偏微分方程数值解概论
- 格式:ppt
- 大小:1.63 MB
- 文档页数:37
偏微分方程数值解偏微分方程数值解起源时间微积分方程这门学科产生于十八世纪,欧拉在他的著作中最早提出了弦振动的二偏微分方程阶方程,随后不久,法国数学家达朗贝尔也在他的著作《论动力学》中提出了特殊的偏微分方程。
这些著作当时没有引起多大注意。
1746年,达朗贝尔在他的论文《张紧的弦振动时形成的曲线的研究》中,提议证明无穷多种和正弦曲线不同的曲线是振动的模式。
这样就由对弦振动的研究开创了偏微分方程这门学科;和欧拉同时代的瑞士数学家丹尼尔·贝努利也研究了数学物理方面的问题,提出了解弹性系振动问题的一般方法,对偏微分方程的发展起了比较大的影响。
拉格朗日也讨论了一阶偏微分方程,丰富了这门学科的内容。
偏微分方程得到迅速发展是在十九世纪,那时候,数学物理问题的研究繁荣起来了,许多数学家都对数学物理问题的解决做出了贡献。
这里应该提一提法国数学家傅立叶,他年轻的时候就是一个出色的数学学者。
在从事热流动的研究中,写出了《热的解析理论》,在文章中他提出了三维空间的热方程,也就是一种偏微分方程。
他的研究对偏微分方程的发展的影响是很大的。
偏微分方程是什么样的?它包括哪些内容?这里我们可从一个例子的研究加以偏微分方程介绍。
弦振动是一种机械运动,当然机械运动的基本定律是质点力学的F=ma,但是弦并不是质点,所以质点力学的定律并不适用在弦振动的研究上。
然而,如果我们把弦细细地分成若干个极小极小的小段,每一小段抽象地看作是一个质点,这样我们就可以应用质点力学的基本定律了。
弦是指又细又长的弹性物质,比如弦乐器所用的弦就是细长的、柔软的、带有弹性的。
演奏的时候,弦总是绷紧着具有一种张力,这种张力大于弦的重量几万倍。
当演奏的人用薄片拨动或者用弓在弦上拉动,虽然只因其所接触的一段弦振动,但是由于张力的作用,传播到使整个弦振动起来;用微分的方法分析可得到弦上一点的位移是这一点所在的位置和时间为自变量的偏微分方程。
偏方程又很多种类型,一般包括椭圆型偏微分方程、抛物型偏微分方程、双曲型偏微分方程。
偏微分方程数值解之偏微分方程的定解问题偏微分方程数值解之偏微分方程的定解问题自然科学与工程技术中种种运动发展过程与平衡现象各自遵守一定的规律。
这些规律的定量表述一般地呈现为关于含有未知函数及其导数的方程。
我们将只含有未知多元函数及其偏导数的方程,称之为偏微分方程。
方程中出现的未知函数偏导数的最高阶数称为偏微分方程的阶。
如果方程中对于未知函数和它的所有偏导数都是线性的,这样的方程称为线性偏微分方程,否则称它为非线性偏微分方程。
初始条件和边界条件称为定解条件,未附加定解条件的偏微分方程称为泛定方程。
对于一个具体的问题,定解条件与泛定方程总是同时提出。
定解条件与泛定方程作为一个整体,称为定解问题。
偏微分方程的定解问题各种物理性质的定常(即不随时间变化)过程,都可用椭圆型方程来描述。
其最典型、最简单的形式是泊松(Poisson)方程特别地,当f (x, y) ≡0 时,即为拉普拉斯(Laplace)方程,又称为调和方程带有稳定热源或内部无热源的稳定温度场的温度分布,不可压缩流体的稳定无旋流动及静电场的电势等均满足这类方程。
Poisson 方程的第一边值问题为其中Ω为以Γ为边界的有界区域,Γ为分段光滑曲线,ΩU Γ称为定解区域, f (x, y),?(x, y) 分别为Ω,Γ上的已知连续函数。
第二类和第三类边界条件可统一表示成其中n 为边界Γ的外法线方向。
当α= 0 时为第二类边界条件,α≠0时为第三类边界条件。
在研究热传导过程,气体扩散现象及电磁场的传播等随时间变化的非定常物理问题时,常常会遇到抛物型方程。
其最简单的形式为一维热传导方程。
方程(5)可以有两种不同类型的定解问题:初值问题(也称为Cauchy 问题)其中?(x), g1 (t), g2 (t)为已知函数,且满足连接条件问题(7)中的边界条件称为第一类边界条件。
第二类和第三类边界条件为其中为第二类边界条件,否则称为第三类边界条件。
双曲型方程的最简单形式为一阶双曲型方程物理中常见的一维振动与波动问题可用二阶波动方程描述,它是双曲型方程的典型形式。
第十章偏微分方程的数值解第十章偏微分方程的数值解求解偏微分方程问题非常困难。
除了少数特殊情况,在大多数情况下很难找到准确的解决方案。
因此,近似解更重要。
本章只介绍求解各种典型偏微分方程定解问题的差分方法。
(1)差分方法的基本概念 1.1几种偏微分方程固定解的椭圆方程;最典型和最简单的形式是泊松方程。
特别是,在那个时候,它是拉普拉斯方程,也称为调和方程。
泊松方程的第一个边值问题是一个有边界的有界区域,一条分段光滑曲线,称为固定解区域,以及已知的连续函数。
第二类和第三类边界条件可以统一表示为边界的外法线方向。
当时,这是第二种边界条件,当时,这是第三种边界条件。
抛物线方程:在最简单的形式中,一维热传导方程可以有两种不同类型的定解:初值问题初边值问题在初边值问题中,是一个已知的函数,满足连接条件,边界条件称为第一类边界条件。
第二个和第三个边界条件在其中。
当时,它是第二类边界条件,否则它被称为第三类边界条件。
双曲线方程:的最简单形式是一阶双曲线方程。
物理学中常见的一维振动和波动问题可以用二阶波动方程来描述,二阶波动方程是双曲方程的一种典型形式。
方程的初值问题是一个边界条件,一般有三种类型。
最简单的初边值问题是1.2差分法。
差分法的基本概念也称为有限差分法或网格法。
它是求解偏微分方程定解问题数值解最广泛使用的方法之一。
其基本思想是:首先,对求解区域进行网格划分,用一组有限离散点(网格点)代替自变量的连续变化区域。
问题中出现的连续变量的函数被定义在网格点上的离散变量的函数所代替。
通过用网格点上函数的差商代替导数,将具有连续变量的偏微分方程的固定解问题转化为只有有限个未知数的代数方程(称为差分格式)。
当网格为无穷大时,如果差分格式有解,并且其解收敛于原微分方程的解,则差分格式的解作为原问题的近似解(数值解)。
因此,在用差分法求偏微分方程的定解时,通常需要解决以下问题:(1)选择网格;(2)选择微分方程和固定解条件的差分逼近,列出差分格式;(3)求解差分方案;(4)讨论微分方程差分格式解的收敛性和误差估计。
偏微分方程:《偏微分方程》共分八章:第一章为绪论;第二、三章分别介绍了一阶方程、具有两个自变量的二阶方程的基本知识;第四、五、六章分别介绍了三类基本方程:波动方程、热传导方程和Laplace方程的定解问题的适定性、求解方法及解的性质;第七章主要介绍了一阶拟线性双曲守恒律方程组的一些基本知识;第八章介绍了Cauehy-Kovalevskaya定理。
另有两个附录:Fourier反演公式;Li-Yau估计。
《偏微分方程》不仅把注意力集中在传统的偏微分方程基础知识上,而且还有目的地介绍一些当代数学知识,譬如在几何分析中具有重要作用的Li-Yau估计和Hamack不等式等。
《偏微分方程》的另一特点是,除在每节后面为读者准备了一些习题之外,还在一些章节后面为读者准备了一些思考题和“开放问题(open problem)”。
这些问题具有一定的启发性,对提高学生对本门课程的学习兴趣有很大帮助。
偏微分方程数值解:通过数值计算方法,在计算机上对偏微分方程的近似求解。
科学和工程中的大多数实际问题都归结为偏微分方程的定解问题,由于很难求得这些定解问题的解析解(在经典意义下甚至没有解),人们转向求解它们的数值近似解。
简介:通过数值计算方法,在计算机上对偏微分方程的近似求解。
科学和工程中的大多数实际问题都归结为偏微分方程的定解问题,由于很难求得这些定解问题的解析解(在经典意义下甚至没有解),人们转向求解它们的数值近似解。
通常先对问题的求解区域进行网格剖分,然后基于有限元法、有限差分法和有限体积法等数值方法,对原定解问题或其等价形式离散,并归结为一个线性代数方程组,最终在计算机上求得精确解在离散网格点上的近似值。
求解涉及数值方法及其理论分析(稳定性、收敛性、误差估计)、计算机上的实现等一系列问题。
求解效率:求解的效率,一方面依赖计算机运行的速度,另一方面也依赖数值方法或算法,而且这方而更为重要。
自从1946年第一台电子计算问世(运行速度每秒500次乘法),到目前的千万亿次的超级计算机,计算速度得到了飞速发展。
李治平偏微分方程数值解讲义【李治平偏微分方程数值解讲义】知识文章一、前言在现代科学和工程中,偏微分方程是一种非常重要的数学工具,常常用于描述自然界各种现象和规律。
而对于偏微分方程的数值解法,也是数值计算中的一个重要分支。
本文将围绕着李治平教授的偏微分方程数值解讲义展开讨论,详细探究其中的价值和意义。
二、总览李治平教授的偏微分方程数值解讲义李治平教授的偏微分方程数值解讲义是在对数值计算和偏微分方程研究领域拥有丰富经验的学者对该领域的总结和共享。
其讲义通过结合理论和实践,系统地介绍了偏微分方程的数值解方法及其在实际问题中的应用。
涵盖了有限差分法、有限元法、谱方法等多种数值解法,还对常见的偏微分方程进行了具体案例分析,展现了其深度和广度。
三、深度分析1. 有限差分法有限差分法是一种常见的偏微分方程数值解法,它将偏微分方程中的导数用离散的差分表示,通过有限差分逼近来求解偏微分方程的近似解。
在李治平教授的讲义中,对有限差分法的原理和应用进行了详细介绍,并结合了具体的案例来展示其解题过程和应用效果。
2. 有限元法有限元法是一种更为精确的数值解法,它将求解区域划分成有限个单元,通过建立单元之间的关系来逼近原偏微分方程的解。
在讲义中,李治平教授对有限元法的算法和实现进行了深入讲解,并指导学生如何应用该方法解决实际问题,具有很高的指导意义。
3. 谱方法谱方法是一种基于傅里叶级数展开的数值解法,它通过将方程中的未知函数表示成正交多项式的线性组合,来逼近原偏微分方程的解。
与有限差分法和有限元法相比,谱方法在精度和稳定性上更具优势。
在讲义中,李治平教授对谱方法的理论和实践进行了讲解,并指引学生如何利用该方法处理实际问题。
四、回顾与展望李治平教授的偏微分方程数值解讲义涵盖了丰富的内容,深入浅出地介绍了多种数值解法及其应用。
通过学习这门课程,可以帮助学生建立起对偏微分方程数值解的深刻理解,并掌握相关的数值计算技能。
未来,随着科学技术的发展和应用的拓展,偏微分方程数值解将会更加广泛地应用于各个领域,因此这门讲义的价值和意义将会更加凸显。
偏微分方程的数值解法和应用偏微分方程(Partial Differential Equation,PDE)是数学中的一个重要研究领域,它是数学建模和物理学、工程学中的重要工具之一。
通常情况下,我们可以通过一些解析方法求得偏微分方程的解析解,但是这种方法并不适用于所有情况,因此,数值解法的研究具有重要意义。
一、偏微分方程的求解偏微分方程的求解可以分为两类:解析解和数值解。
解析解是指通过一些解析方法求得的该方程的精确解,而数值解是指通过一些数值计算方法求得的该方程的近似解。
1. 解析解对于简单的偏微分方程,我们可以通过分离变量、变换变量、特征线等方法求得其解析解。
例如,对于泊松方程:$$\nabla^2 u=f(x,y)$$我们可以通过分离变量的方法得到:$$u(x,y)=\sum_{n=1}^\infty\sum_{m=1}^\infty a_{nm} \sin\frac{n\pi x}{L} \sin\frac{m\pi y}{W}$$其中:$$a_{nm}=\frac{4}{nm\pi^2}\int_0^W\int_0^L f(x,y)\sin\frac{n\pi x}{L}\sin\frac{m\pi y}{W} dx dy$$这是一个完整的解析解,可以用于解决实际问题。
然而,大多数情况下,偏微分方程并没有解析解,因此我们需要寻求数值解法。
2. 数值解在实际工程问题中,偏微分方程往往具有复杂的形式,不可能通过解析方法求得其解析解。
这时,我们需要使用计算机数值方法求得其数值解。
数值解法中的常见方法包括:差分方法、有限元法、有限体积法、谱方法、边界元法等。
其中,有限元法和有限体积法是比较常用的数值解法。
有限元法(Finite Element Method,FEM)是一种将求解区域离散为许多小单元的方法,把偏微分方程转化为一个线性方程组。
在有限元法中,通常采用三角形或四边形做为单元。
具体的,有限元法的步骤如下:(1)离散化:将求解区域划分成若干个小单元,对单元内的未知函数用多项式进行逼近。