约瑟夫森效应
- 格式:ppt
- 大小:1.87 MB
- 文档页数:19
超导体(英文名:superconductor),又称为超导材料,指在某一温度下,电阻为零的导体。
在实验中,若导体电阻的测量值低于10-25Ω,可以认为电阻为零。
超导体不仅具有零电阻的特性,另一个重要特征是完全抗磁性。
基本特性超导体具有三个基本特性:完全电导性、完全抗磁性、通量量子化。
完全导电性完全导电性又称零电阻效应,指温度降低至某一温度以下,电阻突然消失的现象。
完全导电性适用于直流电,超导体在处于交变电流或交变磁场的情况下,会出现交流损耗,且频率越高,损耗越大。
交流损耗是超导体实际应用中需要解决的一个重要问题,在宏观上,交流损耗由超导材料内部产生的感应电场与感生电流密度不同引起;在微观上,交流损耗由量子化磁通线粘滞运动引起。
交流损耗是表征超导材料性能的一个重要参数,如果交流损耗能够降低,则可以降低超导装置的制冷费用,提高运行的稳定性。
完全抗磁性完全抗磁性又称迈斯纳效应,“抗磁性”指在磁场强度低于临界值的情况下,磁力线无法穿过超导体,超导体内部磁场为零的现象,“完全”指降低温度达到超导态、施加磁场两项操作的顺序可以颠倒。
完全抗磁性的原因是,超导体表面能够产生一个无损耗的抗磁超导电流,这一电流产生的磁场,抵消了超导体内部的磁场。
超导体电阻为零的特性为人们所熟知,但超导体并不等同于理想导体。
从电磁理论出发,可以推导出如下结论:若先将理想导体冷却至低温,再置于磁场中,理想导体内部磁场为零;但若先将理想导体置于磁场中,再冷却至低温,理想导体内部磁场不为零。
对于超导体而言,降低温度达到超导态、施加磁场这两种操作,无论其顺序如何,超导体超导体内部磁场始终为零,这是完全抗磁性的核心,也是超导体区别于理想导体的关键。
[4]通量量子化通量量子化又称约瑟夫森效应,指当两层超导体之间的绝缘层薄至原子尺寸时,电子对可以穿过绝缘层产生隧道电流的现象,即在超导体(superconductor)—绝缘体(insulator)—超导体(superconductor)结构可以产生超导电流。
双jj管原理
双JJ管是一种特殊的超导电子器件,由两个相连的约瑟夫森结(Josephson junction,简称JJ)组成。
它是一种高性能的微波调制器和探测器,广泛应用于超导量子计算、量子通信和微波电子学领域。
双JJ管的工作原理基于约瑟夫森效应,该效应描述了两个超导电极之间的电流通过一个超薄绝缘层的现象。
当两个超导电极之间施加一个直流电压时,超薄绝缘层中的电子将会以量子隧道效应的方式穿过绝缘层,形成一个由电子对组成的超流。
在这个过程中,电子对将会形成一个特殊的量子相干态,使得电流通过超导电极之间的约瑟夫森结。
双JJ管的一个重要特点是具有非线性的电压-电流特性,这使得它可以被用作高灵敏度的微波探测器。
当微波信号通过双JJ管时,它将改变约瑟夫森结中的电流-电压特性,从而导致输出电压的变化。
通过测量这种变化,可以获得微波信号的幅度、相位和频率等信息。
双JJ管还可用作微波调制器,通过施加交变电压来改变约瑟夫森结的电流-电压特性。
这种调制器可以被用于生成和操控微波信号,广泛应用于超导量子计算中的脉冲序列控制和量子通信中的量子密钥分发等方面。
此外,双JJ管还可以作为超导量子比特(qubit)的基本元件之一。
通过将其集成到超导电路中,可以实现量子比特的控制和测量操作,从而构建起超导量子计算系统。
总之,双JJ管作为一种特殊的超导电子器件,具有非线性、高灵敏度和低噪声等优良特性,在超导量子计算、量子通信和微波电子学领域具有重要的应用前景。
超导材料基础知识介绍超导材料具有在一定的低温条件下呈现出电阻等于零以及排斥磁力线的性质的材料。
现已发现有28种元素和几千种合金和化合物可以成为超导体。
特性超导材料和常规导电材料的性能有很大的不同。
主要有以下性能。
①零电阻性:超导材料处于超导态时电阻为零,能够无损耗地传输电能。
如果用磁场在超导环中引发感生电流,这一电流可以毫不衰减地维持下去。
这种“持续电流”已多次在实验中观察到。
②完全抗磁性:超导材料处于超导态时,只要外加磁场不超过一定值,磁力线不能透入,超导材料内的磁场恒为零。
③约瑟夫森效应:两超导材料之间有一薄绝缘层(厚度约1nm)而形成低电阻连接时,会有电子对穿过绝缘层形成电流,而绝缘层两侧没有电压,即绝缘层也成了超导体。
当电流超过一定值后,绝缘层两侧出现电压U(也可加一电压U),同时,直流电流变成高频交流电,并向外辐射电磁波,其频率为,其中h为普朗克常数,e为电子电荷。
这些特性构成了超导材料在科学技术领域越来越引人注目的各类应用的依据。
基本临界参量有以下 3个基本临界参量。
①临界温度:外磁场为零时超导材料由正常态转变为超导态(或相反)的温度,以Tc表示。
Tc值因材料不同而异。
已测得超导材料的最低Tc是钨,为0.012K。
到1987年,临界温度最高值已提高到100K左右。
②临界磁场:使超导材料的超导态破坏而转变到正常态所需的磁场强度,以Hc表示。
Hc与温度T 的关系为Hc=H0[1-(T/Tc)2],式中H0为0K时的临界磁场。
③临界电流和临界电流密度:通过超导材料的电流达到一定数值时也会使超导态破态而转变为正常态,以Ic表示。
Ic一般随温度和外磁场的增加而减少。
单位截面积所承载的Ic 称为临界电流密度,以Jc表示。
超导材料的这些参量限定了应用材料的条件,因而寻找高参量的新型超导材料成了人们研究的重要课题。
以Tc为例,从1911年荷兰物理学家H.开默林-昂内斯发现超导电性(Hg,Tc=4.2K)起,直到1986年以前,人们发现的最高的 Tc才达到23.2K(Nb3Ge,1973)。
超导电性及其在现代技术中的应用超导电性是一种物理现象,指的是一些特定材料在低于某一临界温度时,其电阻突然下降到零的现象。
这种状态下,电流可以在材料中无阻力地流动。
超导电性的发现为现代科学技术的发展带来了许多重要的应用。
1.超导体的临界温度:超导体的临界温度是指材料从正常态转变为超导态的温度。
不同材料具有不同的临界温度,有的材料的临界温度很低,接近绝对零度,而有的材料则相对较高。
2.超导体的迈斯纳效应:迈斯纳效应是指超导体能够排斥外部磁场,使得超导体内部磁场为零的现象。
这是超导体的一个重要特性,对于超导体的应用具有重要意义。
3.超导体的约瑟夫森效应:约瑟夫森效应是指两个超导体之间的电流可以通过一个绝缘层(弱连接)相互耦合的现象。
这个效应是超导体应用的基础,例如超导量子干涉器(SQUID)就是利用约瑟夫森效应制成的。
4.超导电性的应用:超导电性在现代技术中有广泛的应用,主要包括以下几个方面:a.超导磁体:超导磁体利用超导体的迈斯纳效应和电流的磁效应,可以产生强大的磁场。
超导磁体广泛应用于粒子加速器、磁共振成像(MRI)、磁悬浮列车(Maglev)等领域。
b.超导电缆:超导电缆利用超导体的低电阻特性,可以实现大功率传输。
超导电缆的研究和开发对于未来电力系统的升级和优化具有重要意义。
c.超导量子干涉器(SQUID):SQUID是一种利用超导体的约瑟夫森效应制成的精密测量仪器,具有极高的灵敏度。
SQUID广泛应用于地质勘探、生物医学、物理学等领域。
d.超导量子计算:超导量子计算是利用超导体的量子特性进行计算的一种新型计算方式。
超导量子计算有望实现量子比特的固态实现,对于未来量子计算的发展具有重要意义。
超导电性作为一种特殊的物理现象,在现代技术中发挥着重要作用。
随着科学技术的不断发展,超导电性的研究和应用将会不断拓展,为人类社会带来更多的便利和进步。
习题及方法:1.习题:超导体的临界温度是多少?解题方法:查阅相关教材或资料,了解不同超导体的临界温度,并给出具体数值。
物理效应定律大全及解释在自然界中,存在着许多不同的物理效应定律,这些定律是描述物理现象和规律的基础。
通过研究这些定律,我们可以更好地理解宇宙的运行规律和各种现象的产生原因。
以下将介绍一些常见的物理效应定律及其解释。
1. 费曼定律费曼定律是由物理学家理查德·费曼提出的,它指出“你不了解某个东西,直到你尝试解释它给别人听”。
这个定律强调了沟通与理解的重要性,通过将复杂的物理概念简化为可被他人理解的形式,我们加深了自己对知识的理解,并提高了与他人交流的效果。
2. 狄拉克方程狄拉克方程是描述物质粒子行为的基本定律之一,它将薛定谔方程与相对论结合起来,描述了自旋为1/2的费米子。
狄拉克方程的提出开启了量子场论的发展进程,深刻影响了现代物理学的发展。
3. 磁场对电流的作用安培定律指出了磁场对电流的作用规律,即电流在外磁场中会受到磁力的作用,导致电流产生受力或受扭矩的效应。
这一定律在电磁学和电力工程中具有重要的应用,例如电动机、电磁感应等方面。
4. 约瑟夫森效应约瑟夫森效应是描述固体物质中电阻随温度的变化规律的定律,即当温度降低时,固体的电阻会急剧下降直至消失。
这一效应在超导体的研究中具有重要意义,也为低温物理学和超导体技术的发展提供了重要启示。
5. 光的干涉与衍射光的干涉与衍射是描述光波在传播过程中产生干涉和衍射现象的定律。
这些现象是光学中的基础理论,通过对光波的干涉和衍射现象的研究,我们可以揭示光的波动性质,并应用于光学仪器的设计与制造中。
6. 流体静力学流体静力学是研究流体静止状态下的力学性质的学科,根据推导出的数学方程和定律,可以描述流体受力平衡的情况。
流体静力学在水力学、气象学等领域有广泛应用,帮助我们理解大气、海洋和水力系统等自然现象。
结语物理效应定律的研究对于推动科学技术的发展和人类文明的进步起着重要作用。
通过了解这些定律,我们可以更好地理解自然界的规律,拓展科学知识的边界,为人类社会的发展贡献力量。
1.能带:满带:被电子填满的能带。
空带:没有被电子填充的能带。
价带:被价电子占据的能量最高的能带。
导带:价带以上的空带。
2.本征半导体:本征半导体是不含有任何杂质的半导体,它表示半导体本身固有的特性。
3.迈斯纳效应(B=0):处于超导态的物体完全排斥磁场,即磁力线不能进入超导体内部,这一特征叫完全抗磁性或迈斯纳效应。
4.超导隧道效应(约瑟夫森效应):两超导体中间的绝缘层能让超导电流通过的现象,称为超导隧道效应。
5.介电损耗:电介质在交变电场作用下,以发热的形式而耗散能量的现象称为介电损耗。
6.光电导效应:半导体在受到光照射时,其电导率发生变化的现象称为光电导效应。
7.光生伏特效应 :光照射到半导体的p-n结上时,在p-n结的两端会出现电势差,p区为正极,n区为负极。
这一电势差可以用高内阻的电压表测量出来,这种效应称为光生伏特效应,简称光伏效应。
8.光电发射效应:当金属或半导体受到光照射时,其表面和体内的电子因吸收光子能量而被激发,如果被激发的电子具有足够的能量,足以克服表面势垒而从表面离开,即产生光电发射效应。
9.施主耗尽:10.磁滞现象:磁滞现象是磁化的不可逆性的表现,是铁磁体在磁化时,B 值的减小滞后于H 值减小的现象。
11.磁致伸缩效应:在磁场中磁化状态改变时,铁磁和亚铁磁材料引起尺寸或体积微小的变化,称为磁致伸缩。
12.电致发光:电致发光是指在直流或交流电场作用下,依靠电流和电场的激发使材料发光的现象。
又称场致发光。
这种发光材料称为电致发光材料或场致发光材料。
13.压电效应:1、正压电效应:当外加应力T作用于某些单晶或多晶介电体并使它们发生应变S时,介电体内的正负电荷中心会产生相对位移,并在某两个相对的表面产生异号束缚电荷。
这种由应力作用使材料发生电极化(即带电)或电极化的变化的现象称为正压电效应。
2、逆压电效应:与正压电效应产生的过程相反,当对这类介电体施加外电场并使其中的正负电荷中心产生位移时,该介电体要随之发生变形。