拱坝的应力分析简介和强度控制指标
- 格式:ppt
- 大小:426.00 KB
- 文档页数:17
拱坝的控制指标
拱坝的应力控制标涉及到筑坝材料强度的极限值和有关安全系数的取值。
混凝土拱坝设计规范(SD145-85)对允许应力尚无明确规定,设计时采用的允许应力还较低。
对于较高的拱坝,允许压应力常取5.0~6.0MPa,个别的曾用到过9.0MPa。
规范规定,对于基本荷载组合,安全系数为4.0;对于特殊组合,安全系数为3.5;当考虑地震荷载时,混凝土的允许压应力可比静荷载情况适当提高,但不超过30%。
拱坝
拱坝
由于混凝土的抗压强度较高,拱坝断面设计常受拉受力控制,拉应力较大部位常在拱冠梁的上游面坝基处,实际上这个部位的拉应力稍有超过并不很危险。
因为拱坝具有整体作用,即使梁底开烈,应力即自行调整,使裂缝发展到一定程度而停止,而水平拱承载的潜力仍很大。
因此现在一般认为可适当提高梁底上游面的允许拉应力值。
国内多数拱坝设计允许拉应力值大致控制在0.5~1.5 MPa之间。
而混凝土拱坝设计规范(SD145-85)规定:对于基本荷载组合,允许拉应力为1.2 MPa;对于特殊荷载组合,允许拉应力为1.5 MPa。
当考虑地震荷载时,允许拉应力可适当提高,但不超过30%。
近年来,随着拱坝建筑的发展和人们对客观事物认识的深化,有提高允许应力、减小安全系数的趋向。
如美国垦力局1977年《拱坝设计准则》规定:对于正常荷载组合,抗压安全系数为3.0,允许压
应力为10.58 MPa;对于非常荷载组合,抗压安全系数为2.0,允许压应力为15.68 MPa。
在正常荷载组合,允许局部出现拉应力,但不大于1.06 MPa;在非常荷载组合时,拉应力不大于1.57 MPa。
拱坝的应力分析一、拱坝应力分析的常用方法拱坝是一个空间弹性壳体,其几何形状和边界条件都很复杂,难以用严格的理论计算求解拱坝坝体应力状态。
在工程设计中,常作一些必要的假定和简化,使计算成果能满足工程需要。
拱坝应力分析的常用方法有圆筒法、纯拱法、拱梁分载法、壳体理论计算方法、有限单元法和结构模型试验法等。
(1)纯拱法: 假定拱坝由许多互不影响的独立水平拱圈组成,不考虑梁的作用,荷载全部由拱圈承担。
计算简单,但结果偏大,尤其对厚拱坝。
对薄拱坝和小型工程较为适用。
(2) 拱梁分载法: 假定拱坝由许多层水平拱圈和铅直悬臂梁组成,荷载由拱梁共同承担,按拱、梁相交点变位一致的条件将荷载分配到拱、梁两个系统上。
梁是静定结构,其应力容易计算;拱的应力则按弹性固端拱进行,计算结果较为合理,但计算量大,需借助计算机,适于大、中型拱坝。
拱冠梁法: 最简单的拱梁分载法,可采用拱冠梁作为所有悬臂梁的代表与许多拱圈组成拱梁系统,按拱、梁交点径向线变位一致的条件来建立变形协调方程, 并进行荷载分配, 可大大减少工作量。
拱冠梁法的主要步骤是:①选定若干拱圈,分别计算各拱圈拱顶以及拱冠梁与各拱圈交点在单位径向荷载作用下的变位,这些变位称为―单位变位‖;②根据各共轭点拱、梁径向变位协调的关系以及各点荷载之和应等于总荷载强度的要求建立变位协调方程组;③将上述方程组联立求解,得出各点的荷载分配;④根据求届的荷载分配值,分别计算拱冠梁和各拱圈的内力和应力。
1、基本算式如图3.13所示,将拱坝从坝顶到坝底划分为5–7层水平拱圈,拱圈各高1m,令各划分点的序号为自坝顶至坝底,各层拱圈之间取相等距离。
由拱冠梁和各层拱圈交点处径向变位一致的条件,可以列出方程组为式中,2,3…,,拱冠梁与水平拱交点的序号,即拱的层数;——单位荷载作用点的序号——作用在第层拱圈中面高程上总的水平径向荷载强度,包括水压力,泥沙压力等;——拱冠梁在第层拱高程上所分配到的水平径向荷载,为未知数;()——第层拱圈所分配的水平径向均布荷载强度;——梁在点所分配到的荷载强度;——梁上点的单位荷载所引起点的径向变位,称为梁的―单位变位‖。
计算书目录:1、设计参数及控制指标2、拱坝体形3、应力计算4、拱坝稳定计算5、消能计算6、坝体细部及放空、取水孔设计1、设计参数及控制指标1.1坝体参数坝体材料:C15砼砌600#毛石,坝体容重r=2.3t/m3,坝体弹模E=9.0×109Pa,坝体变模E′=5.0×109Pa,泊松比μ=0.25。
线膨胀系数取0.8×105/℃,导温系数取3m2/月。
坝基:左坝基为灰岩,变形模量E′=5.0×109Pa,泊松比μ=0.28。
右坝基为泥灰岩,变形模量E′=3.8×109Pa,泊松比μ=0.30,坝体底部为泥页岩,变形模量E′=2.5×109Pa,泊松比μ=0.32。
线膨胀系数取0.8×105/℃,导温系数取3m2/月。
水文及地质资料见附件1。
1.2控制指标大坝坝肩稳定及应力控制指标按《浆砌石坝设计规范》(SL25-91)执行,见表1-1、1-2。
表1-1 抗滑稳定安全系数表表1-2 大坝允许应力表2、拱坝体形拱坝体形为双曲拱坝,拱圈平面曲线采用圆弧。
因两岸地形基本对称而采用相同半径的双曲拱坝。
2.1 坝顶高程的拟定2.1.1 已知:校核洪水位(p=0.2%):746.50m设计洪水位(p =2%):744.00m 正常蓄水位:742.50m2.1.2 坝顶高程根据各种运行情况的水库静水位加上相应超高后的最大值确定。
坝顶超高值△h 按下式计算(《浆砌石坝设计规范》(SL25-91)第八章坝体构造)△h =2 h 1+h 0+hc 式中:△h……坝顶距水库静水位的高度,m 2 h……波浪高,mh 0……波浪中心线超出水库静水位的风壅高度,mhc……安全超高,m :正常运用情况取0.4m ,非常运用取0.3m 。
2.1.3 波浪要素按《浆砌石坝设计规范》(SL25-91)附录二计算。
波高、波长可按下式计算2h 2=31450166.0f f D υ 2L L =8.01)2(4.10hh 0=LL L H cth L h 12124ππ式中:2h 2——浪高,m ;2L L ——波长,m ;f υ——计算风速,按瓮安县多年平均最大风速为11.1m/s ; f D ——计算吹程(km ),f D =0.8km ;h 0——波浪中心线超出水库静水位的风雍高度,m ; H 1——坝前上游水深,m 。
第四节拱坝的应力分析一、拱坝应力分析的常用方法拱坝是一个空间弹性壳体,其几何形状和边界条件都很复杂,难以用严格的理论计算求解拱坝坝体应力状态。
在工程设计中,常作一些必要的假定和简化,使计算成果能满足工程需要。
拱坝应力分析的常用方法有圆筒法、纯拱法、拱梁分载法、壳体理论计算方法、有限单元法和结构模型试验法等。
(1)纯拱法: 假定拱坝由许多互不影响的独立水平拱圈组成,不考虑梁的作用,荷载全部由拱圈承担。
计算简单,但结果偏大,尤其对厚拱坝。
对薄拱坝和小型工程较为适用。
(2) 拱梁分载法: 假定拱坝由许多层水平拱圈和铅直悬臂梁组成,荷载由拱梁共同承担,按拱、梁相交点变位一致的条件将荷载分配到拱、梁两个系统上。
梁是静定结构,其应力容易计算;拱的应力则按弹性固端拱进行,计算结果较为合理,但计算量大,需借助计算机,适于大、中型拱坝。
拱冠梁法: 最简单的拱梁分载法,可采用拱冠梁作为所有悬臂梁的代表与许多拱圈组成拱梁系统,按拱、梁交点径向线变位一致的条件来建立变形协调方程, 并进行荷载分配, 可大大减少工作量。
拱冠梁法的主要步骤是:①选定若干拱圈,分别计算各拱圈拱顶以及拱冠梁与各拱圈交点在单位径向荷载作用下的变位,这些变位称为―单位变位‖;②根据各共轭点拱、梁径向变位协调的关系以及各点荷载之和应等于总荷载强度的要求建立变位协调方程组;③将上述方程组联立求解,得出各点的荷载分配;④根据求届的荷载分配值,分别计算拱冠梁和各拱圈的内力和应力。
1、基本算式如图3.13所示,将拱坝从坝顶到坝底划分为5–7层水平拱圈,拱圈各高1m,令各划分点的序号为自坝顶至坝底,各层拱圈之间取相等距离。
由拱冠梁和各层拱圈交点处径向变位一致的条件,可以列出方程组为式中,2,3…,,拱冠梁与水平拱交点的序号,即拱的层数;——单位荷载作用点的序号——作用在第层拱圈中面高程上总的水平径向荷载强度,包括水压力,泥沙压力等;——拱冠梁在第层拱高程上所分配到的水平径向荷载,为未知数;()——第层拱圈所分配的水平径向均布荷载强度;——梁在点所分配到的荷载强度;——梁上点的单位荷载所引起点的径向变位,称为梁的―单位变位‖。
拱坝基本参数应力分析毕业论文目录第一章拱坝基本参数计算 (2)1.1坝顶高程的确定 (2)1.1.1坝顶超高计算 (2)1.1.2坝顶高程计算 (3)1.2坝型方案及结构布置 (3)第二章应力分析 (6)2.1 荷载计算 (6)2.1.1自重 (6)2.1.3泥沙压力 (9)2.1.4扬压力 (10)2.1.5温度荷载 (11)2.2 地基位移计算 (12)2.3拱冠应力分析(拱冠梁法) (15)γγ的确定 (38)2.2.3拱冠径向变位系数,i i2.2.4拱冠梁变位的计算 (41)2.2.5拱冠梁应力计算 (44)2.2.6拱圈应力计算 (52)第三章坝肩稳定分析 (56)3.1 稳定分析 (56)3.1.1计算式 (56)3.1.2分析过程 (57)第四章溢流设计及消能防冲设计 (60)4.1溢流面计算 (60)4.2下游消能防冲复核 (60)第一章拱坝基本参数计算1.1坝顶高程的确定1.1.1坝顶超高计算根据《水利水电工程等级划分及洪水标准》(SL252—2000)规定:龙源口水库设计洪水标准采用50年一遇,校核洪水标准采用500年一遇,按照《浆砌石坝设计规》SL25—91,《砼拱坝设计规》SL282—2003中规定计算大坝需要的坝顶超高。
坝顶超高按下式计算:△h=Zh i+h0+h C式中:Zh i—波浪高(m)h0—波浪中心线至水库静水位的高度(m)h C—安全超高(m)(正常运行情况h C=0.4m,非常运行情况h C =0.3m)g(Zhi)/V△2=0.0076V0-1/12(gD/V02)1/3gLm/ V02=0.331 V0-7/15(gD/V02)4/15h0=[π(Zhi)2/Lm]Cth(2πH1/Lm)式中:L m—波长(m)D—吹程(D=3000m)V0—多年平均最大风速,V0=17.5m/s,正常运用条件下采用 V0′=1.5 V0 H1—水域平均水深(m)坝顶超高计算成果列如表1-4。
拱坝的应力分析方法
拱坝的应力分析方法可以采用静力计算和有限元分析两种方法。
1. 静力计算方法:该方法通过建立拱坝结构的静力平衡方程来计算拱坝内部的应力分布。
首先确定坝体的几何形状和材料性质,然后根据坝体的水力和动力荷载计算出坝体上各处的受力情况,最后通过静力平衡方程计算出拱坝各点的应力值。
2. 有限元分析方法:该方法利用有限元理论和计算机数值计算方法,将拱坝结构划分为有限个单元,然后通过求解这些单元的力学方程,得出拱坝结构的应力和变形情况。
该方法可以考虑边界约束、非线性材料特性以及水土耦合效应等因素,对于复杂的拱坝结构分析更加准确。
这些方法在拱坝设计和分析中广泛应用,可以帮助工程师评估拱坝的安全性和稳定性,优化设计方案,确保拱坝在使用过程中的正常工作。
第三章拱坝第一节概述一、拱坝的特点●结构特点:拱坝是一空间壳体结构,坝体结构可近似看作由一系列凸向上游的水平拱圈和一系列竖向悬臂梁所组成。
坝体结构既有拱作用又有梁作用。
其所承受的水平荷载一部分由拱的作用传至两岸岩体,另一部分通过竖直梁的作用传到坝底基岩。
拱坝两岸的岩体部分称作拱座或坝肩;位于水平拱圈拱顶处的悬臂梁称作拱冠梁,一般位于河谷的最深处。
拱坝示意图拱坝平面及剖面图●稳定特点:拱坝的稳定性主要是依靠两岸拱端的反力作用。
●内力特点:拱结构是一种推力结构,在外荷作用下内力主要为轴向压力,有利于发挥筑坝材料(混凝土或浆砌块石)的抗压强度,从而坝体厚度就越薄。
拱坝是一高次超静定结构,当坝体某一部位产生局部裂缝时,坝体的梁作用和拱作用将自行调整,坝体应力将重新分配。
所以,只要拱座稳定可靠,拱坝的超载能力是很高的。
混凝土拱坝的超载能力可达设计荷载的5—11倍。
●性能特点:拱坝坝体轻韧,弹性较好,整体性好,故抗震性能也是很高的。
拱坝是一种安全性能较高的坝型。
●荷载特点:拱坝坝身不设永久伸缩缝,其周边通常是固接于基岩上,因而温度变化和基岩变化对坝体应力的影响较显著,必须考虑基岩变形,并将温度荷载作为一项主要荷载。
●泄洪特点:在泄洪方面,拱坝不仅可以在坝顶安全溢流,而且可以在坝身开设大孔口泄水。
目前坝顶溢流或坝身孔口泄水的单宽流量已超过200m3/(s.m)。
设计和施工特点:拱坝坝身单薄,体形复杂,设计和施工的难度较大,因而对筑坝材料强度、施工质量、施工技术以及施工进度等方面要求较高。
二.拱坝对地形和地质条件的要求(一)对地形的要求左右两岸对称,岸坡平顺无突变,在平面上向下游收缩的峡谷段。
坝端下游侧要有足够的岩体支承,以保证坝体的稳定以“厚高比”T/H来区分拱坝的厚薄程度。
当T/H<0.2时,为薄拱坝;当T/H=0.2~0.35时,为中厚拱坝;当T/H>0.35时,为厚拱坝或重力拱坝。
坝址处河谷形状特征用河谷“宽高比”L/H及河谷的断面形状两个指标来表示。