偏微分方程数值解52059
- 格式:ppt
- 大小:4.98 MB
- 文档页数:146
第十章 偏微分方程数值解法偏微分方程问题,其求解十分困难。
除少数特殊情况外,绝大多数情况均难以求出精确解。
因此,近似解法就显得更为重要。
本章仅介绍求解各类典型偏微分方程定解问题的差分方法。
§1 差分方法的基本概念1.1 几类偏微分方程的定解问题椭圆型方程:其最典型、最简单的形式是泊松(Poisson )方程),(2222y x f yu x u u =∂∂+∂∂=∆ 特别地,当0),(≡y x f 时,即为拉普拉斯(Laplace )方程,又称为调和方程2222=∂∂+∂∂=∆yux u u Poisson 方程的第一边值问题为⎪⎩⎪⎨⎧Ω∂=Γ=Ω∈=∂∂+∂∂Γ∈),(),(),(),(),(2222y x y x u y x y x f y ux u y x ϕ 其中Ω为以Γ为边界的有界区域,Γ为分段光滑曲线,ΓΩ称为定解区域,),(y x f ,),(y x ϕ分别为Ω,Γ上的已知连续函数。
第二类和第三类边界条件可统一表示为),(),(y x u u y x ϕα=⎪⎪⎭⎫ ⎝⎛+∂∂Γ∈n 其中n 为边界Γ的外法线方向。
当0=α时为第二类边界条件, 0≠α时为第三类边界条件。
抛物型方程:其最简单的形式为一维热传导方程220(0)u ua a t x∂∂-=>∂∂ 方程可以有两种不同类型的定解问题:初值问题⎪⎩⎪⎨⎧+∞<<∞-=+∞<<-∞>=∂∂-∂∂x x x u x t x u a tu )()0,(,0022ϕ初边值问题221200,0(,0)()0(0,)(),(,)()0u ua t T x l t x u x x x lu t g t u l t g t t Tϕ⎧∂∂-=<<<<⎪∂∂⎪⎪=≤≤⎨⎪==≤≤⎪⎪⎩其中)(x ϕ,)(1t g ,)(2t g 为已知函数,且满足连接条件)0()(),0()0(21g l g ==ϕϕ边界条件)(),(),(),0(21t g t l u t g t u ==称为第一类边界条件。
双曲型方程的有限差分法线性双曲型方程定解问题: (a )一阶线性双曲型方程()0=∂∂+∂∂xux a t u (b )一阶常系数线性双曲型方程组0=∂∂+∂∂xt uA u 其中A ,s 阶常数方程方阵,u 为未知向量函数。
(c )二阶线性双曲型方程(波动方程)()022=⎪⎭⎫⎝⎛∂∂∂∂-∂∂x u x a x t u()x a 为非负函数(d )二维,三维空间变量的波动方程0222222=⎪⎪⎭⎫⎝⎛∂∂+∂∂-∂∂y u x u t u 022222222=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂-∂∂z u y u xu t u §1 波动方程的差分逼近 1.1 波动方程及其特征线性双曲型偏微方程的最简单模型是一维波动方程:(1.1) 22222x u a t u ∂∂=∂∂ 其中0>a 是常数。
(1.1)可表示为:022222=∂∂-∂∂x u a t u ,进一步有 0=⎪⎭⎫ ⎝⎛∂∂+∂∂⋅⎪⎭⎫ ⎝⎛∂∂-∂∂u x a t x a t由于x a t ∂∂±∂∂当a dt dx ±=时为()t x u ,的全导数(=dt du dt dx x u t u ⋅∂∂+∂∂xua t u ∂∂±∂∂=),故由此定出两个方向(1.3)adx dt 1±= 解常微分方程(1.3)得到两族直线(1.4) 1C t a x =⋅+ 和 2C t a x =⋅- 称其为特征。
特征在研究波动方程的各种定解问题时,起着非常重要的作用。
比如,我们可通过特征给出(1.1)的通解。
(行波法、特征线法) 将(1.4)视为),(t x 与),(21C C 之间的变量替换。
由复合函数的微分法则212211C uC u x C C u x C C u x u ∂∂+∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂ xC C u C u C x C C u C u C x u ∂∂⎪⎪⎭⎫ ⎝⎛∂∂+∂∂∂∂+∂∂⎪⎪⎭⎫ ⎝⎛∂∂+∂∂∂∂=∂∂2212121122 222122212212C u C C u C C u C u ∂∂+∂∂∂+∂∂∂+∂∂= 2222122122C uC C u C u ∂∂+∂∂∂+∂∂= 同理可得a t t a t C -=∂∂-=∂∂1,a tC=∂∂2 ⎪⎪⎭⎫⎝⎛∂∂-∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂212211C u C u a t C C u t C C u t u t C C u C u a C u t C C u C u a C t u ∂∂⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛∂∂-∂∂⋅∂∂+∂∂⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛∂∂-∂∂⋅∂∂=∂∂2122112122 ⎥⎦⎤⎢⎣⎡∂∂∂-∂∂+⎥⎦⎤⎢⎣⎡∂∂-∂∂∂-=21222222221222C C u C u a C u C C u a ⎥⎦⎤⎢⎣⎡∂∂+∂∂∂-∂∂=22221221222C u C C u C u a 将22x u ∂∂和22tu∂∂代入(1.1)可得:⎥⎦⎤⎢⎣⎡∂∂+∂∂∂-∂∂22221221222C u C C u C u a ⎥⎦⎤⎢⎣⎡∂∂+∂∂∂+∂∂=22221221222C u C C u C u a 即有0212=∂∂∂C C u求其对2C 的积分得:()11C f C u=∂∂ 其中()1C f 是1C 的任意可微函数。
第十章偏微分方程的数值解第十章偏微分方程的数值解求解偏微分方程问题非常困难。
除了少数特殊情况,在大多数情况下很难找到准确的解决方案。
因此,近似解更重要。
本章只介绍求解各种典型偏微分方程定解问题的差分方法。
(1)差分方法的基本概念 1.1几种偏微分方程固定解的椭圆方程;最典型和最简单的形式是泊松方程。
特别是,在那个时候,它是拉普拉斯方程,也称为调和方程。
泊松方程的第一个边值问题是一个有边界的有界区域,一条分段光滑曲线,称为固定解区域,以及已知的连续函数。
第二类和第三类边界条件可以统一表示为边界的外法线方向。
当时,这是第二种边界条件,当时,这是第三种边界条件。
抛物线方程:在最简单的形式中,一维热传导方程可以有两种不同类型的定解:初值问题初边值问题在初边值问题中,是一个已知的函数,满足连接条件,边界条件称为第一类边界条件。
第二个和第三个边界条件在其中。
当时,它是第二类边界条件,否则它被称为第三类边界条件。
双曲线方程:的最简单形式是一阶双曲线方程。
物理学中常见的一维振动和波动问题可以用二阶波动方程来描述,二阶波动方程是双曲方程的一种典型形式。
方程的初值问题是一个边界条件,一般有三种类型。
最简单的初边值问题是1.2差分法。
差分法的基本概念也称为有限差分法或网格法。
它是求解偏微分方程定解问题数值解最广泛使用的方法之一。
其基本思想是:首先,对求解区域进行网格划分,用一组有限离散点(网格点)代替自变量的连续变化区域。
问题中出现的连续变量的函数被定义在网格点上的离散变量的函数所代替。
通过用网格点上函数的差商代替导数,将具有连续变量的偏微分方程的固定解问题转化为只有有限个未知数的代数方程(称为差分格式)。
当网格为无穷大时,如果差分格式有解,并且其解收敛于原微分方程的解,则差分格式的解作为原问题的近似解(数值解)。
因此,在用差分法求偏微分方程的定解时,通常需要解决以下问题:(1)选择网格;(2)选择微分方程和固定解条件的差分逼近,列出差分格式;(3)求解差分方案;(4)讨论微分方程差分格式解的收敛性和误差估计。
数值解偏微分方程的方法和应用数值解偏微分方程(Numerical Methods for Partial Differential Equations)是一种通过离散化空间和时间域来近似解析解的方法。
它在科学、工程和计算机领域中得到广泛应用。
本文将介绍数值解偏微分方程的基本原理和一些常见的方法,并探讨其在实际问题中的应用。
一、求解偏微分方程的基本原理偏微分方程是包含未知函数及其偏导数的方程,通常用于描述动力学、传热传质、流体力学等现象。
求解偏微分方程的解析解往往十分困难,因此需要借助数值方法来近似求解。
数值解偏微分方程的基本原理是将连续的空间和时间域划分为离散的网格,通过有限差分、有限元或谱方法等离散化技术,将偏微分方程转化为代数方程组。
通过求解这个方程组,可以得到偏微分方程的数值解。
二、常见的数值解偏微分方程方法1. 有限差分法(Finite Difference Method):有限差分法是最常见也是最简单的数值方法之一。
它通过用中心差分逼近导数,将偏微分方程转化为代数方程组。
有限差分法易于理解和实现,广泛应用于求解各类偏微分方程。
2. 有限元法(Finite Element Method):有限元法利用有限维空间的函数空间来逼近偏微分方程的解。
它将求解域分解为离散的有限元,将偏微分方程转化为一个求解未知函数系数的代数方程组。
有限元法适用于各种复杂的几何形状和边界条件,广泛应用于结构力学、流体力学等领域。
3. 谱方法(Spectral Method):谱方法使用一组基函数的线性组合来逼近偏微分方程的解。
它利用高阶多项式函数的收敛性质,能够获得高精度的数值解。
谱方法在求解计算流体动力学和传热传质方程等问题中具有重要的应用价值。
三、数值解偏微分方程的应用1. 流体力学:数值解偏微分方程在流体力学领域有着广泛的应用。
通过数值模拟流体的运动和变形过程,可以预测飞机、汽车等工程结构在空气或水中的流动性能,为工程设计和优化提供指导。
偏微分⽅程的数值解法偏微分⽅程的数值解法
主要总结常见椭圆形、双曲型、抛物型偏微分⽅程的数值解法
椭圆偏微分⽅程
拉普拉斯⽅程是最简单的椭圆微分⽅程
∂2u ∂x2+∂2u
∂y2=0
确定偏微分⽅程的边界条件主要采⽤固定边界条件:u|Γ=U1(x,y) 即在边界Γ上给定u的值U1(x,y)五点差分格式
五点差分格式的形式为:
u i+1,j+u i−1,j+u i,j+1+u i,j−1=4u i,j
以u i,j为中⼼向其上下左右做差分,并⽤这些近似的代替u i,j
运⽤五点差分法可以求出下列边值问题
∂2u ∂x2+∂2u
∂x2=0
u(x1,y)=g1(x),u(x2,y)=g2(x)
u(x,y1)=f1(y),u(x,y2)=f2(y)
x1≤x≤x2,y1≤y≤y2
求解过程如下:
对求解区域进⾏分割:将x min≤x≤x max范围内的的x轴等分成NX段,同理将y轴等分成NY段
将边界条件离散到格点上
⽤五点差分格式建⽴求解⽅程,求出各个格点的函数值
程序设计:
实现函数格式为u = peEllip5(nx, minx, maxx, ny, miny, maxy)
变量名变量作⽤
nx x⽅向上的节点数
minx求解区间x的左端
maxx求解区间x的右端
ny y⽅向的节点数
miny求解区间y的左端
maxy求解区间y的右端
u求解区间上的数值解
建⽴边界条件函数
``
{
Processing math: 100%。
§4 偏微分方程的数值解法一、 差分法差分法是常用的一种数值解法.它是在微分方程中用差商代替偏导数,得到相应的差分方程,通过解差分方程得到微分方程解的近似值. 1. 网格与差商在平面 (x ,y )上的一以S 为边界的有界区域D 上考虑定解问题.为了用差分法求解,分别作平行于x 轴和y 轴的直线族.⎩⎨⎧====jh y y ihx x i i (i ,j =0,±1,±2,…,±n ) 作成一个正方形网格,这里h 为事先指定的正数,称为步长;网格的交点称为节点,简记为(i ,j ).取一些与边界S 接近的网格节点,用它们连成折线S h ,S h 所围成的区域记作D h .称D h 内的节点为内节点,位于S h 上的节点称为边界节点(图14.7).下面都在网格D h + S h 上考虑问题:寻求各个节点上解的近似值.在边界节点上取与它最接近的边界点上的边值作为解的近似值,而在内节点上,用以下的差商代替偏导数:()()[]()()[]()()()[]()()()[]()()()[]y x u h y x u y h x u h y x u hy x u h y x u y x u h y x u h y u y h x u y x u y h x u h x u y x u h y x u hy u y x u y h x u h x u ,),(,,1,,2,1,,2,1,,1,,122222222++-+-+≈∂∂∂-+-+≈∂∂-+-+≈∂∂-+≈∂∂-+≈∂∂注意, 1︒ 式中的差商()()[]y x u y h x u h ,,1-+称为向后差商,而()()[]y h x u y x u h,,1--称为向前差商,()()[]y h x u y h x u h,,21--+称为中心差商.也可用向前差商或中心差商代替一阶偏导数.2︒ x 轴与y 轴也可分别采用不同的步长h ,l ,即用直线族⎩⎨⎧====jh y y ihx x j i (i,j =0, ±1, ±2 , ) 作一个矩形网格.2. 椭圆型方程的差分方法[五点格式] 考虑拉普拉斯方程的第一边值问题图14.7()()⎪⎪⎩⎪⎪⎨⎧=∈=∂∂+∂∂y x u D y x y ux u S ,,02222μ 式中μ(x ,y )为定义在D 的边界S 上的已知函数.采用正方形网格,记u (x i ,y j )=u ij ,在节点(i ,j )上分别用差商u u u h u u u h i j ij i j i j ij i j -+-+-+-+11211222,,,,,代替2222,yux u ∂∂∂∂,对应的差分方程为u u u h u u u hi j ij i j i j ij i j -+-+-++-+=112112220,,,, (1) 或u u u u u ij i j i j i j i j =+++-+-+141111,,,,即任一节点(i ,j )上u ij 的值等于周围相邻节点上解的值的算术平均,这种形式的差分方程称为五点格式,在边界节点上取()()()h j i ij S j i y x u ∈=,,**μ (2)式中(x i *,y j *)是与节点(i ,j )最接近的S 上的点.于是得到了以所有内节点上的u ij 值为未知量的若干个线性代数方程,由于每一个节点都可列出一个方程,所以未知量的个数与方程的个数都等于节点的总数,于是,可用通常的方法(如高斯消去法)解此线性代数方程组,但当步长不很大时,用高斯消去法将会遇到很大困难,可用下面介绍的其他方法求解.若h →0时,差分方程的解收敛于微分方程的解,则称差分方程为收敛的.在计算过程中,由于进行四则运算引起舍入误差,每一步计算的舍入误差都会影响以后的计算结果,如果这种影响所产生的计算偏差可以控制,而不至于随着计算次数的增加而无限增大,则称差分方程是稳定的.[迭代法解差分方程] 在五点格式的差分方程中,任意取一组初值{u ij },只要求它们在边界节点(i ,j )上取以已知值μ(x i *,y j *),然后用逐次逼近法(也称迭代法)解五点格式:()()()()()[]() ,2,1,0411,1,,1,11=+++=+-+-+n u u u u u n j i n j i n j i n j i n ij 逐次求出{u ij (n )}.当(i+1,j ),(i -1,j ),(i ,j -1),(i ,j+1)中有一点是边界节点时,每次迭代时,都要在这一点上取最接近的边界点的值.当n →∞时,u ij (n )收敛于差分方程的解,因此n 充分大时,{u ij (n )}可作差分方程的近似解,迭代次数越多,近似解越接近差分方程的解.[用调节余数法求节点上解的近似值] 以差商代替Δu 时,用节点(i+1,j ),(i -1,j ),(i ,j+1),(i ,j -1)上u 的近似值来表示u 在节点(i ,j )的值将产生的误差,称此误差为余数R ij ,即()()()()()ij j i j i j i j i j i R y x u h y x u h y x u y h x u y h x u =--+++-++,4,,,,设在(i ,j )上给u ij 以改变量δu ij ,从上式可见R ij 将减少4δu ij ,而其余含有u (x i ,y j )的差分方程中的余数将增加δu ij ,多次调整δu ij 的值就可将余数调整到许可的有效数字的范围内,这样可获得各节点上u (x ,y )的近似值.这种方法比较简单,特别在对称区域中计算更简捷.例 求Δu =0在内节点A ,B ,C ,D 上解的近似值.设在边界节点1,2,3,4上分别取值为1,2,3,4(图14.8)解 记u (A )=u A ,点A ,B ,C ,D 的余数分别为图14.8-4u A + u B + u c +5=R A u A -4 u B + u D +7=R Bu A-4 u c + u D +3=R C u B + u c -4u D +5=R D以边界节点的边值的算术平均值作为初次近似值,即u A (0)=u B (0)=u C (0)=u D (0)=2.5则相应的余数为:R A =0, R B =2, R C = -2, R D =0最大余数为±2.先用δu C =-0.5把R C 缩减为零,u C 相应地变为2,这时R A , R D 也同时缩减(-0.5),新余数是R A =-0.5,R B =2,0=C R , R D =-0.5.类似地再变更δu B =0.5,从而 u B 变为3,则得新余数为0====D C B A R R R R .这样便可消去各节点的余数,于是u 在各节点的近似值为:u A =2.5, u B =3, u C =2, u D =2.5现将各次近似值及余数列表如下:[解重调和方程的差分方法] 在矩形D (x 0≤x ≤x 0+a ,y 0≤y ≤y 0+a )中考虑重调和方程024*******=∂∂+∂∂∂+∂∂=yu y x u x u u ∆取步长h an=,引直线族⎩⎨⎧+=+=jh y y ihx x 00 (i , j = 0, 1, 2,, n ) 作成一个正方形网格.用差商代替偏导数()()()()()[]{()()()()[]()()()()[]}h y x u h y x u y h x u y h x u h y h x u h y h x u h y h x u h y h x u h y x u h y x u y h x u y h x u y x u 2,2,,2,2,,,,2,,,,8201,-+++-++---++-+-++++--+++-++= 上式表明了以(x ,y )为中心时,u (x ,y )的函数值与周围各点函数值的关系,但对于邻近边界节点的点(x ,y ),如图14.9中的A ,就不能直接使用上式,此时将划分网格的直线族延伸,在延伸线上定出与边界距离为h 的点,称这些点为外邻边界节点,如图14.9以A 为中心时,点E ,C 为边界节点,点J ,K 为E ,C 的外邻边界节点,用下法补充定义外邻边界节点J 处函数的近似值u J ,便可应用上面的公式.1︒ 边界条件为()()()S P P x uP u SS ∈==21,μ∂∂μ图14.9时,定义u J =u A -2μ2(E )h .2︒ 边界条件为()()()S P P x uP u SS ∈=∂∂=2221,μμ时,定义u J =2μ1(E )-u A -h 2μ2(E ). [其他与Δu 有关的网格]1︒ 三角网格(图14.10(a ))取P 0(x ,y )为中心,它的周围6个邻近节点分别为:()()⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫⎝⎛+-⎪⎪⎭⎫ ⎝⎛+++h y h x P h y h x P y h x P h y h x P h y h x P y h x P 23,2,23,2,,23,223,2,,654321 则 R u h u u u h i i +∆+∆=⎪⎭⎫⎝⎛-∑=226102161632式中u i =u (P i ), u 0=u (P 0),R 表示余项. 2︒ 六角网格(图14.10(b ))取P 0(x ,y )为中心,它的三个邻近节点分别为()⎪⎪⎭⎫ ⎝⎛-+-⎪⎪⎭⎫ ⎝⎛++h y h x P y h x P h y h x P 23,2,,23,2321则 R u u u h i i +∆=⎪⎭⎫⎝⎛-∑=0312334.图14.103︒ 极坐标系中的网格(图14.10(c ))取P 0(r ,θ)为中心,它的四个邻近节点分别为()()()()l r P h r P l r P h r P ++--θθθθ,,,,,,4321而拉普拉斯方程01122222=∂∂+∂∂+∂∂=θ∆u r r u r ru u 的相应的差分方程为()()()011221110222134222312=⎪⎭⎫ ⎝⎛+--++++u l r hu u rh u u l r u u h 3. 抛物型方程的差分方法 考虑热传导方程的边值问题()()()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧≥==<<=><<=∂∂-∂∂0,,,,00,0,0,0,021222t t t b u t t u bx x x u t b x x u a tu μμϕ 将[0,b ]分为n 等份,每段长为∆x bn=.引两族平行线(图14.11)图14.11x =x i =i ∆x (i =0,1,2,, n )y =y j =j ∆t (j =0,1,2,, ∆t 取值见后)作成一个长方形的网格,记u (x i ,t j )为u ij ,节点(x i ,t j )为(i ,j ),在节点(i ,j )上分别用(),2,1,1,,2,1Δ2,Δ2,1,11,=-=+---++j n i x u u u t u u ji ij j i ij j i 代替22,xut u ∂∂∂∂,于是边值问题化为差分方程()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧===-===-==+----++ ,2,1,0,Δ,Δ1,,2,1,Δ,2,1,0,1,,2,10Δ2Δ21002,1,121,j t j u t j u n i x i u j n i x u u u a tu u nj j i j i ij j i ijj i μμϕ 记()22x ta ∆∆=λ,差分方程可写成 () ,2,1,1,,2,121,1,11,=-=+-+=-++j n i u u u u j i ij j i j i λλλ (1) 由此可按t 增加的方向逐排求解.在第0排上u i 0的值由初值ϕ(i ∆x )确定,j +1排u i ,j +1的值可由第j 排的三点(i +1,j ),(i ,j ),(i -1,j )上的值u i +1,j , u ij ,u i -1,j 确定,而u 0,j +1,u n ,j +1已由边界条件μ1((j +1)∆t )及μ2((j +1)∆t )给定,于是可逐排计算一切节点上的u ij 值.当ϕ(x ), μ1(x )和μ2(x )充分光滑,且λ≤12时,差分方程收敛而且稳定.所以利用差分方程(1)计算时,必须使λ≤12,即()22Δ21Δx a t ≤.热传导方程还可用差分方程()0Δ2Δ21,11,1,121,=+---+-++++x u u u a t u u j i j i j i ij j i 代替,此时如已知前j 排u ij 的值,为求第j +1排的u i ,j +1 必须解包含n -1个未知量u u j n j 1111,,,,+-+ 的线性代数方程组,这种差分方程称为隐式格式的差分方程,前面所提的差分方程称为显式格式差分方程.隐式格式差分方程对任意的λ都是稳定的. 4. 双曲型方程的差分方法考虑弦振动方程的第一边值问题()()()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧≥==<<=∂∂=><<=∂∂-∂∂0,,,,00),()0,(,0,0,0,02122222t t t b u t t u b x x t x u x x u t b x x u a tu μμψϕ 用矩形网格,列出对应的差分方程:()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧===-=∆=∆-==-==+--+--+-+ ,2,1,0,Δ,Δ1,,2,1),(,Δ,2,1,1,,2,1,0Δ2)(Δ22100102,1,1221,1,j t j u t j u n i x i t u u x i u j n i x u u u a t u u u nj j i i i j i ij j i j i ij j i μμψϕ 记ω=a tx∆∆与上段一样,利用u u n 022,和在第0排及第1排的已知数值(初始条件)u i 0 , u i 1可计算u i 2,然后用已知的u i 1 , u i 2及u u n 033,可计算u i 3,类似地可确定一切节点上的u ij 值.当ϕ(x ),ψ(x ),μ1(x )和μ2(x )充分光滑,且ω≤1时,差分方程收敛且稳定,所以要取∆∆t ax ≤1.二、 变分方法1. 自共轭边值问题将§3定义的共轭微分算子的概念推广到一般方程.设D 是n E 中的有界区域,S 为其边界,在D 上考虑2k 阶线性微分方程()x f x x u a Lu km m i i i ni m mi i n n n =∂∂≡∑∑==++201111 ∂ 的齐次边值问题()r j u l S j ,,2,10== 式中f (x )是D 内的已知函数,l j u 是线性微分算子. 将 ⎰DvLud Ω分部积分k 次得()⎰∑⎰⎪⎪⎭⎫ ⎝⎛+=Ω=S j j j D S v R u R v u vLu d ~,Λd k 1 式中Λ(u ,v )是一个D 上的积分,其被积函数包含u ,v 的k 阶导数;R j 和 R j是定义在边界S 上的两个线性微分算子.再将Λ(u ,v )分部积分k 次得()()⎰∑⎰⎪⎪⎭⎫⎝⎛-Ω=Λ=S k j j j D S u R v R v uL v u d ~d ,1***式中L*是一个2k 阶的微分算子,称为L 的共轭微分算子.若L=L*,则称L 为自共轭微分算子.从上面可推出格林公式()()⎰∑⎰=-=Ω-Skj j j jj D S u R v R v R u R v uL vLu 1***d ~~d 如从l j u |S =l j v |S =0可推出在边界S 上()∑==-kj jjjju R v R v R u R 1**0~~ 则称l j u |S =0为自共轭边界条件.如果微分算子及边界条件都是自共轭的,则称相应的边值问题为自共轭边值问题,此时有()0d ][=Ω-⎰DuLv vLu每个边值问题对应于某希尔伯特空间H (例如L 2(D ),见第九章§7)中的一个算子A ,其定义域M A 是H 中一线性稠密集合,它由足够次连续可微且满足边界条件的函数组成,在M A 上,Au 的数值与Lu 的数值相同,从而求解边值问题化为解算子方程Au f =的问题.设A 为定义在实的希尔伯特空间H 中的某线性稠密集合M A 上的线性算子.若对于M A 的任意非零元素,,v u 成立(Au ,v )=(u ,Av )则称A 为对称算子.若对任意非零元素u 成立()0,>u Au则称A 为正算子.如成立更强的不等式(Au ,u )≥r ||u ||2 (r>0)则称A 为正定算子.此处(u ,v )表示希尔伯特空间的内积,||u ||2=(u ,u ). 2. 变分原理与广义解定理 设A 是正定算子,u 是方程Au =f 在M A 上的解的充分必要条件是: u 使泛函F (u )=(Au ,u )-2(f ,u )取极小值.上述将边值问题化为等价的求泛函极值问题的方法称为能量法.在算子的定义域不够大时,泛函F (u )的极值问题可能无解.不过对于正定算子,可以开拓集合M A ,使在开拓了的集合上,泛函的极值问题有解.为开拓M A ,在M A 上引进新的内积[u ,v ]=(Au ,v ),定义模||u ||2=[u ,u ]=(Au ,u ),在模||u ||的意义下,补充极限元素,得到一个新的完备希尔伯特空间H 0,在H 0上,泛函F (u )仍然有意义,而泛函的极值问题有解.但必须注意,此时使泛函F (u )取极小的元素u 0不一定属于M A ,因此它不一定在原来的意义下满足方程Au=f 及边界条件.称u 0为广义解. 3. 极小化序列与里兹方法在处理变分问题中,极小化序列起着重要的作用.考虑泛函F (u )=(Au ,u )-2(f ,u )以d 表示泛函的极小值.设在希尔伯特空间中存在一列元素{u n } (n =1,2 ,),使()d u F n n =∞→lim则称{u n }为极小化序列.定理 若算子A 是正定的,则F (u )的每一个极小化序列既按H 空间的模也按H 0的模收敛于使泛函F (u )取极小的元素.这个定理不但指出利用极小化序列可求问题的解,而且提供一种近似解的求法,即把极小化序列中的每一个元素当作问题的近似解.设算子A 是正定的,构造极小化序列的里兹方法的主要步骤是:(1) 在线性集合M A 中选取H 0中完备的元素序列{ϕi } , (i =1,2 ,) 并要求对任意的n ,ϕ1,ϕ2,…,ϕn 线性无关.称这样的元素为坐标元素.(2) 令u a n k k k n==∑ϕ1 ,其中a k 为待定系数.代入泛函F (u ),得自变量a 1,a 2,…,a n 的函数()()()∑∑==-=nj jjn k j kjkj n f a A a a u F 11,,2,ϕϕϕ(3) 为使函数F (u n )取极小,必须()()n j a u F jn ,,2,10 ==∂∂,从而求出a k (k =1,2,…,n ).序列{u n }即为极小化序列,u n 可作为问题的近似解. 4. 里兹方法在特征值问题上的应用 算子方程Au -λu =0的非零解λ称为算子A 的特征值,对应的非零解u 称为λ所对应的特征函数. 对线性算子A ,若存在常数K ,使对任何M A 的元素ϕ成立(A ϕ,ϕ)≥K ||ϕ||2则称A 为下有界算子,正定算子是下有界的(此时K =0).记(A ϕ,ϕ)/||ϕ||2的下确界为d . 定理1 设A 为下有界对称算子,若存在不为零的元素ϕ0∈M A ,使()d A =200,ϕϕϕ则d 就是A 的最小特征值,ϕ0为对应的特征函数.于是求下有界对称算子的最小特征值问题化为变分问题,即在希尔伯特空间中求使泛函(A ϕ,ϕ)/||ϕ||2取极小的元素,或在||ϕ||=1的条件下求使泛函(A ϕ,ϕ)取极小的元素.定理2 设A 是下有界对称算子,λ1≤λ2≤…≤λn 是它的前n 个特征值,ϕ1,ϕ2,…,ϕn 是对应的标准正交特征函数,如果存在不为零的元素1+n ϕ,在附加条件(ϕ,ϕ)=1, (ϕ,ϕ1)=0, (ϕ,ϕ2)=0, …, (ϕ,ϕn )=0下使泛函(A ϕ,ϕ)取极小,则ϕn +1是算子A 的特征函数,对应的特征值()11,++=n n A ϕϕλ就是除λ1 ,,λn 外的最小的一个特征值.于是求第n +1个特征值就化为变分问题,即在附加条件(ϕ,ϕ)=1, (ϕ,ϕ1)=0, (ϕ,ϕ2)=0 ,, (ϕ,ϕn )=0下求使泛函(A ϕ,ϕ)取极小的元素.为了利用里兹方法求特征值,在M A 中选取一列在H 0中完备的坐标元素序列{ϕi },(i =1,2 ,), 令u a n k k k n==∑ϕ1,确定a k ,使在条件 (u n ,u n )=1下,(Au n ,u n )取极小,这个问题化为求n个变元a 1,a 2,…,a n 的函数()()∑==nm k m k k m n n a a A u Au 1,,,ϕϕ在条件()()∑===nm k m k m k n n a a u u 1,1,,ϕϕ下的极值问题,一般可用拉格朗日乘数法解(见第九章§3,t ),此时()()()()()()()()()()()()0,,,,,,,,,,,,11222121111111=------n n n n n n n n n n A A A A A A ϕϕλϕϕϕϕλϕϕϕϕλϕϕϕϕλϕϕϕϕλϕϕϕϕλϕϕ的最小的根即为特征值的近似值,如果将上式的根按大小排列,就依次得后面的特征值的近似值,但精确度较差. 对一般算子方程Au -λBu=0如果A 为下有界对称算子,B 为正定算子,则()()()()()()()()()()()()0,,,,,,,,,,,,11222121111111=------n n n n n n n n n n B A B A B A B A B A B A ϕϕλϕϕϕϕλϕϕϕϕλϕϕϕϕλϕϕϕϕλϕϕϕϕλϕϕ的根就是特征值的近似值. 5. 迦辽金方法用里兹方法解数学物理问题有很多限制,最主要的限制是要求算子正定,但很多问题不一定满足这个条件,迦辽金方法弥补了这个缺陷. 迦辽金方法的主要步骤是:(1) 在M A 中选取在空间H 中完备的元素序列{ϕi } (i =1,2 ,),其中任意n 个元素线性无关,称{ϕi } (i =1,2,…)为坐标元素序列. (2) 把方程的近似解表示为u a n k k k n==∑ϕ1式中a k 是待定常数,把u n 代入方程Au=f 中的u ,两端与ϕj (j =1,2,…,n )求内积,得 a k 的n 个代数方程()()()n j f A a j nk j kk ,,2,1,,1==∑=ϕϕϕ(3) 求出a k ,代回u n 的表达式,便得方程的近似解u n .在自共轭边值问题中,当算子是正定时,由迦辽金方法和里兹方法得到的关于a k 的代数方程组是相同的.。
偏微分方程数值解的计算方法偏微分方程是研究自然和社会现象的重要工具。
然而,大多数偏微分方程很难用解析方法求解,需要用数值方法求解。
本文将介绍偏微分方程数值解的计算方法,其中包括有限差分方法、有限体积法、谱方法和有限元方法。
一、有限差分方法有限差分法是偏微分方程数值解的常用方法,它将偏微分方程中的空间变量转换为网格点上的差分近似。
例如,对于一个二阶偏微分方程:$$\frac{\partial^{2}u}{\partialx^{2}}+\frac{\partial^{2}u}{\partial y^{2}}=f(x,y,u)$$可以使用中心差分方法进行近似:$$\frac{\partial^{2}u}{\partial x^{2}}\approx \frac{u_{i+1,j}-2u_{i,j}+u_{i-1,j}}{(\Delta x)^{2}}$$$$\frac{\partial^{2}u}{\partial y^{2}}\approx \frac{u_{i,j+1}-2u_{i,j}+u_{i,j-1}}{(\Delta y)^{2}}$$其中,$u_{i,j}$表示在第$i$行第$j$列的网格点上的函数值,$\Delta x$和$\Delta y$表示网格步长。
将差分近似代入原方程中,得到如下的差分方程:$$\frac{u_{i+1,j}-2u_{i,j}+u_{i-1,j}}{(\Deltax)^{2}}+\frac{u_{i,j+1}-2u_{i,j}+u_{i,j-1}}{(\Deltay)^{2}}=f_{i,j,u_{i,j}}$$该方程可以用迭代法求解。
有限差分方法的优点是易于实现,但在均匀网格下准确性不高。
二、有限体积法有限体积法是将偏微分方程中的积分形式转换为求解网格单元中心值的方法。
例如,对于如下的扩散方程:$$\frac{\partial u}{\partial t}=\frac{\partial}{\partialx}\left(D(u)\frac{\partial u}{\partial x}\right)$$可以使用有限体积法进行近似。