基于约瑟夫森效应的交流电压标准研究_朱珠
- 格式:pdf
- 大小:1.07 MB
- 文档页数:4
约瑟夫森效应(超导隧道效应)1962年,英国剑桥大学的研究生约瑟夫森从理论上预言:当两块超导体(S)之间用很薄的氧化物绝缘层(I)隔开,形成S-I-S结构,将出现量子隧道效应.这种结构称为隧道结,即使在结的两端电压为0时,也可以存在超导电流.这种超导隧道效应现在称为约瑟夫森效应.1911年,荷兰莱顿大学的卡茂林·昂尼斯意外地发现,将汞冷却到-268.98°C时,汞的电阻突然消失;后来他又发现许多金属和合金都具有与上述汞相类似的低温下失去电阻的特性,由于它的特殊导电性能,卡茂林·昂尼斯称之为超导态。
卡茂林由于他的这一发现获得了1913年诺贝尔奖。
这一发现引起了世界范围内的震动。
在他之后,人们开始把处于超导状态的导体称之为“超导体”。
超导体的直流电阻率在一定的低温下突然消失,被称作零电阻效应。
导体没有了电阻,电流流经超导体时就不发生热损耗,电流可以毫无阻力地在导线中形成强大的电流,从而产生超强磁场。
1933年,荷兰的迈斯纳和奥森菲尔德共同发现了超导体的另一个极为重要的性质,当金属处在超导状态时,这一超导体内的磁感兴强度为零,却把原来存在于体内的磁场排挤出去。
对单晶锡球进行实验发现:锡球过渡到超导态时,锡球周围的磁场突然发生变化,磁力线似乎一下子被排斥到超导体之外去了,人们将这种现象称之为“迈斯纳效应”。
后来人们还做过这样一个实验:在一个浅平的锡盘中,放入一个体积很小但磁性很强的永久磁体,然后把温度降低,使锡盘出现超导性,这时可以看到,小磁铁竟然离开锡盘表面,慢慢地飘起,悬浮不动。
迈斯纳效应有着重要的意义,它可以用来判别物质是否具有超性。
超导材料和超导技术有着广阔的应用前景。
超导现象中的迈斯纳效应使人们可以到用此原理制造超导列车和超导船,由于这些交通工具将在悬浮无磨擦状态下运行,这将大大提高它们的速度和安静性,并有效减少机械磨损。
利用超导悬浮可制造无磨损轴承,将轴承转速提高到每分钟10万转以上。
一、实验目的1. 了解约瑟夫森效应的基本原理。
2. 观察并测量约瑟夫森效应现象。
3. 分析约瑟夫森效应的电流-电压关系。
二、实验原理约瑟夫森效应是指当两个超导体之间被一个极薄的绝缘层隔开时,在超导状态下,电流可以无损耗地通过这个绝缘层。
这一现象是由英国物理学家布赖恩·约瑟夫森在1962年提出的。
约瑟夫森效应是宏观量子效应的一种体现,其基本原理可以由以下方程式描述:\[ I = \frac{2e}{h} \frac{V}{2\pi} \]其中,\( I \) 是流过约瑟夫森结的电流,\( e \) 是电子电荷,\( h \) 是普朗克常数,\( V \) 是约瑟夫森结两端的电压差。
三、实验仪器与材料1. 约瑟夫森结2. 电流计3. 电压源4. 数字示波器5. 低温设备6. 超导材料7. 绝缘层四、实验步骤1. 准备实验装置,包括搭建低温环境,确保约瑟夫森结处于超导状态。
2. 使用电压源对约瑟夫森结施加直流电压,调整电压大小,观察电流计的读数。
3. 利用数字示波器记录不同电压下的电流波形。
4. 改变电压源,重复步骤2和3,得到一系列的电流-电压数据。
5. 分析数据,绘制电流-电压曲线,并拟合出约瑟夫森效应的电流-电压关系。
五、实验结果与分析1. 实验中观察到,当电压低于某一临界值时,电流几乎为零;当电压超过临界值时,电流随电压的增大而线性增加。
2. 根据实验数据,绘制了电流-电压曲线,并与理论公式进行了比较。
结果显示,实验结果与理论预测吻合较好。
3. 通过拟合电流-电压曲线,得到了约瑟夫森效应的临界电流值和比例常数。
六、实验结论1. 通过实验验证了约瑟夫森效应的存在,并观察到了其电流-电压关系。
2. 实验结果与理论预测相符,进一步证实了约瑟夫森效应的宏观量子特性。
3. 约瑟夫森效应在量子技术、超导电子学等领域具有广泛的应用前景。
七、实验讨论1. 实验过程中,低温设备的稳定性对实验结果有较大影响。
探索超导材料的约瑟夫森结超导电流传输演示实验引言:超导材料是具有零电阻和完全反射磁场的特性的独特材料。
约瑟夫森结是一种超导电流传输的重要现象,通过这个实验我们可以深入探索超导材料的特性和其中的复杂机制。
一、约瑟夫森结的理论基础定律:约瑟夫森效应约瑟夫森效应是指在两个超导体之间存在一薄层绝缘体时,可以观察到超导电流的传输现象。
约瑟夫森结的关键在于电子对的传输和相干性。
1.约瑟夫森结的实验装置准备(1)两个超导体片(可用铝或铅制成),尺寸适中,厚度一般为几百纳米。
(2)银膏,用于电容连接。
(3)金属导线和电阻。
(4)绝缘体衬底,用于支撑和隔离超导体片。
2.约瑟夫森结的实验过程(1)将两个超导体片通过银膏电容连接起来,使其相互绝缘。
(2)在超导体片的表面焊接金属导线,并接上电阻,形成电路。
(3)将整个实验装置放置于低温环境中,以保持超导体处于超导态。
(4)通过电压源向电路提供电流,观察约瑟夫森结的超导电流传输现象。
二、约瑟夫森结的应用1.超导传感器约瑟夫森结可用于制造高灵敏度的超导传感器,如超导量子干涉器(SQUID)。
SQUID利用约瑟夫森结中电流和磁通之间的关系,可测量极小的磁场变化,应用于磁共振成像、非破坏性检测等领域。
2.超导电子器件约瑟夫森结是超导电子器件中重要的组成部分,如超导量子比特(Qubit)。
通过利用约瑟夫森结中的超导电流传输特性,可以实现超导电子器件的精确控制以及量子计算等应用。
3.超导电能传输约瑟夫森结中的超导电流传输现象为超导电能传输提供了理论基础。
超导电能传输是一种高效的电能传输方式,可以实现远距离的高容量输电,减少能源损耗和环境污染。
三、其他专业性角度的探讨1.超导材料的选择约瑟夫森结的实验需要选择合适的超导材料,如铝或铅。
这些材料具有较高的临界温度和较长的超导电流传输长度,适用于实验的要求。
2.温度控制与液氮使用约瑟夫森结实验需要低温环境,通常使用液氮冷却系统进行温度控制。
2012年第30期(总第45期)科技视界Science &Technology VisionSCIENCE &TECHNOLOGY VISION科技视界0引言超导量子干涉器(SQUID)作为当今最灵敏的探测器之一,在很多领域得到了充分的应用。
SQUID 是基于约瑟夫森效应和磁通量子化效应基础上发展起来的超导量子干涉器件。
探伤基理主要是通过材料的磁性反常来探测缺陷。
如果导体中存在裂缝,电流(或涡流)在导体中流动时会绕过缺陷而重新分布。
通过SQUID 检测该电流产生的磁场就可以得到缺陷的相关信息。
1SQUID 检测原理直流超导量子干涉器的结构如图1所示:将2个约瑟夫森结并联在一起构成超导环路,就构成了SQUID 这种超导微电子器件。
在双结SQUID 中,两个超导路径未被短路,器件偏置电流略大于临界电流Ic。
可测量两端电压,观测直流I-V 特性,在解释有关SQUID 的工作原理时,主要的依据为超导环路中包含的总磁通量必须满足磁通量子化条件,不满足时将进行相关的补偿以达到该条件,即Φ=n Φ0(总磁通量为磁通量子的整数倍,其中Φ为磁通量子)。
(1)图1根据约瑟夫森方程,流经两结的结电流分别为:I 1=I c sin ø1 (2)I 2=I c sin ø2……(3)其中ø1,ø2分别为结的宏观量子相位差,I c 为临界电流。
在得到结1与结2的电流后,流过超导环的总电流I 为:I =I 1+I 2=I c sin φ1+I c sin φ2=2I c sin(φ1+φ2-φ12)cos(φ2-φ12) (9)由于相位差可以表示为Δφ=2e ћVt ,电压与时间的乘积可表示为磁通量Φ,于是可以得到Δφ=2e ћΦ因为有ћ=h 2πΦ0=h 2e 可得Δφ2=φ2-φ12=2eπh ø=πøø0 (10)将(10)代入(9)中可得总电流表达式为:I =2I c sin(φ1+πΦΦ0)cos(πΦΦ0)……(11)当sin(φ1+πΦΦ0)=1时,超导环中有最大电流:I max =2I c cos(πΦΦ0) (12)Φ=Φ外+Φ环=Φ外+Φ环 (13)环路电流定义为:I 环=12(I 1-I 2) (14)在前文中说过在解释有关SQUID 的工作原理时,主要的依据为超导环路中包含的总磁通量必须满足磁通量子化条件,下面我们分两种情况来讨论,即外加磁通量满足或者不满足磁通量子的整数倍。
约瑟夫森效应的原理与应用约瑟夫森效应是电子对通过两块超导金属间的薄绝缘层(厚度约为10 )时发生的量子力学隧道效应。
1962年,英国牛津大学研究生B.D.约瑟夫森首先从理论上对超导电子对的隧道效应作了预言,不久就为P.W.安德森和J.M.罗厄耳的实验观测所证实。
十多年来,它已在超导电性的研究领域内逐渐发展成为一个新的重要分支──约瑟夫森效应和超导结电子学。
直流约瑟夫森效应当直流电流通过超导隧道结时,只要电流值低于某一临界电流I c,则与一块超导体相似,结上不存在任何电压,即流过结的是超导电流。
但一旦超过临界电流值,结上即出现一个有限的电压,结的性状过渡到正常电子的隧道特性。
图1给出了典型的I-V特性曲线。
这种超导隧道结能够承载直流超导电流的现象,称为直流约瑟夫森效应。
对于典型的结,临界电流一般在几十微安到几十毫安之间。
图1 Sn-SnO x-Sn结构的电流和电压关系超导隧道结的临界电流对于外加磁场十分敏感。
I c不是外加磁场的单调函数,而是随着外磁场的增高,呈现如图2所示的周期性变化,类似于光学中的夫琅和费衍射图样。
相邻两最小值之间的磁场间隔H0与结面积的乘积正好等于一个磁通量子,即φ0= h/2e = 2.07×10-15韦伯。
图2 Sn-SnO x-Sn结的约瑟夫森电流和磁场的关系交流约瑟夫森效应如果在超导结的结区两端加上一直流电压V(当然,这时电流大于临界电流),在结区就出现高频的超导正弦波电流,其频率与所施加的直流电压成正比,有如下关系式hω /2π = 2e/V 或 ν = (2e/h)V比例常数2e/h=483.6×106 Hz/μV。
这时,结区以同样的频率(若所加电压是几微伏,则在微波区域;若为几毫伏,则在远红外波段)向外辐射电磁波。
超导隧道结这种能在直流电压作用下,产生超导交流电流,从而能辐射电磁波的特性,称为交流约瑟夫森效应。
如果用频率为□的微波辐照约瑟夫森结,当结的约瑟夫森频率ν等于ν~的n次倍频,即nν~=2eV n/h (n=0,1,2,…)时,外加微波和结辐射的电磁波发生共振,则在I-V特性上可以测到恒压电流,随着n=0,1,2,…, 在I-V特性上出现阶梯效应,如图3所示。