1973年诺贝尔物理学奖——隧道现象和约瑟夫森效应的发现
- 格式:doc
- 大小:36.50 KB
- 文档页数:4
一、实验目的1. 理解并掌握约瑟夫森效应的基本原理。
2. 观察并测量直流约瑟夫森效应的电压-电流关系。
3. 分析交流约瑟夫森效应的特性。
二、实验原理约瑟夫森效应是指两个超导体通过一个薄的绝缘层(称为约瑟夫森结)接触时,即使没有外部电压,也能产生超导电流的现象。
这一效应由英国物理学家布赖恩·约瑟夫森在1962年提出,并因此获得了1973年的诺贝尔物理学奖。
约瑟夫森效应分为直流约瑟夫森效应和交流约瑟夫森效应。
直流约瑟夫森效应描述了超导电流在没有电压作用下通过绝缘层的现象,而交流约瑟夫森效应则描述了在电压作用下产生的超导电流的高频振荡。
三、实验仪器与材料1. 约瑟夫森结样品2. 电流源3. 电压表4. 高频信号发生器5. 示波器6. 低温设备7. 实验台四、实验步骤1. 将约瑟夫森结样品置于低温设备中,确保温度低于超导转变温度。
2. 使用电流源对约瑟夫森结施加直流电流,调节电流值。
3. 使用电压表测量结两端的电压,记录数据。
4. 重复步骤2和3,改变电流值,得到一系列电压-电流数据。
5. 在施加直流电压的情况下,使用高频信号发生器提供交流电压,调节电压值。
6. 使用示波器观察结两端的电压波形,记录数据。
7. 分析直流和交流约瑟夫森效应的特性。
五、实验结果与分析1. 直流约瑟夫森效应实验结果显示,在低温条件下,约瑟夫森结表现出直流超导电流的特性。
当电流低于临界电流时,结两端电压为零;当电流超过临界电流时,结两端出现一个有限的电压,称为约瑟夫森电压。
2. 交流约瑟夫森效应实验结果显示,在施加直流电压的情况下,约瑟夫森结表现出交流超导电流的特性。
电压波形为高频振荡,其频率与施加的电压成正比。
六、实验结论1. 通过实验,我们成功观察并测量了直流和交流约瑟夫森效应的特性。
2. 实验结果与理论预测相符,验证了约瑟夫森效应的基本原理。
3. 约瑟夫森效应在超导电子学、量子技术等领域具有重要的应用价值。
七、实验讨论1. 实验过程中,温度控制对约瑟夫森效应的观察至关重要。
诺贝尔物理学奖诺贝尔物理学奖是1900年6月根据诺贝尔的遗嘱设立的,属诺贝尔奖之一。
该奖项旨在奖励那些对人类物理学领域里作出突出贡献的科学家。
由瑞典皇家科学院颁发奖金,每年的奖项候选人由瑞典皇家自然科学院的瑞典或外国院士、诺贝尔物理和化学委员会的委员、曾被授与诺贝尔物理或化学奖金的科学家、在乌普萨拉、隆德、奥斯陆、哥本哈根、赫尔辛基大学、卡罗琳医学院和皇家技术学院永久或临时任职的物理和化学教授等科学家推荐。
奖项由来诺贝尔生于瑞典的斯德哥尔摩,诺贝尔一生致力于炸药的研究,在硝化甘油的研究方面取得了重大成就。
他不仅从事理论研究,而且进行工业实践。
他一生共获得技术发明专利355项,并在欧美等五大洲20个国家开设了约100家公司和工厂,积累了巨额财富。
1896年12月10日,诺贝尔在意大利逝世。
逝世的前一年,他留下了遗嘱,设立诺贝尔奖。
据此,1900年6月瑞典政府批准设置了诺贝尔基金会,并于次年诺贝尔逝世5周年纪念日,即1901年12月10日首次颁发诺贝尔奖。
自此以后,除因战时中断外,每年的这一天分别在瑞典首都斯德哥尔摩和挪威首都奥斯陆举行隆重授奖仪式。
1968年瑞典中央银行于建行300周年之际,提供资金增设诺贝尔经济奖(全称为瑞典中央银行纪念阿尔弗雷德·伯恩德·诺贝尔经济科学奖金,亦称纪念诺贝尔经济学奖,并于1969年开始与其他5项奖同时颁发。
诺贝尔经济学奖的评选原则是授予在经济科学研究领域作出有重大价值贡献的人,并优先奖励那些早期作出重大贡献者。
颁奖时间每次诺贝尔奖的发奖仪式都是下午举行,这是因为诺贝尔是1896年12月10日下午4:30去世的。
为了纪念这位对人类进步和文明作出过重大贡献的科学家,在1901年第一次颁奖时,人们便选择在诺贝尔逝世的时刻举行仪式。
这一有特殊意义的做法一直沿袭到如今。
评选过程每年9月至次年1月31日,接受各项诺贝尔奖推荐的候选人。
通常每年推荐的候选人有1000— 2000人。
实验八 扫描隧道显微镜贾埃弗(I.Gisever)于1961年首先发现了超导体中正常电子的隧道效应,继他之后,江崎玲于奈发现了半导体中的隧道效应以及约瑟夫森(B.Josephson)预言超导体隧道效应中的超流性质,因而他们三人同获1973年度诺贝尔物理学奖。
根据隧道效应对势垒高度和宽度变化十分敏感的特点,宾宁(G .Binning)和罗勒(H.Rohrer)于1982年研制成功了世界上第一台扫描隧道显微镜(Scanning Tunneling Microscope,缩写为STM),为此他俩荣获1986年度诺贝尔物理学奖。
STM 的垂直分辨率和水平分辨率已分别达到0.01nm 和0.1nm ,利用STM 来研究固体表面的原子和电子结构已取得令人瞩目的成果。
由于STM 测试不会对样品表面造成损伤,因此被广泛用来测定材料的物理、化学和生物性质,成为发展纳米材料科学技术的有力工具。
实验目的1. 观测和验证量子力学的隧道效应;2. 学习和了解扫描显微镜的结构和原理;3. 学习扫描隧道显微镜的调试和操作方法,并用它来观察样品的表面形貌;4. 学习用计算机软件处理原始数据和图像。
实验原理1. 隧道效应对于经典物理来说,当一个粒子的动能E 低于前方势垒的高度0V 时,它不可能越过此势垒而被弹回,即透射系数为零。
然而,按照量子力学的计算,在一般情况下,通常其透射系数不等于零,也就是说,粒子可以穿越比它的能量高的势垒,这个现象称为隧道效应。
这是由于粒子的波动性引起的,只有在一定的条件下这种效应才会显著(见图1)。
经计算,透射系数02016()E V E T e V -= (1) 可见,透射系数T 与势垒宽度a 、能量差o V E -以及粒子质量m 有着十分敏感的关系。
随着a 的增加,T 将指数衰减,因此在宏观实验中,很难观察到粒子穿越势垒的现象。
2. 扫描隧道显微镜(STM )的工作原理STM 的工作原理是基于量子力学的隧道效应。
1973年诺贝尔物理学奖——隧道现象和约瑟夫森效应的发现1973年诺贝尔物理学奖一半授予美国纽约州约克城高地(YorktownHeights)IBM瓦森研究中心的江崎玲於奈(Leo Esaki,1925—),美国纽约州斯琴奈克塔迪(Schenectady)通用电器公司的贾埃沃(IvarGiaever,1929—),以表彰他们分别在有关半导体和超导体中的隧道现象的实验发现;另一半授予英国剑桥大学的约瑟夫森(BrianJosephson,1940—),以表彰他对穿过隧道壁垒的超导电流所作的理论预言,特别是关于普遍称为约瑟夫森效应的那些现象。
江崎玲於奈1925年3月12日出生于日本大阪的一个建筑师家庭里,1938年,江崎进入同志社中学,三年后父亲去世。
江崎自幼就表现出对科学的浓厚兴趣,喜欢阅读科学家传记故事,立志要作像爱迪生和马可尼那样的发明家,小时自己动手制作电动火车和汽车模型。
1940年,他以优异成绩越级进入京都第三高等学校。
1944年初提前毕业。
同年10月,江崎进入东京帝国大学攻读实验物理。
在大学期间,为维持生计勤工俭学,做晚间家庭教师。
他认真学习了数学和物理课程,并自学物理学专著。
1947年,江崎获硕士学位,有机会进入神户工业股份有限公司研究真空管热电子发射现象。
他由此接触到固体表面物理化学性质和真空管材料技术。
由于这项研究与强外电场作用下的冷金属表面电子发射现象有关,他对固体中的隧道效应发生了兴趣。
1950年,他转入对半导体材料和晶体管的研究。
这时,晶体管刚刚发明。
1956年江崎辞去神户公司的工作转入索尼公司。
在索尼公司领导了一个小组对半导体二极管内电场发射机理进行研究。
这项研究主要考查窄宽度p-n结的导电机制。
p-n结中内电场分布取决于杂质的分布。
当时许多研究者都把提取含杂质少的高纯半导体材料当作目标,而江崎选择了相反的路线,他尝试制备高掺杂的锗p-n结器件。
1957年初江崎首先获得了掺有高浓度杂质的锗精制单晶体做成了薄p-n结。
穿墙而过不是梦!——神奇的量子隧道效应波粒二象性使微观粒子表现出许多在宏观世界里看起来不可思议的现象,隧道效应就是其中之一。
崂山道士的故事被我们当作笑话来看,但是,在量子世界里,因为有隧道效应,穿墙而过不再是什么难事,很容易就能做到。
借助隧道效应,人们发明了扫描隧道显微镜,不但“看见”了一个个原子,而且实现了移动、操控原子的梦想。
10.1 隧道效应:穿墙而过不是梦在讲隧道效应之前,我们先来看一个小实验。
如图10-1所示,假设有一条像山坡一样高低起伏的滑道,滑道上有一个小球,二者之间没有任何摩擦力。
如果我们让小球从A点出发滑落,而且出发时速度为零,那么小球最高能到达哪一点呢?这太简单了,根据能量守恒定律,我们知道小球的势能会转化成动能,然后动能再转化成势能,最后会到达高度与A点相同的B点,如此往复运动。
如果我问你,这个小球会出现在D点吗?你一定会说,绝对不可能,因为C点是一座无法翻越的大山。
或者说,C点是一个能量很高的势垒,小球没有足够的能量来翻越它。
对于经典粒子来说,的确是这样的。
但是,如果这条滑道缩小到原子尺度,而小球是一个电子的话,上述结论就不成立了。
量子力学计算表明,从A 点出发的电子有明显地出现在D 点的概率,就像是从一条隧道中穿越过去的一样,这就是量子隧道效应,它是微观粒子波粒二象性的体现。
总结一下,如果微观粒子遇到一个能量势垒,即使粒子的能量小于势垒高度,它也有一定的概率穿越势垒,这种现象就叫隧道效应。
隧道效应又称势垒贯穿,是一种很常见的量子效应。
也就是说,崂山道士的故事在量子世界里是很平常的,一点都不稀奇。
当然,对于不同的情况,粒子在势垒外出现的概率大小是需要通过薛定谔方程仔细计算的。
在一般情况下,只有当势垒宽度与微观粒子的德布罗意波长可比拟时,势垒贯穿的现象才能被显著观察到。
如果势垒太高或太宽,隧穿的可能性就会变得很小。
用量子隧道效应能部分地解释放射性元素的α 衰变现象。
α 衰变是从原子核中发射出α 粒子(氦原子核)的一种放射性现象。
隧道(Josephson)效应及其应用Josephson 效应josephson 效应 即 隧道效应 。
隧道效应由微观粒子波动性所确定的量子效应。
又称势垒贯穿。
考虑粒子运动遇到一个高于粒子能量的势垒,按照经典力学,粒子是不可能越过势垒的;按照量子力学可以解出除了在势垒处的反射外,还有透过势垒的波函数,这表明在势垒的另一边,粒子具有一定的概率,粒子贯穿势垒。
约瑟夫森效应属于遂穿效应,但有别于一般的隧道效应,它是库伯电子对通过由超导体间通过若连接形成约瑟夫森结的超流效应。
历史沿革1957年,江崎玲於奈在改良高频晶体管2T7的过程中发现,当增加PN 结两端的电压时,电流反而减少,他将这种现象解释为隧道效应。
1960年,美裔挪威籍科学家加埃沃通过实验证明了在超导体隧道结中存在单电子隧道效应。
1962年,英国剑桥大学实验物理学研究生约瑟夫森预言,当两个超导体之间设置一个绝缘薄层构成SIS 时,电子可以穿过绝缘体从一个超导体到达另一个超导体。
这一预言不久就为P.W.安德森和J.M.罗厄耳的实验观测所证实——电子对通过两块超导金属间的薄绝缘层(厚度约为10埃)时发生了隧道效应,于是称之为“约瑟夫森效应”。
隧道效应(势垒贯穿)设一个质量为m 的粒子,沿x 轴正方向运动,其势能为:这种势能分布称为一维势垒。
粒子在 x < 0 区域里,若其能量小于势垒高度,经典物理来看是不能越过势垒 达到 x > a 的区域。
在量子力学中,情况则不一样。
为讨论方便,我们把整个空间分成三个区域:在各个区域的波函数分别表示为Ψ1 Ψ2 Ψ3 。
=)(x U ,0,0U ax x ><和0ax ≤≤00U VOa IIIxIII)(),0(),0(a x a x x ≥I∏≤≤∏≤I ),()(212122x E dxx d m ϕϕ=- 0≤x三个区间的薛定谔方程简化为:方程的通解为:三式的右边第一项表示沿x 方向传播的平面波,第二项为沿x 负方向传播的平面波。
约瑟夫森效应的原理与应用1. 约瑟夫森效应是什么?嘿,朋友们!今天咱们聊聊一个听上去像外星科技的东西——约瑟夫森效应。
别担心,不是要给你们上物理课,而是想把这玩意儿讲得简单易懂。
简单来说,约瑟夫森效应是指在超导体之间有一层绝缘材料的时候,电流可以“穿越”这层绝缘,形成一种神奇的量子现象。
这就像是你走进一扇门,门本来是锁着的,但一瞬间,它就为你打开了。
这种现象是由物理学家约瑟夫森(Brian D. Josephson)在1962年发现的,真是个大才子!这个效应的核心是量子隧穿,听上去很高大上吧?实际上,它就是微观世界的魔法。
量子力学告诉我们,粒子在某些条件下可以“跳过”本来应该阻挡它们的障碍。
这就像你在冬天躲避寒风时,突然发现旁边有一个暖和的咖啡店,于是你毫不犹豫地“穿越”了那道风。
这样一来,电流就能在超导体之间无障碍地流动,真是太酷了!2. 约瑟夫森效应的原理2.1 超导体的秘密那么,约瑟夫森效应为什么会发生呢?首先得提到超导体。
超导体是一种在低温下电阻为零的材料,听上去是不是像是《星际迷航》里的科技?它们在特定条件下会展现出超能力——可以让电流流动而没有能量损耗。
就好比是你的老旧电脑,不管怎么开机,就是卡!而一旦你换成了最新款的,那可真是飞快,秒开各种应用。
2.2 量子隧穿的魅力接下来,我们再来聊聊量子隧穿。
简单来说,量子隧穿就像是在墙壁上打了个洞,你可以轻松穿过它。
这种现象在微观世界里随处可见,比如电子、原子等等,简直是微观世界的“无敌穿越者”。
当两个超导体之间夹着绝缘材料时,电子就可以通过“隧道”自由流动,形成电流。
这就像是你和朋友之间有一座大山,你们却能通过心理的默契瞬间“跨越”,真是神奇又浪漫。
3. 约瑟夫森效应的应用3.1 实际应用说到这儿,可能有小伙伴会问,约瑟夫森效应到底有什么用呢?其实它的应用可多了去了!首先,约瑟夫森接头是一种重要的电子元件,广泛用于量子计算机和超导量子干涉仪中。
1973年诺贝尔物理学奖1973年物理学奖得主,是英国的布赖恩·约瑟夫森(Brian D.Josephson)(获得奖金的一半)、美国的伊瓦尔·贾埃弗(Ivar Giaever)和日本的江崎玲于奈(Reona Esaki)(二人分享另一半奖金)。
约瑟夫森(英国)提出并发现通过隧道势垒的超电流的性质,即约瑟夫森效应。
江崎玲于奈发现了半导体隧道效应,贾埃弗发现了超导体的隧道效应。
布赖恩·戴维·约瑟夫森(Brian David Josephson,1940—),出生于英国威尔士的加迪夫(Cardiff)。
1960年在剑桥大学三一学院获学士学位。
1962年,约瑟夫森在英国剑桥大学读研究生,1964年获得博士学位。
1962年—1969年任剑桥大学三一学院初级研究员。
1965年—1966年在美国伊利诺伊大学任研究助理教授。
1967年—1972年任剑桥大学研究部副主任。
早在20世纪30年代就有迹象表明超导隧道效应的存在。
例如,霍尔姆(R.Holm)和迈斯纳(W.Meissner)就曾从实验得出如下结论:当两金属变成超导体时,两金属间的接触电阻就会消失。
1952年迈斯纳的学生迪特里希(I.Dietrich)重复作了类似实验。
他在钽(Ta)表面覆以TiO2或CeO2薄层,再以Ta为试探电极接触。
他测量了其间的电流,发现在某温度下电阻消失。
但是,当时人们无法理解这些实验结果的普遍意义。
1958年江崎宣布发明了隧道二极管,这件事大大激励了人们对隧道效应的注意。
正好这时BCS理论提出,一度被搁置的隧道效应到了彻底研究的时候了。
11961年—1962年,约瑟夫森在英国剑桥大学皮帕德(B.Pippard)教授指导下读研究生。
有一次,他去参观安德森(P.W.Anderson)教授的实验室。
安德森对隧道超导电流课题已经作出了重大贡献,其中包括许多未发表的结果。
在安德森的讲座中,介绍了在超导体中“破缺对称性”这个新概念,约瑟夫森被破缺对称性的思想深深地吸引住了,思索如何通过实验对它进行观测。
1.简述超导体的基本性质.①完美的导电性σ=∞(零电阻效应:某些金属、合金和化合物,在温度降到某一特定温度Tc 时,它们的电阻率突然减小到无法测量的现象叫做超导现象。
);②完全抗磁性B=0(超导体只要进入超导态,体内的磁感应强度B总是为零,这种性质称为“完全抗磁性”);③磁场能够抑制超导性;④磁通量子是量子化的(单元:h/2e);⑤晶格的动力学性质是非常重要的(Tc M-2)⑥超导能隙2Δ(Δ是指两个电子形成库珀对需要的能量);⑦Tc与超导能隙是相关的;⑧在HTS中超导磁性是不同于LTS的.1.1零电阻效应某物质在临界温度时,电阻消失的现象,就是零电阻效应。
但是临界温度与物质种类有关,不同的超导体临界温度是不同的。
同一物质有无外磁场的影响也是不同的,当物质在外磁场作用时,某临界温度要比没有磁场作用时要低。
因此,随磁场的增强,临界温度将降低。
只有外磁场小于某一量值时,物质才保持超导体的零电阻效应,这一磁场值称为临界磁场值。
1.2迈斯纳效应1933年迈斯纳(Meissenr)在实验中发现了下述事实:把在临界温度以上的锡和铅样品放人磁场中,这时样品内有磁场存在。
当维持磁场不变而降低样品的温度转变为超导体后,结果其内部也就没有磁场了。
这说明,在转变过程中,在超导体表面产生了电流,这电流在其内部产生的磁场完全抵消了原来的磁场,也就是说磁力线不能穿过超导体物质内部,也就是所谓的迈斯纳效应。
这一效应表明,超导体具有绝对的抗磁性。
1.3约瑟夫逊效应1962年,约瑟夫逊(B.D.Josephson)发现,在两块超导体中间夹一薄的绝缘层就形成了一个约瑟夫逊结。
按经典理论,两种超导材料之间的绝缘层是禁止电子通过的,这是因为绝缘层内的电势比超导体中的电势低得多,对电子的运动形成了一个高的“势垒”,绝缘体的电子能量不足以使它自己爬过这势垒,所以,宏观上没有电流通过。
但是量子力学原理指出,即使对于相当高的势垒,能量小的电子也能穿过,好像势垒下边有隧道似的,这种电子通过超导体的约瑟夫逊结中势垒隧道而形成的超导电流的现象,叫做约瑟夫逊效应,也叫做超导隧道效应1.4同位素效应实验发现超导体的临界温度Tc依赖于同位素质量的现象。
历年诺贝尔物理学奖得主(1901—2016)年份获奖者国籍获奖原因1901年威廉·康拉德·伦琴德国“发现不寻常的射线,之后以他的名字命名”(即X射线,又称伦琴射线,并伦琴做为辐射量的单位)1902年亨得里克·洛仑兹荷兰“关于磁场对辐射现象影响的研究"(即塞曼效应)彼得·塞曼荷兰1903年亨利·贝克勒法国“发现天然放射性”皮埃尔·居里法国“他们对亨利·贝克勒教授所发现的放射性现象的共同研究"玛丽·居里法国1904年约翰·威廉·斯特拉斯英国“对那些重要的气体的密度的测定,以及由这些研究而发现氩"(对氢气、氧气、氮气等气体密度的测量,并因测量氮气而发现氩)1905年菲利普·爱德华·安东·冯·莱纳德德国“关于阴极射线的研究"1906年约瑟夫·汤姆孙英国"对气体导电的理论和实验研究"1907年阿尔伯特·迈克耳孙美国“他的精密光学仪器,以及借助它们所做的光谱学和计量学研究"1908年加布里埃尔·李普曼法国“他的利用干涉现象来重现色彩于照片上的方法"1909年古列尔莫·马可尼意大利“他们对无线电报的发展的贡献"卡尔·费迪南德·布劳恩德国1910年范德华荷兰“关于气体和液体的状态方程的研究" 1911年威廉·维恩德国“发现那些影响热辐射的定律”1912年尼尔斯·古斯塔夫·达伦瑞典“发明用于控制灯塔和浮标中气体蓄积器的自动调节阀”1913年海克·卡末林·昂内斯荷兰“他在低温下物体性质的研究,尤其是液态氦的制成”1914年马克斯·冯·劳厄德国“发现晶体中的X射线衍射现象”1915年威廉·亨利·布拉格英国“用X射线对晶体结构的研究”威廉·劳伦斯·布拉格英国1917年查尔斯·格洛弗·巴克拉英国“发现元素的特征伦琴辐射"1918年马克斯·普朗克德国“因他的对量子的发现而推动物理学的发展”1919年约翰尼斯·斯塔克德国“发现极隧射线的多普勒效应以及电场作用下谱线的分裂现象”1920年夏尔·爱德华·纪尧姆瑞士“他的,推动物理学的精密测量的,有关镍钢合金的反常现象的发现”1921年阿尔伯特·爱因斯坦德国“他对理论物理学的成就,特别是光电效应定律的发现”1922年尼尔斯·玻尔丹麦“他对原子结构以及由原子发射出的辐射的研究”1923年罗伯特·安德鲁·密美国“他的关于基本电荷以及光电效应的工作”立根1924年卡尔·曼内·乔奇·塞格巴恩瑞典“他在X射线光谱学领域的发现和研究”[3]1925年詹姆斯·弗兰克德国“发现那些支配原子和电子碰撞的定律”古斯塔夫·赫兹德国1926年让·佩兰法国“研究物质不连续结构和发现沉积平衡”1927年阿瑟·康普顿美国“发现以他命名的效应”查尔斯·威耳逊英国“通过水蒸气的凝结来显示带电荷的粒子的轨迹的方法”1928年欧文·理查森英国“他对热离子现象的研究,特别是发现以他命名的定律”1929年路易·德布罗意公爵法国“发现电子的波动性”1930年钱德拉塞卡拉·文卡塔·拉曼印度“他对光散射的研究,以及发现以他命名的效应”1932年维尔纳·海森堡德国“创立量子力学,以及由此导致的氢的同素异形体的发现”1933年埃尔温·薛定谔奥地利“发现了原子理论的新的多产的形式”(即量子力学的基本方程——薛定谔方程和狄拉克方程)保罗·狄拉克英国1935年詹姆斯·查德威克英国“发现中子"1936年维克托·弗朗西斯·赫斯奥地利“发现宇宙辐射”卡尔·戴维·安德森美国“发现正电子”1937年克林顿·约瑟夫·戴维孙美国“他们有关电子被晶体衍射的现象的实验发现”乔治·汤姆孙英国1938年恩里科·费米意大利“证明了可由中子辐照而产生的新放射性元素的存在,以及有关慢中子引发的核反应的发现”1939年欧内斯特·劳伦斯美国“对回旋加速器的发明和发展,并以此获得有关人工放射性元素的研究成果”1943年奥托·施特恩美国“他对分子束方法的发展以及有关质子磁矩的研究发现”1944年伊西多·艾萨克·拉比美国“他用共振方法记录原子核的磁属性"1945年沃尔夫冈·泡利奥地利“发现不相容原理,也称泡利原理”1946年珀西·威廉斯·布里奇曼美国“发明获得超高压的装置,并在高压物理学领域作出发现”1947年爱德华·维克托·阿普尔顿英国“对高层大气的物理学的研究,特别是对所谓阿普顿层的发现”1948年帕特里克·梅纳德·斯图尔特·布莱克特英国“改进威尔逊云雾室方法和由此在核物理和宇宙射线领域的发现”1949年汤川秀树日本“他以核作用力的理论为基础预言了介子的存在"1950年塞西尔·弗兰克·鲍威尔英国“发展研究核过程的照相方法,以及基于该方法的有关介子的研究发现”1951年约翰·道格拉斯·考克饶夫英国“他们在用人工加速原子产生原子核嬗变方面的开创性工作”欧内斯特·沃吞爱尔兰1952年费利克斯·布洛赫美国“发展出用于核磁精密测量的新方法,并凭此所得的研究成果"爱德华·珀塞尔美国1953年弗里茨·塞尔尼克荷兰“他对相衬法的证实,特别是发明相衬显微镜”1954年马克斯·玻恩英国“在量子力学领域的基础研究,特别是他对波函数的统计解释"瓦尔特·博特德国“符合法,以及以此方法所获得的研究成果"1955年威利斯·尤金·兰姆美国“他的有关氢光谱的精细结构的研究成果”波利卡普·库施美国“精确地测定出电子磁矩”1956年威廉·布拉德福德·肖克利美国“他们对半导体的研究和发现晶体管效应”约翰·巴丁美国沃尔特·豪泽·布喇顿美国1957年杨振宁中国“他们对所谓的宇称不守恒定律的敏锐地研究,该定律导致了有关基本粒子的许多重大发现"李政道中国1958年帕维尔·阿列克谢耶维奇·切连科夫苏联“发现并解释切连科夫效应”伊利亚·弗兰克苏联伊戈尔·叶夫根耶维奇·塔姆苏联1959年埃米利奥·吉诺·塞格雷美国“发现反质子"欧文·张伯伦美国1960年唐纳德·阿瑟·格拉泽美国“发明气泡室”1961年罗伯特·霍夫施塔特美国“关于对原子核中的电子散射的先驱性研究,并由此得到的关于核子结构的研究发现”鲁道夫·路德维希·穆斯堡尔德国“他的有关γ射线共振吸收现象的研究以及与这个以他命名的效应相关的研究发现”1962年列夫·达维多维奇·朗道苏联“关于凝聚态物质的开创性理论,特别是液氦"1963年耶诺·帕尔·维格纳美国“他对原子核和基本粒子理论的贡献,特别是对基础的对称性原理的发现和应用”玛丽亚·格佩特-梅耶美国“发现原子核的壳层结构"J·汉斯·D·延森德国1964年查尔斯·汤斯美国“在量子电子学领域的基础研究成果,该成果导致了基于激微波-激光原理建造的振荡器和放大器"尼古拉·根纳季耶维奇·巴索夫苏联亚历山大·普罗霍罗夫苏联1965年朝永振一郎日本“他们在量子电动力学方面的基础性工作,这些工作对粒子物理学产生深远影响”朱利安·施温格美国理查德·菲利普·费曼美国1966年阿尔弗雷德·卡斯特勒法国“发现和发展了研究原子中赫兹共振的光学方法”1967年汉斯·阿尔布雷希特·贝特美国“他对核反应理论的贡献,特别是关于恒星中能源的产生的研究发现”1968年路易斯·沃尔特·阿尔瓦雷茨美国“他对粒子物理学的决定性贡献,特别是因他发展了氢气泡室技术和数据分析方法,从而发现了一大批共振态”1969年默里·盖尔曼美国“对基本粒子的分类及其相互作用的研究发现”1970年汉尼斯·奥洛夫·哥斯达·阿尔文瑞典“磁流体动力学的基础研究和发现,及其在等离子体物理学富有成果的应用”路易·奈耳法国“关于反铁磁性和铁磁性的基础研究和发现以及在固体物理学方面的重要应用"1971年伽博·丹尼斯英国“发明并发展全息照相法”1972年约翰·巴丁美国“他们联合创立了超导微观理论,即常说的BCS理论”利昂·库珀美国约翰·罗伯特·施里弗美国1973年江崎玲于奈日本“发现半导体和超导体的隧道效应”伊瓦尔·贾埃弗挪威布赖恩·戴维·约瑟夫森英国“他理论上预测出通过隧道势垒的超电流的性质,特别是那些通常被称为约瑟夫森效应的现象”1974年马丁·赖尔英国“他们在射电天体物理学的开创性研究:赖尔的发明和观测,特别是合成孔径技术;休伊什在发现脉冲星方面的关键性角色”安东尼·休伊什英国1975年奥格·尼尔斯·玻尔丹麦“发现原子核中集体运动和粒子运动之间的联系,并且根据这种联系发展了有关原子核结构的理论”本·罗伊·莫特森丹麦利奥·詹姆斯·雷恩沃特美国1976年伯顿·里克特美国“他们在发现新的重基本粒子方面的开创性工作”丁肇中美国1977年菲利普·沃伦·安德森美国“对磁性和无序体系电子结构的基础性理论研究”内维尔·莫特英国约翰·凡扶累克美国1978年彼得·列昂尼多维奇·卡皮查苏联“低温物理领域的基本发明和发现"阿尔诺·艾伦·彭齐亚斯美国“发现宇宙微波背景辐射”罗伯特·伍德罗·威尔逊美国1979年谢尔登·李·格拉肖美国“关于基本粒子间弱相互作用和电磁相互作用的统一理论的,包括对弱中性流的预言在内的贡献”阿卜杜勒·萨拉姆巴基斯坦史蒂文·温伯格美国1980年詹姆斯·沃森·克罗宁美国“发现中性K介子衰变时存在对称破坏"瓦尔·洛格斯登·菲奇美国1981年凯·西格巴恩瑞典“对开发高分辨率电子光谱仪的贡献”尼古拉斯·布隆伯根美国“对开发激光光谱仪的贡献”阿瑟·肖洛美国1982年肯尼斯·威尔逊美国“对与相转变有关的临界现象理论的贡献"1983年苏布拉马尼扬·钱德拉塞卡美国“有关恒星结构及其演化的重要物理过程的理论研究”威廉·福勒美国“对宇宙中形成化学元素的核反应的理论和实验研究”1984年卡洛·鲁比亚意大利“对导致发现弱相互作用传递者,场粒子W和Z的大型项目的决定性贡献”西蒙·范德梅尔荷兰1985年克劳斯·冯·克利青德国“发现量子霍尔效应”1986年恩斯特·鲁斯卡德国“电子光学的基础工作和设计了第一台电子显微镜”格尔德·宾宁德国“研制扫描隧道显微镜”海因里希·罗雷尔瑞士1987年约翰内斯·贝德诺尔茨德国“在发现陶瓷材料的超导性方面的突破”卡尔·米勒瑞士1988年利昂·莱德曼美国“中微子束方式,以及通过发现梅尔文·施瓦茨美国子中微子证明了轻子的对偶结构”1989年诺曼·拉姆齐美国“发明分离振荡场方法及其在氢激微波和其他原子钟中的应用”汉斯·德默尔特美国“发展离子陷阱技术"沃尔夫冈·保罗德国1990年杰尔姆·弗里德曼美国“他们有关电子在质子和被绑定的中子上的深度非弹性散射的开创性研究,这些研究对粒子物理学的夸克模型的发展有必不可少的重要性"亨利·肯德尔美国理查·泰勒加拿大1991年皮埃尔-吉勒·德热纳法国“发现研究简单系统中有序现象的方法可以被推广到比较复杂的物质形式,特别是推广到液晶和聚合物的研究中”1992年乔治·夏帕克法国“发明并发展了粒子探测器,特别是多丝正比室”1993年拉塞尔·赫尔斯美国“发现新一类脉冲星,该发现开发了研究引力的新的可能性"约瑟夫·泰勒美国1994年伯特伦·布罗克豪斯加拿大“对中子频谱学的发展,以及对用于凝聚态物质研究的中子散射技术的开创性研究"克利福德·沙尔美国“对中子衍射技术的发展,以及对用于凝聚态物质研究的中子散射技术的开创性研究”1995年马丁·佩尔美国“发现τ轻子”,以及对轻子物理学的开创性实验研究弗雷德里克·莱因斯美国“发现中微子,以及对轻子物理学的开创性实验研”1996年戴维·李美国“发现了在氦-3里的超流动性”道格拉斯·奥谢罗夫美国罗伯特·理查森美国1997年朱棣文美国“发展了用激光冷却和捕获原子的方法”克洛德·科昂-唐努德日法国威廉·菲利普斯美国1998年罗伯特·劳夫林美国“发现一种带有分数带电激发的新的量子流体形式"霍斯特·施特默德国崔琦美国1999年杰拉德·特·胡夫特荷兰“阐明物理学中弱电相互作用的量子结构"马丁纽斯·韦尔特曼荷兰2000年若雷斯·阿尔费罗夫俄罗斯“发展了用于高速电子学和光电子学的半导体异质结构”赫伯特·克勒默德国杰克·基尔比美国“在发明集成电路中所做的贡献”2001年埃里克·康奈尔美国“在碱性原子稀薄气体的玻色-爱因斯坦凝聚态方面取得的成就,以及凝聚态物质属性质的早期基础性研究”卡尔·威曼美国沃尔夫冈·克特勒德国2002年雷蒙德·戴维斯美国“在天体物理学领域做出的先驱性贡献,尤其是探测宇宙中微子"小柴昌俊日本里卡尔多·贾科尼美国“在天体物理学领域做出的先驱性贡献,这些研究导致了宇宙X射线源的发现”2003年阿列克谢·阿布里科索夫俄罗斯“对超导体和超流体理论做出的先驱性贡献”维塔利·金兹堡俄罗斯安东尼·莱格特美国2004年戴维·格娄斯美国“发现强相互作用理论中的渐近自由”休·波利策美国弗朗克·韦尔切克美国2005年罗伊·格劳伯美国“对光学相干的量子理论的贡献”约翰·霍尔美国“对包括光频梳技术在内的,基于激光的精密光谱学发展做出的贡献,"特奥多尔·亨施德国2006年约翰·马瑟美国“发现宇宙微波背景辐射的黑体形式和各向异性"乔治·斯穆特美国2007年艾尔伯·费尔法国“发现巨磁阻效应"彼得·格林贝格德国2008年小林诚日本“发现对称性破缺的来源,并预测了至少三大类夸克在自然界中的存在”益川敏英日本南部阳一郎美国“发现亚原子物理学的自发对称性破缺机制”2009年高锟英国“在光学通信领域光在纤维中传输方面的突破性成就"威拉德·博伊尔美国“发明半导体成像器件电荷耦合器件”乔治·史密斯美国2010年安德烈·海姆俄罗斯“在二维石墨烯材料的开创性实验”康斯坦丁·诺沃肖洛夫俄罗斯2011年布莱恩·施密特澳大利亚“透过观测遥距超新星而发现宇宙加速膨胀”亚当·里斯美国索尔·珀尔马特美国2012年塞尔日·阿罗什法国“能够量度和操控个体量子系统的突破性实验手法"大卫·维因兰德美国2013年彼得·W·希格斯英国对希格斯玻色子的预测[1][4-6]弗朗索瓦·恩格勒比利时2014年赤崎勇日本“发明一种新型高效节能光源,即蓝色发光二极管(LED)"天野浩日本中村修二美国2015年梶田隆章日本“通过中微子振荡发现中微子有质量。
超导材料的研究进展及应用导电材料由于电阻的存在,在输电过程中会不断消耗电能,尤其是远距离电能传输,造成极大的能源浪费,这个问题一直困扰着各国学者。
找到一种材料电阻很小甚至没有电阻代替现有的导电材料以减少输电损耗一直是各国科学家们梦寐以求的愿望。
通常来说,导体的电阻随温度的降低而降低,所以人们致力于寻找一个低温环境,获得小电阻的导体。
1908年莱顿实验室成功制得液氦,获得4.25K的低温,这一技术促进了超导技术的发展。
在此之后的3年,荷兰物理学家昂纳斯发现当温度降到4.2K时,汞的电阻突然消失,这就意味着电流流经导体时没有热损耗,这一发现震动全世界,掀起了超导研究的一股热潮,昂纳斯也因此获得1913年诺贝尔奖,并将在一定温度条件下电阻突然消失的现象称之为“超导”,处于超导状态的导体称之为“超导体”,具有这一性质的材料称为超导材料。
一、超导材料的发展自昂纳斯发现汞的超导特性之后,越来越多的超导材料进入人们视野,人们发现元素周期表中的很多材料都具有超导性,很长一段时间内科学家们把元素、合金、过渡金属碳化物以及氮化物作为超导材料的研究对象,直到1985年金属间化合物铌锡(Nb3Sn)的出现,虽然其临界转变温度仅23.2K,却拓宽了超导材料的研究思路。
用液氦做致冷剂实现低温,由于氦原子间的相互作用力和原子质量都很小,很难液化,再加上氦资源缺乏等因素导致液氦价格昂贵,但如果没有液氦,低温超导材料的研究就会受到严重的阻碍,进而影响到研究工作的开展,最终导致超导材料在应用上受限。
因此,寻求新的超导材料以获得较高的超导转变温度,改变只能采用液氦做制冷剂的局面是各国科学工作者们重点关注的方向。
这一设想在1986年得以实现,超导材料的研究取得了突破性进展。
1986-1987年先后发现了超导临界转变温度(Tc)值为35K的钡镧铜氧化物、90K的钇-钡-铜-氧(YBaCuO)超导材料、125K的铊系高温超导体,打破了之前只有在液氦温区工作的禁区。
伦琴1901年诺贝尔物理学奖——X射线的发现伦琴1901年,首届诺贝尔物理学奖授予德国物理学家伦琴(Willhelm Konrad Ro tgen, 1845---1923), 以表彰他在1895年发现的X射线。
1895年,物理学已经有了相当的发展,它的几个主要部门--牛顿力学、热力学和分子运动论、电磁学和光学,都已经建立了完整的理论,在应用上也取得了巨大成果。
这时物理学家普遍认为,物理学已经发展到顶了,以后的任务无非是在细节上作些补充和修正而已,没有太多的事情好做了。
正是由于X射线的发现唤醒了沉睡的物理学界。
它像一声春雷,引发了一系列重大的发现,把人们的注意力引向更深入、更广阔的天地,从而揭开了现代物理学的序幕。
洛伦兹1902年诺贝尔物理学奖——塞曼效应的发现和研究洛伦兹塞曼1902年诺贝尔物理学奖授予荷兰莱顿大学的洛伦兹(Hendrik Antoon Lorentz, 1853 ---1928)和荷兰阿姆斯特丹大学塞曼(Pieter Zeeman , 1865---1943),以表彰他们在研究磁性对辐射现象的影响所作的特殊贡献。
塞曼磁性对辐射现象的影响也叫塞曼效应,是塞曼在1896年发现的。
它是继法拉第效应和克尔效应之后又一项反映光的电磁特性的效应。
塞曼效应更进一步涉及了光的辐射机理,因此人们把它看成是继X射线之后物理学最重要的发现之一。
洛伦兹是荷兰物理学家,他的主要贡献是创立了经典电子论,这一理论能解释物质中一系列的电磁现象,以及物质在电磁场中运动的一些效应。
由于塞曼效应发现时及时地从洛伦兹理论得到了解释,由此所确定的电子荷质比与J.J.汤姆孙用阴极射线所得数量级相同,相互间得到验证,因此1902年洛伦兹与塞曼共享诺贝尔物理学奖。
塞曼也是荷兰人,1885年进入莱顿大学后,与洛伦兹多年共事,并当过洛伦兹的助教。
塞曼对洛伦兹的电磁理论很熟悉,实验技术也很精湛,1892年曾因仔细测量克尔效应而获金质奖章,并于1893年获博士学位。
1、1901年:伦琴(德国)发现X射线2、1902年:洛伦兹(荷兰)、塞曼(荷兰)关于磁场对辐射现象影响的研究3、1903年:贝克勒尔(法国)发现天然放射性;皮埃尔·居里(法国)、玛丽·居里(波兰裔法国人)发现并研究放射性元素钋和镭4、1904年:瑞利(英国)气体密度的研究和发现氩5、1905年:伦纳德(德国)关于阴极射线的研究6、1906年:约瑟夫·汤姆生(英国)对气体放电理论和实验研究作出重要贡献并发现电子7、1907年:迈克尔逊(美国)发明光学干涉仪并使用其进行光谱学和基本度量学研究8、1908年:李普曼(法国)发明彩色照相干涉法(即李普曼干涉定律)9、1909年:马克尼(意大利)、布劳恩(德国)发明和改进无线电报;理查森(英国)从事热离子现象的研究,特别是发现理查森定律10、1910年:范德瓦尔斯(荷兰)关于气态和液态方程的研究11、1911年:维恩(德国)发现热辐射定律12、1912年:达伦(瑞典)发明可用于同燃点航标、浮标气体蓄电池联合使用的自动调节装置13、1913年:昂内斯(荷兰)关于低温下物体性质的研究和制成液态氦14、1914年:劳厄(德国)发现晶体中的X射线衍射现象15、1915年:W·H·布拉格、W·L·布拉格(英国)用X射线对晶体结构的研究16、1916年:未颁奖17、1917年:巴克拉(英国)发现元素的次级X辐射特性18、1918年:普朗克(德国)对确立量子论作出巨大贡献19、1919年:斯塔克(德国)发现极隧射线的多普勒效应以及电场作用下光谱线的分裂现象20、1920年:纪尧姆(瑞士)发现镍钢合金的反常现象及其在精密物理学中的重要性21、1921年:爱因斯坦(德国犹太人)他对数学物理学的成就,特别是光电效应定律的发现22、1922年:玻尔(丹麦犹太人)关于原子结构以及原子辐射的研究23、1923年:密立根(美国)关于基本电荷的研究以及验证光电效应24、1924年:西格巴恩(瑞典)发现X射线中的光谱线25、1925年:弗兰克·赫兹(德国)发现原子和电子的碰撞规律26、1926年:佩兰(法国)研究物质不连续结构和发现沉积平衡27、1927年:康普顿(美国)发现康普顿效应;威尔逊(英国)发明了云雾室,能显示出电子穿过空气的径迹28、1928年:理查森(英国)研究热离子现象,并提出理查森定律29、1929年:路易·维克多·德·布罗伊(法国)发现电子的波动性30、1930年:拉曼(印度)研究光散射并发现拉曼效应31、1931年:未颁奖32、1932年:海森堡(德国)在量子力学方面的贡献33、1933年:薛定谔(奥地利)创立波动力学理论;狄拉克(英国)提出狄拉克方程和空穴理论34、1934年:未颁奖35、1935年:詹姆斯·查德威克(英国)发现中子36、1936年:赫斯(奥地利)发现宇宙射线;安德森(美国)发现正电子37、1937年:戴维森(美国)、乔治·佩杰特·汤姆生(英国)发现晶体对电子的衍射现象38、1938年:费米(意大利犹太人)发现由中子照射产生的新放射性元素并用慢中子实现核反应39、1939年:劳伦斯(美国)发明回旋加速器,并获得人工放射性元素40、1940——1942年:未颁奖41、1943年:斯特恩(美国)开发分子束方法和测量质子磁矩42、1944年:拉比(美国)发明核磁共振法43、1945年:泡利(奥地利犹太人)发现泡利不相容原理44、1946年:布里奇曼(美国)发明获得强高压的装置,并在高压物理学领域作出发现45、1947年:阿普尔顿(英国)高层大气物理性质的研究,发现阿普顿层(电离层)46、1948年:布莱克特(英国)改进威尔逊云雾室方法和由此在核物理和宇宙射线领域的发现47、1949年:汤川秀树(日本)提出核子的介子理论并预言∏介子的存在48、1950年:塞索·法兰克·鲍威尔(英国)发展研究核过程的照相方法,并发现π介子49、1951年:科克罗夫特(英国)、沃尔顿(爱尔兰)用人工加速粒子轰击原子产生原子核嬗变50、1952年:布洛赫、珀塞尔(美国)从事物质核磁共振现象的研究并创立原子核磁力测量法51、1953年:泽尔尼克(荷兰)发明相衬显微镜52、1954年:玻恩(英国犹太人)在量子力学和波函数的统计解释及研究方面作出贡献;博特(德国)发明了符合计数法,用以研究原子核反应和γ射线53、1955年:拉姆(美国)发明了微波技术,进而研究氢原子的精细结构;库什(美国)用射频束技术精确地测定出电子磁矩,创新了核理论54、1956年:布拉顿、巴丁(犹太人)、肖克利(美国)发明晶体管及对晶体管效应的研究55、1957年:李政道、杨振宁(中国)发现弱相互作用下宇称不守衡,从而导致有关基本粒子的重大发现56、1958年:切伦科夫、塔姆、弗兰克(苏联)发现并解释切伦科夫效应57、1959年:塞格雷、张伯伦(Owen Chamberlain)(美国)发现反质子58、1960年:格拉塞(美国犹太人)发现气泡室,取代了威尔逊的云雾室59、1961年:霍夫斯塔特(美国)关于电子对原子核散射的先驱性研究,并由此发现原子核的结构;穆斯堡尔(德国)从事γ射线的共振吸收现象研究并发现了穆斯堡尔效应60、1962年:达维多维奇·朗道(苏联)关于凝聚态物质,特别是液氦的开创性理论61、1963年:维格纳(美国)发现基本粒子的对称性及支配质子与中子相互作用的原理;梅耶夫人(美国人.犹太人)、延森(德国)发现原子核的壳层结构62、1964年:汤斯(美国)在量子电子学领域的基础研究成果,为微波激射器、激光器的发明奠定理论基础;巴索夫、普罗霍罗夫(苏联)发明微波激射器63、1965年:朝永振一郎(日本)、施温格、费尔曼(美国)在量子电动力学方面取得对粒子物理学产生深远影响的研究成果64、1966年:卡斯特勒(法国)发明并发展用于研究原子内光、磁共振的双共振方法65、1967年:贝蒂(美国)核反应理论方面的贡献,特别是关于恒星能源的发现66、1968年:阿尔瓦雷斯(美国)发展氢气泡室技术和数据分析,发现大量共振态67、1969年:盖尔曼(美国)对基本粒子的分类及其相互作用的发现68、1970年:阿尔文(瑞典)磁流体动力学的基础研究和发现,及其在等离子物理富有成果的应用;内尔(法国)关于反磁铁性和铁磁性的基础研究和发现69、1971年:加博尔(英国)发明并发展全息照相法70、1972年:巴丁、库柏、施里弗(美国)创立BCS超导微观理论71、1973年:江崎玲于奈(日本)发现半导体隧道效应;贾埃弗(美国)发现超导体隧道效应;约瑟夫森(英国)提出并发现通过隧道势垒的超电流的性质,即约瑟夫森效应72、1974年:赖尔(英国)发明应用合成孔径射电天文望远镜进行射电天体物理学的开创性研究;赫威斯(英国)发现脉冲星73、1975年:A·N·玻尔、莫特尔森(丹麦)、雷恩沃特(美国)发现原子核中集体运动和粒子运动之间的联系,并且根据这种联系提出核结构理论74、1976年:丁肇中、里希特(美国)各自独立发现新的J/ψ基本粒子75、1977年:安德森、范弗莱克(美国)、莫特(英国)对磁性和无序体系电子结构的基础性研究76、1978年:卡皮察(苏联)低温物理领域的基本发明和发现;彭齐亚斯、R·W·威尔逊(美国)发现宇宙微波背景辐射77、1979年:格拉肖、温伯格(美国)、萨拉姆(巴基斯坦)关于基本粒子间弱相互作用和电磁作用的统一理论的贡献,并预言弱中性流的存在78、1980年:克罗宁、菲奇(美国)发现电荷共轭宇称不守恒79、1981年:西格巴恩(瑞典)开发高分辨率测量仪器以及对光电子和轻元素的定量分析;布洛姆伯根(美国)非线性光学和激光光谱学的开创性工作;肖洛(美国)发明高分辨率的激光光谱仪80、1982年:K·G·威尔逊(美国)提出重整群理论,阐明相变临界现象81、1983年:萨拉马尼安·强德拉塞卡(美国)提出强德拉塞卡极限,对恒星结构和演化具有重要意义的物理过程进行的理论研究;福勒(美国)对宇宙中化学元素形成具有重要意义的核反应所进行的理论和实验的研究82、1984年:鲁比亚(意大利)证实传递弱相互作用的中间矢量玻色子[[W+]],W-和Zc的存在;范德梅尔(荷兰)发明粒子束的随机冷却法,使质子-反质子束对撞产生W和Z粒子的实验成为可能83、1985年:冯·克里津(德国犹太人)发现量子霍耳效应并开发了测定物理常数的技术84、1986年:鲁斯卡(德国)设计第一台透射电子显微镜;比尼格(德国)、罗雷尔(瑞士)设计第一台扫描隧道电子显微镜85、1987年:柏德诺兹(德国)、缪勒(瑞士)发现氧化物高温超导材料86、1988年:莱德曼、施瓦茨、斯坦伯格(美国)产生第一个实验室创造的中微子束,并发现中微子,从而证明了轻子的对偶结构87、1989年:拉姆齐(美国)发明分离振荡场方法及其在原子钟中的应用;德默尔特(美国)、保尔(德国)发展原子精确光谱学和开发离子陷阱技术88、1990年:弗里德曼、肯德尔(美国)、理查·爱德华·泰勒(加拿大)通过实验首次证明夸克的存在89、1991年:热纳(法国)把研究简单系统中有序现象的方法推广到比较复杂的物质形式,特别是推广到液晶和聚合物的研究中90、1992年:夏帕克(法国)发明并发展用于高能物理学的多丝正比室91、1993年:赫尔斯、J·H·泰勒(美国)发现脉冲双星,由此间接证实了爱因斯坦所预言的引力波的存在92、1994年:布罗克豪斯(加拿大)、沙尔(美国)在凝聚态物质研究中发展了中子衍射技术93、1995年:佩尔(美国)发现τ轻子;莱因斯(美国)发现中微子94、1996年:D·M·李、奥谢罗夫、R·C·理查森(美国)发现了可以在低温度状态下无摩擦流动的氦同位素95、1997年:朱棣文、W·D·菲利普斯(美国)、科昂·塔努吉(法国)发明用激光冷却和捕获原子的方法96、1998年:劳克林、斯特默、崔琦(美国)发现并研究电子的分数量子霍尔效应97、1999年:H·霍夫特、韦尔特曼(荷兰)阐明弱电相互作用的量子结构98、2000年:阿尔费罗夫(俄国)、克罗默(德国)提出异层结构理论,并开发了异层结构的快速晶体管、激光二极管;杰克·基尔比(美国)发明集成电路99、2001年:克特勒(德国)、康奈尔、维曼(美国)在“碱金属原子稀薄气体的玻色-爱因斯坦凝聚态”以及“凝聚态物质性质早期基本性质研究”方面取得成就100、2002年:雷蒙德·戴维斯、里卡尔多·贾科尼(美国)、小柴昌俊(日本)“表彰他们在天体物理学领域做出的先驱性贡献,其中包括在“探测宇宙中微子”和“发现宇宙X射线源”方面的成就。
诺贝尔和诺贝尔物理学奖诺贝尔(Alfred Bemhard Nobel,1833—1896)是一位瑞典发明家的儿子,他从小健康欠佳,因此主要靠家庭教师教育。
他曾在彼得堡学习工程,也曾到美国,在伊里克逊(John Ericsson)指导下学习了大约一年。
诺贝尔在他父亲的工厂里做实验时,发现当把甘油炸药分散在漂白土或木浆之类的惰性物质中时,可以更安全地处理。
他还发明了其它炸药和雷管,并取得了这些发明的专利权。
诺贝尔因炸药的制造和巴库油田的开发而得到了一笔巨额财产。
他终生未婚,被认为是一个有自卑感和孤独感的人。
他对同伴常抱一种嘲笑态度,但他为人心肠慈善,对人类的未来满怀希望。
诺贝尔留下9百万美元的基金,他在遗嘱中写道:“这些基金的利息每年以奖金的形式分发给那些在前一年中对人类做出最大贡献的人,上述利息分为相等的五部分:一部分奖给在物理学领域有最重要发现和发明的人;一部分奖给在化学上有最重要发现和改革的人;一部分奖给在生理学或医学上有最重要发现的人;一部分奖给文学领域内著有带理想主义倾向的最杰出作品的人;一部分奖给在促进国家之间友好、取缔或裁减常备军以及举行和促进和平会议方面做出显著贡献的人。
“物理学奖和化学奖由瑞典科学院颁发,生理学或医学奖由斯德哥尔摩的加罗琳斯卡研究院颁发,文学奖由斯德哥尔摩研究院颁发,和平奖由挪威议会推选出的一个五人委员会颁发。
”诺贝尔的遗产留给了一个当时并不存在的基金会。
1897年元月,当他的遗嘱宣读后,他的某些亲属曾对此提出了争议。
一些被委派负责颁发奖金的机构(因事先都未曾商量)开始时也对承担这一困难任务感到犹豫,三年后问题才得到解决,l900年6月作为遗产合法继承者的诺贝尔基金会成立,1900年12月颁发了第一届诺贝尔奖。
诺贝尔提出奖金只授予“前一年间”所做的工作这一规定,从一开始就未实行。
这是因为推选委员会考虑到要确认一项成果对物理学的贡献的价值,往往需要许多年。
诺贝尔奖不授予毕生的工作,而授予那些有特殊成果的工作。
垢邕亲点第43卷第1期■科学人物doi:10.3969/j.issn.0253-9608.2021.01.010层展论的旗手—菲利普•安德森施郁t复旦大学物理学系,上海200433摘要文章综述了理论物理学家菲利普•安德森的生平和科学成就。
安德森的科学工作既紧密联系实验又有深亥啲普遍意义。
他对凝聚态物理有很多方面的具体贡献,如确立了一些核心'概念或者范式,特别是对称破缺。
他建议用对称性自发破缺解决粒子物理领域杨-米尔斯理论中的规范粒子质量问题,而他在自旋玻璃方面的工作对生物学和计算机科学也有影响。
安德森在层展论(笔者译自emergentism)的崛起中居功至伟,他强调高层次物质的规律不是低层次规律的应用。
笔者认为还原论和层展论是硬币的两面,相辅相成。
关键词层展论;凝聚态物理;对称性自发破缺2020年3月29日,当代伟大的理论物理学家、凝聚态理论物理的一代宗师菲利普•安德森(Philip W.Anderson,图1)不幸离世。
1生平介绍1.1学生时代安德森出生于美国印第安纳州,在伊利诺伊州的厄巴那(Urbana)长大,因为他父亲是伊利诺伊大学(伊大)的生物学教授(植物病理学专家,从事真菌、酵母和抗生素研究)。
童年的安德森对科学,特别是生物学感到着迷,但是并没有在数学方面展现出特殊的天分。
然而高中时期,他成了班上证明数学定理的“终审法院”。
这是伊大办的高中,教师有来自伊大教育系的实习教师,也有伊大教授,校>图1菲利普•安德森(1923—2020)友中有3位诺贝尔奖得主。
1940年,16岁的安德森高中毕业,通过一项奖学金考试,进入哈佛大学[1]。
作为中学生的安德森对物理的印象是不够定量,与各种小装置打交道,所以打算学化学或数学。
去哈佛大学之前,父亲的朋友、伊大物理系主任P.W.Loomis教授告诉安德森,最好修读一下温德尔•法瑞(Wendell Furry)的《物理学导论》课程,因为那丫通信作者,研究方向:量子纠缠及其在凝聚态物理和粒子物理中的运用。
【历届诺贝尔奖得主(六)】1973年物理学奖得主1973年12月10日第七十三届诺贝尔奖颁发。
物理学奖日本科学家江崎岭于奈因发现半导休中的隧道效应并发明隧道二极管、美国科学家贾埃沃因发现超导体隧道结单电子隧道效应、英国科学家约瑟夫森因创立超导电流通过的势垒的约瑟夫森效应而共同获得诺贝尔物理学奖。
江崎玲于奈1925年3月12日出生于日本大阪,1940年就读于京都第三高等学校,1947年毕业于东京大学。
后进入川西机械制作所工作,进行由真空管的阴极放出热电子的研究工作。
1956年,转入东京通信工业株式会社(现索尼)。
1973年因在半导体中发现电子的量子穿隧效应获得诺贝尔物理学奖。
基本信息江崎玲于奈1925年3月12日出生于日本大阪,1940年就读于京都第三高等学校,1944年进入东京帝国大学,是日本近代著名固体物理学家江,是建筑学家江崎壮一郎的长子。
20世纪50年代,根据理论分析,人们认为在PN结反向击穿的过程中应当能够观测到隧道效应,但实验上一直未能发现。
1957年,江崎玲于奈在研制新型高频晶体管时,意外地发现了高掺杂、窄PN结的正向伏安特性中存在着异常的负阻现象。
通过理论分析,他认为这种负阻特性是由于电子空穴直接穿透结区而形成的,从而为隧道效应提供了有力的证据。
在随后的研究中,他发明了由隧道结制成的隧道二级管。
隧道二极管的发明,开辟了一个新的研究领域——固体中的隧道效应。
研究历程1944年,江崎进入日本东京帝国大学专攻实验物理,1947年获得硕士学位(后来于1959由于研究隧道效应获得博士学位),随即服务于神户工业股份有限公司,开始了作为晶体管材料的锗和硅等半导体的研究,1956年成为东京通信工业股份有限公司(现在的索尼)的主任研究员,领高掺杂锗与硅的研究,这一研究的结果导致了隧道二极管的发明。
所谓“隧道现象”是指电子偶然地穿过其运动方向上的从经典理论观点看来是不可越的能量势垒(不太大)时,会在势垒的另一边发现电子运动的一种波动性的奇怪现象,这在本纪二十年代就已经发现了。
1973年诺贝尔物理学奖——隧道现象和约瑟夫森效应的发现1973年诺贝尔物理学奖一半授予美国纽约州约克城高地(YorktownHeights)IBM瓦森研究中心的江崎玲於奈(Leo Esaki,1925—),美国纽约州斯琴奈克塔迪(Schenectady)通用电器公司的贾埃沃(IvarGiaever,1929—),以表彰他们分别在有关半导体和超导体中的隧道现象的实验发现;另一半授予英国剑桥大学的约瑟夫森(BrianJosephson,1940—),以表彰他对穿过隧道壁垒的超导电流所作的理论预言,特别是关于普遍称为约瑟夫森效应的那些现象。
江崎玲於奈1925年3月12日出生于日本大阪的一个建筑师家庭里,1938年,江崎进入同志社中学,三年后父亲去世。
江崎自幼就表现出对科学的浓厚兴趣,喜欢阅读科学家传记故事,立志要作像爱迪生和马可尼那样的发明家,小时自己动手制作电动火车和汽车模型。
1940年,他以优异成绩越级进入京都第三高等学校。
1944年初提前毕业。
同年10月,江崎进入东京帝国大学攻读实验物理。
在大学期间,为维持生计勤工俭学,做晚间家庭教师。
他认真学习了数学和物理课程,并自学物理学专著。
1947年,江崎获硕士学位,有机会进入神户工业股份有限公司研究真空管热电子发射现象。
他由此接触到固体表面物理化学性质和真空管材料技术。
由于这项研究与强外电场作用下的冷金属表面电子发射现象有关,他对固体中的隧道效应发生了兴趣。
1950年,他转入对半导体材料和晶体管的研究。
这时,晶体管刚刚发明。
1956年江崎辞去神户公司的工作转入索尼公司。
在索尼公司领导了一个小组对半导体二极管内电场发射机理进行研究。
这项研究主要考查窄宽度p-n结的导电机制。
p-n结中内电场分布取决于杂质的分布。
当时许多研究者都把提取含杂质少的高纯半导体材料当作目标,而江崎选择了相反的路线,他尝试制备高掺杂的锗p-n结器件。
1957年初江崎首先获得了掺有高浓度杂质的锗精制单晶体做成了薄p-n结。
他发现这种薄p-n结的正向电阻特性没有变化,但反向电阻却呈直线下降趋势。
随后,江崎增大了掺杂浓度,使结宽进一步变窄。
当浓度达到1018cm-3以上时,p-n结的施主和受主浓度都高到使结两侧呈简并态,费米能量完全占据了整个导带或价带内部。
江崎发现,在这种隧穿路程极短的情况下,所有温度条件下都可以观察到负阻现象。
负阻现象所对应的电压远低于人们熟知的击穿电压。
江崎用量子力学理论令人信服地证明了这正是人们长期以来所寻找的隧道效应,这项研究确立了隧道效应在半导体材料中的存在。
接着,江崎利用这种半导体p-n结中的隧道效应研制出一种新型半导体器件——隧道二极管。
这种二极管具有独特而优异的反向负阻特性,可在开关电路、振荡电路、微波电路以及各种高速电路中获得广泛应用,成为现代电子技术中最重要的器件之一。
正是这项贡献使江崎于1973年获得诺贝尔物理学奖。
1958年,江崎进一步研究了硅、锑化铟、砷化镓、砷化铟、碲化铅、碳化硅等金属氧化物半导体材料的p-n结,证实它们也有类似的负阻特性。
用这些材料制成了多种隧道二极管。
70年代,江崎在研究砷化镓等材料的周期性超晶格结构时,指出这些材料的负阻效应的工作频率上限远高于当时已知的任何半导体器件,为后来微波、毫米波、亚毫米波电子学发展提供了制作器件的切实依据。
江崎研究硅隧道二极管时,精确分析了隧穿电流,揭示了材料的电子状态,说明了隧穿电子与势垒中的声子、光子、等离子体量子甚至分子类振动模式之间的相互作用。
这些对隧穿物理机制的研究,开创了一门新兴学科——隧穿波谱学。
1959年,日本东京大学授予江崎理学博士学位。
1960年,江崎迁居美国,任国际商用机器公司(IBM)中央研究所研究员。
江崎与贾埃沃共享1973年诺贝尔物理学奖的一半。
他们都是由于隧道现象的研究,江崎由于发现了半导体中的隧道现象,而贾埃沃则因为发现了超导体中的隧道现象。
贾埃沃1929年4月5日出生于挪威的卑尔根(Bergen),并在那里受教育。
1954年他以一名机械工程师的身份移民到了加拿大,进入加拿大通用汽车公司。
1956年他参加工程师培训班,到美国纽约州通用电气研究所,与该所的电气实验室签订了6个月的合同,负责有关热流的研究项目。
就在这段期间,贾埃沃注意到这个实验室里还有一个研究课题是有关固体物理学的,这个课题对他更有吸引力,于是在合同期满时转到了这个小组。
同时,贾埃沃还在一所工科学院选修高级物理课程。
这一阶段的学习对他后来的工作有相当重要的影响。
这个固体物理小组中有一位物理学家名叫费希尔(J.Fisher),曾对薄膜中的电子的特性作过研究。
根据BCS理论可以证明,在超导体中有能隙禁区存在,如果把具有禁区能量的电子注入超导体,这些电子就会受到禁区的排斥。
费希尔认识到这一结论的重要性,极力主张以实验予以证明。
贾埃沃就成了他的合作者。
从一开始,费希尔和贾埃沃利用朗缪尔膜研究薄膜性质。
他们试图把金属电极安放在单分子层的两侧并测试其间的电导,但是这个实验太复杂,也不很可靠,他们不得不放弃。
随后他们转而采用铝-氧化铝-铝薄膜做了一系列实验,研究电流、电压与膜厚及温度的关系。
实验表明,通过阻挡层的电流是由于电子隧道效应引起的。
经过一年的努力工作,贾埃沃不仅学到了物理学的有关理论,而且很好地掌握了有关实验技术。
1959年底,费希尔的工作重点转移到别的领域,贾埃沃开始独立地开展研究。
铝-氧化铝-铝薄膜的温度很低时,可以观测到一种特殊的效应,铝在低温时是超导体,也许这一效应正是超导电性的一种表现。
于是自然会想到,如果把这种薄膜放到低于1.2K 的极低温观测,应该会有明显的效应。
可是贾埃沃拒绝了这个建议。
他认为大部分电阻来自阻挡层,如果只是金属的电阻消失不会使阻挡层的电流发生如此大的变化。
如果仔细研究以前一系列的实验结果就会发现,贾埃沃的论点是太荒谬了。
然而这并不奇怪,在当时贾埃沃根本不知道超导体中在费米能级处有能隙。
甚至在一开始时他连江崎发现了半导体隧道效应都不知道。
作为只有一年经历的物理学工作者,他不可能像受过常规训练的物理学家那样知道早该知道的一些事。
在他周围的固体物理学家也没有向他提醒要注意超导能隙这一基本概念。
1960年初,人们再次提出把结合膜的温度降低到超导转变温度之下,这时,贾埃沃正好在超导课程中学到了能隙概念。
他立刻联想到,有可能存在隧道电流效应。
他把自己的想法告诉费希尔等人。
费希尔认为能隙不一定有这么重要,因为它太小了。
不过,他们主张贾埃沃不妨试试。
贾埃沃用铝-氧化铝-铅结合膜作实验,因为铅在7.2K就会成为超导体。
最初的两次实验失败了,因为样品的氧化层太厚。
第三次实验,他不是仔细地氧化第一层铝条,而是简单地把它放在空气中暴露几分钟,再放回蒸发台去沉积交叉的铅膜。
这一方法做成的氧化层大约只有3×10-9m厚,所以,很容易就用现成的设备测出电流电压特性曲线。
所得结果正是预期的隧道效应。
贾埃沃立即用不同的样品重复这个实验,都毫无例外地出现了隧道效应。
对于超导电性,按照BCS理论,超导电流是由电子对构成的。
1957年。
巴丁、库珀和施里弗建立了超导微观理论(也叫BCS理论)成功地解释了超导体的各种性质。
这个理论的关键在于库珀提出的电子对概念。
应该说,BCS理论的重要成果之一就是导致了约瑟夫森效应的发现。
但是约瑟夫森作出发现的直接起因还是由于受到贾埃沃发现超导体隧道效应的激励。
约瑟夫森1940年1月4日出生于英国威尔士的加迪夫(Cardiff)。
1960年在剑桥大学三一学院获学士学位。
1962年,约瑟夫森正在英国剑桥大学当研究生。
他从理论上作出预言,对于超导体-绝缘层-超导体互相接触的结构(也叫S-I-S结构),只要绝缘层足够薄,超导体内的电子对就有可能穿透绝缘层势垒,导致如下效应:(1)在恒定电压下,既有直流超导电流产生,也有交流超流,其频率为2eV/h;(2)在零电压下,有直流超流产生,这一电流对磁场非常敏感,磁场加大,电流将迅速减小;(3)如果在直流电压上再叠加一交流电压,其频率为v,则会出现一零斜率的电阻区,在这个区域内电流有傅里叶成分,电压V与v的关系为2eV/h=nv(其中n为整数)。
约瑟夫森作出上述惊人的理论预测不是偶然的。
因为早在30年代就已有迹象表明超导隧道效应的存在。
例如,霍尔姆(R.Holm)和迈斯纳(W.Meissner)就曾从实验得出如下结论:当两金属变成超导体时,两金属间的接触电阻就会消失。
1952年迈斯纳的学生迪特里希(I.Dietrich)重复作了类似实验。
他在钽(Ta)表面覆以TiO2或CeO2薄层,再以Ta为试探电极接触。
他测量了其间的电流,发现在某温度下电阻消失。
但是当时人们无法理解这些实验结果的普遍意义。
1958年江崎宣布发明了隧道二极管,这件事大大激励了人们对隧道效应的注意。
正好这时BCS理论提出,一度被搁置的隧道效应到了彻底研究的时候了。
前人的探索和BCS理论的指导使约瑟夫森对S-I-S超导结的行为作出了正确的数学分析。
他在1973年和贾埃弗与江崎共获诺贝尔物理学奖。
在领奖演说词中他回忆自己的发现经过。
讲道:“当我作为研究生在皮帕德(B.Pippard)教授指导下在剑桥皇家学会蒙德实验室工作期间,一系列的事情导致了隧道超导电流的发现。
当研究生的第二年(1961年—1962年),我们有幸去参观了安德森(P.W.Anderson)教授的实验室。
他对隧道超导电流课题已作出了重大贡献,其中包括许多未发表的结果,这些结果我后来也独立地推出过。
在剑桥的讲座中,他介绍了在超导体中‘破缺对称性’这个新概念……,我被破缺对称性的思想深深地吸引住了,思索在实验上是否有任何对它进行观测的方法……。
”“接着我得悉贾埃弗的隧道实验。
……皮帕德考虑过一个库珀对隧道贯穿绝缘势垒的可能性,正如贾埃弗做过的,但是他认为两个电子同时穿越的几率太小,以至于不能观测到任何效应。
这个似是而非的论点现在知道是不正确的,然而它却使我的注意力转到了另外一种可能性,即通过势垒的正常电流可以因相位差而改变……。
”“有一天,安德森给我看了他刚刚收到的从芝加哥寄来的预印本。
在这篇文章中,柯恩(M.H.A.Cohen)、法利可夫(L.M.Falicov)和菲利普斯(J.C.PhillipS)计算了流入超导-势垒-正常金属组成的系统的电流,肯定了贾埃弗公式。
”约瑟夫森立即开始把这种计算推广到势垒两边都是超导的情况,得到的结果为I=I0(V)+I1'(V)cos(△φ)+I1(V)sin(△φ)此处V为两个超导区的电势差,△φ为位相差,其中“第一项对直流电流有贡献,结果与贾埃弗的预计一致”,第二项正是约瑟夫森所期望的,然而“第三项完全没有料到”。