来啦,真的好有趣呀!10. 等离子体增强化学气相沉积法,就像有一股神奇的力量在推动着单晶硅生长。
利用等离子体来增强反应,让单晶硅快快长大,太有意思啦!我觉得呀,这些单晶硅的生长方法都好神奇,各有各的独特之处,都为我们的科技发展做出了重要贡献呢!。
半导体级硅单晶生长技术综述摘要半导体级硅单晶是制造集成电路和太阳能电池等微电子器件的关键材料,其质量和晶体结构对器件性能至关重要。
本文综述了半导体级硅单晶生长技术的发展历程、主要的生长方法及其特点,并对其在半导体工业中的应用前景进行了展望。
1. 引言半导体级硅单晶是由高纯度的硅熔体通过特定的方法生长而成的单晶硅材料。
它具有高度晶体结构完整性、低缺陷密度和高纯度等优良性能,是制造集成电路和光电器件所必需的材料之一。
随着电子信息技术和新能源技术的不断发展,对半导体级硅单晶的需求也日益增加。
2. 生长方法半导体级硅单晶的生长方法主要包括区熔法、悬浮液法和熔于翻转法等。
其中,区熔法是最常用的生长方法之一。
它利用熔融硅的高温特性,在蔓延区和保护区之间形成温度梯度,在过热熔体和下冷Si晶体界面处生成硅原子,从而实现硅单晶的生长。
悬浮液法则是通过在熔融硅中悬浮微小的硅颗粒,在悬浮液不断向下运动的过程中,沉积和排斥硅原子,从而实现单晶硅的生长。
熔于翻转法是最新发展的生长方法之一,它采用高性能矽翻转碗作为生长室,在高真空和气氛下进行生长,可以实现较大直径和高质量的硅单晶生长。
3. 生长过程及参数控制半导体级硅单晶的生长过程包括熔体制备、生长引上、生长室制备和晶体生长等多个步骤。
其中熔体制备是制备高纯度硅熔体的关键环节,包括硅原料的净化、熔炼和纯化等。
生长引上是将熔体引入生长室的过程,需要严格控制引上速度和温度梯度,以保证晶体的品质和形状。
生长室制备则是建立一个适合生长的高真空或气氛环境的关键步骤。
晶体生长是整个过程中最重要的步骤,包括晶面生长、补充剂的掺入和晶体拖曳等。
控制生长过程中的参数对于确保晶体质量具有重要意义。
其中温度控制是最关键的参数之一,需要保持适当的生长温度来实现晶体的生长。
此外,压力、气氛、温度梯度等参数的控制也对晶体的质量和晶格缺陷的形成具有重要影响。
4. 主要应用领域半导体级硅单晶生长技术在半导体工业中具有广泛应用。
单晶硅生长原理及工艺摘要:介绍了直拉法生长单晶硅的基本原理及工艺条件。
通过控制不同的工艺参数(晶体转速:2.5、10、20rpm;坩埚转速: 1.25、5、10),成功生长出了三根150×1000mm 优质单晶硅棒。
分别对这三种单晶硅样品进行了电阻率、氧含量、碳含量、少子寿命测试,结果表明,当晶体转速为10rpm,坩埚转速为5rpm,所生长出的单晶硅质量最佳。
最后分析了氧杂质和碳杂质的引入机制及减少杂质的措施。
关键词:单晶硅;直拉法生长;性能测试;氧杂质;碳杂质中图分类号:O782 文献标识码:A 文章编号:1672 -9870(2009)04 -0569 -05收稿日期:2009 07 25基金项目:中国兵器科学研究院资助项目(42001070404)作者简介:刘立新(1962 ),男,助理研究员,E-mail:lxliu2007@。
刘立新1,罗平1,李春1,林海1,张学建1,2,张莹1(1.长春理工大学材料科学与工程学院,长春130022;2.吉林建筑工程学院,长春130021)Growth Principle and Technique of Single Crystal SiliconLIU Lixin1,LUO Ping1,LI Chun1,LIN Hai1,ZHANG Xuejian1,2,ZHANG Ying1(1.Changchun University of Science and Technology,Changchun 130022;2. Jilin Architectural and civil Engineering institute,Changchun 130021)Abstract:This paper introduces the basic principle and process conditions of single crystal silicon growth by Cz method.Through controlling different process parameters (crystal rotation speed: 2.5,10,20rpm; crucible rotation speed: -1.25,-5,-10),three high quality single crystal silicon rods with the size of 150×1000mm were grown successfully. Performancemeasurements of three single crystal silicon samples were performed including resistivity,oxygen and carbon content,minority carrier lifetime,respectively. The results show that as-grown single crystal silicon has the optimal qualitywhen crystal rotation speed is 10rpm,and crucible rotation speed is -5rpm. Finally,the introducing mechanism of oxygenand carbon impurities,and the way to reduce the impurities were discussed.Key words:single crystal silicon;growth by Cz method;performance measurements;oxygen impurities;carbon impurities单晶硅属于立方晶系,金刚石结构,是一种性能优良的半导体材料。