偏微分方程数值解52059
- 格式:ppt
- 大小:4.98 MB
- 文档页数:146
第十章 偏微分方程数值解法偏微分方程问题,其求解十分困难。
除少数特殊情况外,绝大多数情况均难以求出精确解。
因此,近似解法就显得更为重要。
本章仅介绍求解各类典型偏微分方程定解问题的差分方法。
§1 差分方法的基本概念1.1 几类偏微分方程的定解问题椭圆型方程:其最典型、最简单的形式是泊松(Poisson )方程),(2222y x f yu x u u =∂∂+∂∂=∆ 特别地,当0),(≡y x f 时,即为拉普拉斯(Laplace )方程,又称为调和方程2222=∂∂+∂∂=∆yux u u Poisson 方程的第一边值问题为⎪⎩⎪⎨⎧Ω∂=Γ=Ω∈=∂∂+∂∂Γ∈),(),(),(),(),(2222y x y x u y x y x f y ux u y x ϕ 其中Ω为以Γ为边界的有界区域,Γ为分段光滑曲线,ΓΩ称为定解区域,),(y x f ,),(y x ϕ分别为Ω,Γ上的已知连续函数。
第二类和第三类边界条件可统一表示为),(),(y x u u y x ϕα=⎪⎪⎭⎫ ⎝⎛+∂∂Γ∈n 其中n 为边界Γ的外法线方向。
当0=α时为第二类边界条件, 0≠α时为第三类边界条件。
抛物型方程:其最简单的形式为一维热传导方程220(0)u ua a t x∂∂-=>∂∂ 方程可以有两种不同类型的定解问题:初值问题⎪⎩⎪⎨⎧+∞<<∞-=+∞<<-∞>=∂∂-∂∂x x x u x t x u a tu )()0,(,0022ϕ初边值问题221200,0(,0)()0(0,)(),(,)()0u ua t T x l t x u x x x lu t g t u l t g t t Tϕ⎧∂∂-=<<<<⎪∂∂⎪⎪=≤≤⎨⎪==≤≤⎪⎪⎩其中)(x ϕ,)(1t g ,)(2t g 为已知函数,且满足连接条件)0()(),0()0(21g l g ==ϕϕ边界条件)(),(),(),0(21t g t l u t g t u ==称为第一类边界条件。
双曲型方程的有限差分法线性双曲型方程定解问题: (a )一阶线性双曲型方程()0=∂∂+∂∂xux a t u (b )一阶常系数线性双曲型方程组0=∂∂+∂∂xt uA u 其中A ,s 阶常数方程方阵,u 为未知向量函数。
(c )二阶线性双曲型方程(波动方程)()022=⎪⎭⎫⎝⎛∂∂∂∂-∂∂x u x a x t u()x a 为非负函数(d )二维,三维空间变量的波动方程0222222=⎪⎪⎭⎫⎝⎛∂∂+∂∂-∂∂y u x u t u 022222222=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂-∂∂z u y u xu t u §1 波动方程的差分逼近 1.1 波动方程及其特征线性双曲型偏微方程的最简单模型是一维波动方程:(1.1) 22222x u a t u ∂∂=∂∂ 其中0>a 是常数。
(1.1)可表示为:022222=∂∂-∂∂x u a t u ,进一步有 0=⎪⎭⎫ ⎝⎛∂∂+∂∂⋅⎪⎭⎫ ⎝⎛∂∂-∂∂u x a t x a t由于x a t ∂∂±∂∂当a dt dx ±=时为()t x u ,的全导数(=dt du dt dx x u t u ⋅∂∂+∂∂xua t u ∂∂±∂∂=),故由此定出两个方向(1.3)adx dt 1±= 解常微分方程(1.3)得到两族直线(1.4) 1C t a x =⋅+ 和 2C t a x =⋅- 称其为特征。
特征在研究波动方程的各种定解问题时,起着非常重要的作用。
比如,我们可通过特征给出(1.1)的通解。
(行波法、特征线法) 将(1.4)视为),(t x 与),(21C C 之间的变量替换。
由复合函数的微分法则212211C uC u x C C u x C C u x u ∂∂+∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂ xC C u C u C x C C u C u C x u ∂∂⎪⎪⎭⎫ ⎝⎛∂∂+∂∂∂∂+∂∂⎪⎪⎭⎫ ⎝⎛∂∂+∂∂∂∂=∂∂2212121122 222122212212C u C C u C C u C u ∂∂+∂∂∂+∂∂∂+∂∂= 2222122122C uC C u C u ∂∂+∂∂∂+∂∂= 同理可得a t t a t C -=∂∂-=∂∂1,a tC=∂∂2 ⎪⎪⎭⎫⎝⎛∂∂-∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂212211C u C u a t C C u t C C u t u t C C u C u a C u t C C u C u a C t u ∂∂⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛∂∂-∂∂⋅∂∂+∂∂⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛∂∂-∂∂⋅∂∂=∂∂2122112122 ⎥⎦⎤⎢⎣⎡∂∂∂-∂∂+⎥⎦⎤⎢⎣⎡∂∂-∂∂∂-=21222222221222C C u C u a C u C C u a ⎥⎦⎤⎢⎣⎡∂∂+∂∂∂-∂∂=22221221222C u C C u C u a 将22x u ∂∂和22tu∂∂代入(1.1)可得:⎥⎦⎤⎢⎣⎡∂∂+∂∂∂-∂∂22221221222C u C C u C u a ⎥⎦⎤⎢⎣⎡∂∂+∂∂∂+∂∂=22221221222C u C C u C u a 即有0212=∂∂∂C C u求其对2C 的积分得:()11C f C u=∂∂ 其中()1C f 是1C 的任意可微函数。
第十章偏微分方程的数值解第十章偏微分方程的数值解求解偏微分方程问题非常困难。
除了少数特殊情况,在大多数情况下很难找到准确的解决方案。
因此,近似解更重要。
本章只介绍求解各种典型偏微分方程定解问题的差分方法。
(1)差分方法的基本概念 1.1几种偏微分方程固定解的椭圆方程;最典型和最简单的形式是泊松方程。
特别是,在那个时候,它是拉普拉斯方程,也称为调和方程。
泊松方程的第一个边值问题是一个有边界的有界区域,一条分段光滑曲线,称为固定解区域,以及已知的连续函数。
第二类和第三类边界条件可以统一表示为边界的外法线方向。
当时,这是第二种边界条件,当时,这是第三种边界条件。
抛物线方程:在最简单的形式中,一维热传导方程可以有两种不同类型的定解:初值问题初边值问题在初边值问题中,是一个已知的函数,满足连接条件,边界条件称为第一类边界条件。
第二个和第三个边界条件在其中。
当时,它是第二类边界条件,否则它被称为第三类边界条件。
双曲线方程:的最简单形式是一阶双曲线方程。
物理学中常见的一维振动和波动问题可以用二阶波动方程来描述,二阶波动方程是双曲方程的一种典型形式。
方程的初值问题是一个边界条件,一般有三种类型。
最简单的初边值问题是1.2差分法。
差分法的基本概念也称为有限差分法或网格法。
它是求解偏微分方程定解问题数值解最广泛使用的方法之一。
其基本思想是:首先,对求解区域进行网格划分,用一组有限离散点(网格点)代替自变量的连续变化区域。
问题中出现的连续变量的函数被定义在网格点上的离散变量的函数所代替。
通过用网格点上函数的差商代替导数,将具有连续变量的偏微分方程的固定解问题转化为只有有限个未知数的代数方程(称为差分格式)。
当网格为无穷大时,如果差分格式有解,并且其解收敛于原微分方程的解,则差分格式的解作为原问题的近似解(数值解)。
因此,在用差分法求偏微分方程的定解时,通常需要解决以下问题:(1)选择网格;(2)选择微分方程和固定解条件的差分逼近,列出差分格式;(3)求解差分方案;(4)讨论微分方程差分格式解的收敛性和误差估计。