走向高考全国数学A本文科教师讲义手册
- 格式:pptx
- 大小:397.30 KB
- 文档页数:41
基础巩固强化一、选择题1.(文)下列各函数中,()是R上的偶函数() A.y=x2-2x B.y=2xC.y=cos2x D.y=1|x|-1[答案] C[解析]A、B不是偶函数,D的定义域{x∈R|x≠±1}不是R,故选C.(理)(2012·洛阳示范高中联考)下列函数中,既是偶函数又在(0,+∞)单调递增的函数是()A.y=x3B.y=|x|+1C.y=-x2+1 D.y=2-|x|[答案] B[解析]y=x3是奇函数,y=-x2+1与y=2-|x|在(0,+∞)上为减函数,故选B.2.若函数f(x)是定义在R上的偶函数,在(-∞,0]上是减函数,且f(2)=0,则使得f(x)<0的x的取值范围是()A.(-∞,2) B.(-2,2)C.(-∞,-2)∪(2,+∞) D.(2,+∞)[答案] B[解析]∵f(x)是定义在R上的偶函数,在(-∞,0]上是减函数,∴f(x)在(0,+∞)上为增函数,由f(x)<f(2)得f (|x |)<f (2),∴|x |<2,∴-2<x <2.3.(文)若奇函数f (x )(x ∈R )满足f (3)=1,f (x +3)=f (x )+f (3),则f ⎝ ⎛⎭⎪⎫32等于( ) A .0 B .1 C.12 D .-12 [答案] C[解析] 在f (x +3)=f (x )+f (3)中取x =-32得,f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫-32+f (3),∵f (x )是奇函数,且f (3)=1,∴f ⎝ ⎛⎭⎪⎫32=12. [点评] 解答此类题目,一般先看给出的值和待求值之间可以通过条件式怎样赋值才能产生联系,赋值时同时兼顾奇偶性或周期性的运用.(理)(2013·湖南)已知f (x )是奇函数,g (x )是偶函数,且f (-1)+g (1)=2,f (1)+g (-1)=4,则g (1)等于( )A .4B .3C .2D .1 [答案] B[解析] 本题考查的是函数的奇偶性及方程组的解法. ∵f (x )是奇函数,g (x )是偶函数,∴f (-1)=-f (1),g (-1)=g (1)由⎩⎪⎨⎪⎧ f (-1)+g (1)=2,f (1)+g (-1)=4,得⎩⎪⎨⎪⎧-f (1)+g (1)=2,f (1)+g (1)=4,所以g (1)=3.故选B.4.(文)(2013·宁夏育才中学模拟)已知函数f (x )=sin(2x -π4),若存在α∈(0,π)使得f (x +α)=f (x +3α)恒成立,则α等于( )A.π6B.π3C.π4D.π2[答案] D[解析] 由f (x +α)=f (x +3α)得f (x )=f (x +2α), ∴f (x )周期为2α,又α∈(0,π),所以α=π2.(理)(2014·华师附中检测)已知函数f (x )是定义域为R 的偶函数,且f (x +1)=-f (x ),若f (x )在[-1,0]上是减函数,那么f (x )在[1,3]上是( )A .增函数B .减函数C .先增后减的函数D .先减后增的函数[答案] D[解析] 由f (x +1)=-f (x )得,f (x +2)=f (x ), ∴f (x )的周期为2.∵f (x )在[-1,0]上为减函数,f (x )为偶函数,∴f (x )在[0,1]上为增函数,∴f (x )在[1,2]上单调递减,在[2,3]上单调递增,故选D.5.(2013·宁夏育才中学模拟)若奇函数f (x )在R 上是增函数,且a +b >0,则有( )A .f (a )-f (b )>0B .f (a )+f (b )<0C .f (a )+f (b )>0D .f (a )-f (b )<0 [答案] C[解析] 由a +b >0得a >-b ,因为f (x )在R 上是奇函数且为增函数,所以f (a )>f (-b ),即f (a )>-f (b ),故选C.6.(2013·琼海市嘉积中学质检)已知f (x )是R 上最小正周期为2的周期函数,且当0≤x <2时,f (x )=x 3-x ,则函数y =f (x )在区间[0,6]上零点的个数有( )A .6个B .7个C .8个D .9个[答案] B[解析] 当0≤x <2时,f (x )=x 3-x ,则有f (0)=f (1)=0,又f (x )是R 上最小正周期为2的周期函数,所以函数y =f (x )在区间[0,6]上有f (0)=f (2)=f (4)=f (6)=0,f (1)=f (3)=f (5)=0,所以有7个.二、填空题7.已知函数y =f (x )是偶函数,y =g (x )是奇函数,它们的定义域都是[-π,π],且它们在x ∈[0,π]上的图象如图所示,则不等式f (x )g (x )<0的解集是________.[答案] ⎝ ⎛⎭⎪⎫-π3,0∪⎝ ⎛⎭⎪⎫π3,π [解析] 依据偶函数的图象关于y 轴对称,奇函数的图象关于原点对称,先补全f (x )、g (x )的图象,∵f (x )g (x )<0,∴⎩⎪⎨⎪⎧ f (x )<0,g (x )>0.或⎩⎪⎨⎪⎧f (x )>0,g (x )<0.观察两函数的图象,其中一个在x 轴上方,一个在x 轴下方的,即满足要求,∴-π3<x <0或π3<x <π.8.若函数f (x )=a -e x1+a e x(a 为常数)在定义域上为奇函数,则实数a的值为________.[答案] 1或-1[解析] f (-x )=a -e -x 1+a e -x =a e x -1e x +af (x )+f (-x )=(a -e x )(a +e x )+(1+a e x )(a e x -1)(1+a e x )(e x +a )=a 2-e 2x +a 2e 2x -1(1+a e x )(e x +a )=0恒成立, 所以a =1或-1.9.(2013·银川质检)已知定义在R 上的偶函数满足:f (x +4)=f (x )+f (2),且当x ∈[0,2]时,y =f (x )单调递减,给出以下四个命题:①f (2)=0;②x =-4为函数y =f (x )图象的一条对称轴; ③函数y =f (x )在[8,10]上单调递增;④若方程f (x )=m 在[-6,-2]上的两根为x 1,x 2,则x 1+x 2=-8.以上命题中所有正确命题的序号为________. [答案] ①②④[解析] 令x =-2,得f (2)=f (-2)+f (2),即f (-2)=0.又函数f (x )是偶函数,故f (2)=0,①正确;根据f (2)=0可得f (x +4)=f (x ),所以函数f (x )的周期是4,由于偶函数的图象关于y 轴对称,故x =-4也是函数y =f (x )的图象的一条对称轴,②正确;根据函数的周期性可知,函数f (x )在[8,10]上单调递减,③不正确;由于函数f (x )的图象关于直线x =-4对称,故如果方程f (x )=m 在区间[-6,-2]上的两极为x 1,x 2,则x 1+x 22=-4,即x 1+x 2=-8,④正确.故正确命题的序号为①②④.三、解答题10.(2012·扬州模拟)已知函数f (x )对任意x 、y ∈R ,都有f (x +y )=f (x )+f (y ),且x >0时,f (x )<0,f (1)=-2.(1)求证:f (x )是奇函数;(2)求f (x )在[-3,3]上的最大值和最小值.[解析] (1)证明:令x =y =0,知f (0)=0;再令y =-x ,则f (0)=f (x )+f (-x )=0,∴f (-x )=-f (x ),∴f (x )为奇函数.(2)解:对任意x 1、x 2∈[-3,3],设x 1<x 2,则x 2-x 1>0,∴f (x 2-x 1)=f [x 2+(-x 1)]=f (x 2)+f (-x 1)=f (x 2)-f (x 1)<0,∴f (x )为减函数.而f (3)=f (2+1)=f (2)+f (1)=3f (1)=-6,f (-3)=-f (3)=6.∴f (x )max =f (-3)=6,f (x )min =f (3)=-6.能力拓展提升一、选择题11.(2012·山西四校联考)已知函数f (x )=⎩⎨⎧(a -2)x ,x ≥2,(12)x-1,x <2,满足对任意的实数x 1≠x 2都有f (x 1)-f (x 2)x 1-x 2<0成立,则实数a 的取值范围为( )A .(-∞,2)B .(-∞,138] C .(-∞,2] D .[138,2)[答案] B[解析] 函数f (x )是R 上的减函数,于是有⎩⎨⎧a -2<0,(a -2)×2≤(12)2-1,由此解得a ≤138,即实数a 的取值范围是(-∞,138],选B.12.(文)已知函数f (x )是R 上的偶函数,g (x )是R 上的奇函数,且g (x )=f (x -1),若g (1)=2,则f (2014)的值为( )A .2B .0C .-2D .±2[答案] C[解析] 由已知:g (-x )=f (-x -1), 又g (x )、f (x )分别为R 上的奇、偶函数,∴-g (x )=f (x +1),∴f (x -1)=-f (x +1),∴f (x )=-f (x +2),∴f (x )=f (x +4),即f (x )的周期T =4,∴f (2014)=f (2)=g (-1)=-g (1)=-2,故选C.(理)已知函数f (x )满足:f (1)=2,f (x +1)=1+f (x )1-f (x ),则f (2015)等于( )A .2B .-3C .-12 D.13 [答案] C[解析] 由条件知,f (2)=-3,f (3)=-12,f (4)=13,f (5)=f (1)=2,故f (x +4)=f (x )(x ∈N *).∴f (x )的周期为4, 故f (2015)=f (3)=-12. [点评] 严格推证如下: f (x +2)=1+f (x +1)1-f (x +1)=-1f (x ),∴f (x +4)=f [(x +2)+2]=1-f (x +2)=f (x ).即f (x )周期为4.故f (4k +x )=f (x ),(x ∈N *,k ∈N *),13.(文)(2012·江西盟校二联)函数f (x )是周期为4的偶函数,当x ∈[0,2]时,f (x )=x -1,则不等式xf (x )>0在[-1,3]上的解集为( )A .(1,3)B .(-1,1)C .(-1,0)∪(1,3)D .(-1,0)∪(0,1)[答案] C[解析] f (x )的图象如图所示.当x ∈(-1,0)时,由xf (x )>0,得,x ∈(-1,0); 当x ∈(0,1)时,由xf (x )>0得,x 无解; 当x ∈(1,3)时,由xf (x )>0得,x ∈(1,3).∴x ∈(-1,0)∪(1,3),故选C.(理)(2013·芜湖一模)函数y =f (x )的定义域为[-2,0)∪(0,2],其图象上任一点P (x ,y )满足x 24+y 2=1,若函数y =f (x )的值域是(-1,1),则f (x )一定是( )A .奇函数B .偶函数C .单调函数D .幂函数[答案] A[解析] 设P (x ,y )在函数图象上,则由条件知P ′(-x ,-y )也在函数图象上,所以f (-x )=-f (x ),函数一定是奇函数,但不能确定函数是不是单调函数,是不是幂函数,故选A.二、填空题14.(2012·福州质检)已知集合M 是满足下列条件的函数f (x )的全体:(1)f (x )既不是奇函数也不是偶函数;(2)函数f (x )有零点.那么在函数①f (x )=|x |-1,②f (x )=2x -1,③f (x )=⎩⎪⎨⎪⎧x -2,x >0,0,x =0,x +2,x <0,④f (x )=x 2-x -1+ln x 中,属于M 的有________.(写出所有符合条件的函数序号)[答案] ②④[解析] 对于①,∵f (-x )=|-x |-1=|x |-1,∴f (x )=|x |-1是偶函数,∴①不符合条件;易知f (x )=2x -1既不是奇函数也不是偶函数,且有一个零点x =0,∴②符合条件;对于③,令x >0,则-x <0,∴f (x )=x -2,f (-x )=-x +2=-(x -2),即f (x )=-f (-x ),又f (0)=0,∴f (x )=⎩⎪⎨⎪⎧x -2,x >0,0,x =0,x +2,x <0,是奇函数,∴③不符合条件;对于④,函数f (x )=x 2-x -1+ln x 的定义域为(0,+∞),故它既不是奇函数也不是偶函数,∵f ′(x )=2x -1+1x =2x 2-x +1x=2(x -14)2+78x >0,∴函数f (x )在(0,+∞)上单调递增,又f (1)=1-1-1+0=-1<0,f (e)=e 2-e -1+1=e(e -1)>0,∴函数f (x )在(1,e)上存在零点,∴④符合条件.故应填②④.15.(2013·吉林质检)已知函数f (x )满足下面关系: (1)f (x +π2)=f (x -π2);(2)当x ∈(0,π]时,f (x )=-cos x . 给出下列命题: ①函数f (x )是周期函数; ②函数f (x )是奇函数;③函数f (x )的图象关于y 轴对称; ④方程f (x )=lg|x |解的个数是8.其中正确命题的序号是________(把正确命题的序号都填上). [答案] ①④[解析] 由f (x +π2)=f (x -π2),可得f (x +π)=f (x ),即可得函数f (x )是以π为周期的周期函数,即命题①正确;又由f (0)=f (π)=-cosπ=1≠0可知,函数f (x )不是奇函数,即命题②不正确;由f (-π3)=f (2π3)=-cos 2π3=12≠f (π3)=-12,可得函数f (x )不是偶函数,其函数图象不关于y 轴对称,即命题③不正确;函数f (x )与函数y =lg|x |在同一坐标系下的图象如图所示,由图示可得,方程f (x )=lg|x |有8个解,即命题④正确.综上可得正确的命题的序号是①④.三、解答题16.(文)已知集合M 是满足下列性质的函数f (x )的全体:存在非零常数T ,对任意x ∈R ,有f (x +T )=Tf (x )成立.(1)函数f (x )=x 是否属于集合M ?说明理由;(2)设f (x )∈M ,且T =2,已知当1<x <2时,f (x )=x +ln x ,当-3<x <-2时,求f (x )的解析式.[解析] (1)假设函数f (x )=x 属于集合M ,则存在非零常数T ,对任意x ∈R ,有f (x +T )=Tf (x )成立,即x +T =Tx 成立.令x =0,得T =0,与题目矛盾.故f (x )∉M .(2)f (x )∈M ,且T =2,则对任意x ∈R ,有f (x +2)=2f (x ). 设-3<x <-2,则1<x +4<2. 又f (x )=12f (x +2)=14f (x +4), 且当1<x <2时,f (x )=x +ln x ,故当-3<x <-2时,f (x )=14[x +4+ln(x +4)]. (理)已知函数f (x )=log a 1-mxx -1(a >0且a ≠1)是奇函数.(1)求m 的值;(2)判断f (x )在区间(1,+∞)上的单调性并加以证明;(3)当a >1,x ∈(1,3)时,f (x )的值域是(1,+∞),求a 的值. [解析] (1)∵f (x )是奇函数,x =1不在f (x )的定义域内,∴x =-1也不在函数定义域内,令1-m ·(-1)=0得m =-1. (也可以由f (-x )=-f (x )恒成立求m ) (2)由(1)得f (x )=log a x +1x -1(a >0且a ≠1),任取x 1、x 2∈(1,+∞),且x 1<x 2,令t (x )=x +1x -1,则t (x 1)=x 1+1x 1-1,t (x 2)=x 2+1x 2-1,∴t (x 1)-t (x 2)=x 1+1x 1-1-x 2+1x 2-1=2(x 2-x 1)(x 1-1)(x 2-1), ∵x 1>1,x 2>1,x 1<x 2, ∴x 1-1>0,x 2-1>0,x 2-x 1>0. ∴t (x 1)>t (x 2),即x 1+1x 1-1>x 2+1x 2-1,∴当a >1时,log a x 1+1x 1-1>log a x 2+1x 2-1,即f (x 1)>f (x 2);当0<a <1时,log a x 1+1x 1-1<log a x 2+1x 2-1,即f (x 1)<f (x 2),∴当a >1时,f (x )在(1,+∞)上是减函数,当0<a <1时,f (x )在(1,+∞)上是增函数.(3)∵a >1,∴f (x )在(1,3)上是减函数,∴当x ∈(1,3)时,f (x )>f (3)=log a (2+3), 由条件知,log a (2+3)=1,∴a =2+ 3.考纲要求结合具体函数,了解函数奇偶性及周期性的含义. 补充说明1.牢记:奇(偶)函数的定义域关于原点对称;奇函数若在x =0处有定义,则f (0)=0;奇偶函数单调性,图象对称性.2.把握四个考向:奇偶性判断;由奇偶性求参数值;求周期;函数性质的综合应用.3.突破三个难点综合利用奇偶性、周期性求函数值;抽象函数性质讨论;函数不等式求解.备选习题1.(2013·济南模拟)设偶函数f (x )对任意x ∈R ,都有f (x +3)=-1f (x ),且当x ∈[-3,-2]时,f (x )=4x ,则f (107.5)=( ) A .10 B.110 C .-10 D .-110[答案] B[解析] 由f (x +6)=f (x )知该函数为周期函数, 所以f (107.5)=(6×18-12)=f (-12)=-1f (52)=-1f(-52)=-1-10=110.2.(2013·东北三省四市联考)已知函数f(x)对任意x∈R都有f(x +6)+f(x)=2f(3),y=f(x-1)的图象关于点(1,0)对称,且f(4)=4,则f(2012)=()A.0 B.-4C.-8 D.-16[答案] B[解析]由y=f(x-1)的图象关于点(1,0)对称可知,y=f(x)的图象关于点(0,0)对称,即为奇函数.令x=-3可知,f(3)+f(-3)=2f(3),进而f(-3)=f(3),又f(-3)=-f(3),可知f(3)=0,所以f(6+x)+f(x)=0,可知f(x)是一个周期为12的周期函数,所以f(2012)=f(168×12-4)=f(-4)=-f(4)=-4,故选B.3.(2013·福州质检)已知函数f(x+1)是定义在R上的奇函数,若对于任意给定的实数x1,x2,不等式(x1-x2)[f(x1)-f(x2)]<0恒成立,则不等式f(1-x)<0的解集为()A.(1,+∞) B.(0,+∞)C.(-∞,0) D.(-∞,1)[答案] C[解析]∵函数f(x+1)是定义在R上的奇函数,∴f(-x+1)=-f(x+1),即得函数f(x)的对称中心为(1,0),又由对于任意给定的不等实数x1,x2,不等式(x1-x2)[f(x1)-f(x2)]<0恒成立,可得函数为R上的减函数,由此可得不等式f(x)<0的解为x>1,则由f(1-x)<0可得1-x>1,解得x<0,即不等式f(1-x)<0的解集为(-∞,0),故应选C.4.(2012·河南商丘模拟)已知f (x )是定义在R 上的奇函数,它的最小正周期为T ,则f (-T2)的值为( )A .-T 2B .0 C.T 2 D .T[答案] B[解析] ∵f (-T 2)=-f (T 2),且f (-T 2)=f (-T 2+T )=f (T 2),∴f (T2)=0,∴f (-T2)=0.5.已知f (x )是定义在(-∞,+∞)上的偶函数,且在(-∞,0]上是增函数,设a =f (log 47),b =f (log 123),c =f (0.20.6),则a 、b 、c的大小关系是( )A .c <b <aB .b <c <aC .b <a <cD .a <b <c[答案] C[解析] 由题意知f (x )=f (|x |).∵log 47=log 27>1,|log 123|=log 23>log 27,0<0.20.6<0.20=1,∴|log 123|>|log 47|>|0.20.6|.又∵f (x )在(-∞,0]上是增函数,且f (x )为偶函数, ∴f (x )在[0,+∞)上是减函数. ∴b <a <c .故选C.。
基础巩固强化一、选择题1.(文)集合A ={-1,0,1},B ={y |y =cos x ,x ∈A },则A ∩B =( ) A .{0} B .{1} C .{0,1} D .{-1,0,1}[答案] B[解析] ∵cos0=1,cos(-1)=cos1,∴B ={1,cos1}, ∴A ∩B ={1}.(理)(2013·江苏南通一模)集合A ={-1,0,1},B ={y |y =e x ,x ∈A },则A ∩B =( )A .{0}B .{1}C .{0,1}D .{-1,0,1} [答案] B[解析] ∵x ∈A ,∴B ={1e ,1,e},∴A ∩B ={1}.故选B. 2.(文)(2013·广东佛山一模)设全集U ={x ∈N *|x <6},集合A ={1,3},B ={3,5},则∁U (A ∪B )等于( )A .{1,4}B .{2,4}C .{2,5}D .{1,5} [答案] B[解析] 由题意易得U ={1,2,3,4,5},A ∪B ={1,3,5},所以∁U (A ∪B )={2,4}.故选B.(理)已知U ={1,2,3,4,5,6,7,8},A ={1,3,5,7},B ={2,4,5},则∁U (A∪B)=()A.{6,8} B.{5,7}C.{4,6,7} D.{1,3,5,6,8}[答案] A[解析]∵A={1,3,5,7},B={2,4,5},∴A∪B={1,2,3,4,5,7},又U={1,2,3,4,5,6,7,8},∴∁U(A∪B)={6,8}.3.(文)设U=R,M={x|x2-2x>0},则∁U M=()A.[0,2] B.(0,2)C.(-∞,0)∪(2,+∞) D.(-∞,0]∪[2,+∞)[答案] A[解析]由x2-2x>0得x>2或x<0.∴∁U M=[0,2].(理)设集合A={x|y=3x-x2},B={y|y=2x,x>1},则A∩B为()A.[0,3] B.(2,3]C.[3,+∞) D.[1,3][答案] B[解析]由3x-x2≥0得,0≤x≤3,∴A=[0,3],∵x>1,∴y=2x>2,∴B=(2,+∞),∴A∩B=(2,3].4.已知集合P={3,log2a},Q={a,b},若P∩Q={0},则P ∪Q等于()A.{3,0} B.{3,0,1}C.{3,0,2} D.{3,0,1,2}[答案] B[解析]根据题意P∩Q={0},所以log2a=0,解得a=1从而b=0,可得P∪Q={3,0,1},故选B.5.(文)(2012·浙江)设集合A={x|1<x<4},集合B={x|x2-2x-3≤0},则A∩(∁R B)=()A.(1,4) B.(3,4)C.(1,3) D.(1,2)∪(3,4)[答案] B[解析]本题考查了集合的运算.∵x2-2x-3≤0,∴-1≤x≤3,∴∁R B={x|x<-1或x>3}.∴A∩(∁R B)={x|3<x<4}.(理)(2013·辽宁大连一模)已知集合A={x|x2-2x≤0},B={x|x≥a},若A∪B=B,则实数a的取值范围是()A.(-∞,0) B.(-∞,0]C.(0,+∞) D.[0,+∞)[答案] B[解析]易知A={x|0≤x≤2}.∵A∪B=B,∴A⊆B,∴a∈(-∞,0],故选B.6.(2013·山东潍坊一模)已知R为全集,A={x|(1-x)·(x+2)≤0},则∁R A=()A.{x|x<-2,或x>1} B.{x|x≤-2,或x≥1}C.{x|-2<x<1} D.{x|-2≤x≤1}[答案] C[解析]∵(1-x)(x+2)≤0,即(x-1)(x+2)≥0,∴x ≤-2或x ≥1.∴A ={x |x ≤-2,或x ≥1}. ∴∁R A ={x |-2<x <1},故选C. 二、填空题7.已知集合A ={(x ,y )|x 、y 为实数,且x 2+y 2=1},B ={(x ,y )|x 、y 为实数,且y =-x +1},则A ∩B 的元素个数为________.[答案] 2[解析] 集合A 表示圆x 2+y 2=1上的所有的点,集合B 表示直线y =-x +1上的所有的点,故A ∩B 表示圆与直线的交点.由于直线与圆相交,故这样的点有两个.8.已知集合A ={(0,1),(1,1),(-1,2)},B ={(x ,y )|x +y -1=0,x ,y ∈Z },则A ∩B =________.[答案] {(0,1),(-1,2)}[解析] A 、B 都表示点集,A ∩B 即是由集合A 中落在直线x +y -1=0上的所有点组成的集合,将A 中点的坐标代入直线方程检验知,A ∩B ={(0,1),(-1,2)}.9.若A ={x |22x -1≤14},B ={x |log 116x ≥12},实数集R 为全集,则(∁R A )∩B =________.[答案] {x |0<x ≤14} [解析] 由22x -1≤14得,x ≤-12,由log 116x ≥12得,0<x ≤14,∴(∁R A )∩B ={x |x >-12}∩{x |0<x ≤14} ={x |0<x ≤14}.三、解答题10.已知集合A ={x ∈R |ax 2-3x +2=0,a ∈R }. (1)若A 是空集,求a 的取值范围;(2)若A 中只有一个元素,求a 的值,并把这个元素写出来; (3)若A 中至多有一个元素,求a 的取值范围.[解析] 集合A 是方程ax 2-3x +2=0在实数范围内的解组成的集合.(1)A 是空集,即方程ax 2-3x +2=0无解,得⎩⎪⎨⎪⎧a ≠0,Δ=(-3)2-8a <0,∴a >98, 即实数a 的取值范围是(98,+∞).(2)当a =0时,方程只有一解23,此时A 中只有一个元素23; 当a ≠0时,应有Δ=0,∴a =98,此时方程有两个相等的实数根,A 中只有一个元素43, ∴当a =0或a =98时,A 中只有一个元素,分别是23和43. (3)A 中至多有一个元素,包括A 是空集和A 中只有一个元素两种情况,根据(1),(2)的结果,得a =0或a ≥98,即a 的取值范围是{a |a =0或a ≥98}.能力拓展提升一、选择题11.已知A 、B 均为集合U ={1,3,5,7,9}的子集,且A ∩B ={3},(∁U B )∩A ={9},则A =( )A.{1,3} B.{3,7,9}C.{3,5,9} D.{3,9}[答案] D[解析]由题意知,A中有3和9,若A中有7或5,则∁U B中无7和5,即B中有7或5,则与A∩B={3}矛盾,故选D.12.(2013·青岛一模)设A,B是两个非空集合,定义运算A×B ={x|x∈A∪B,且x∉A∩B},已知A={x|y=2x-x2},B={y|y=2x,x>0},则A×B=()A.[0,1]∪(2,+∞) B.[0,1)∪(2,+∞)C.[0,1] D.[0,2][答案] A[解析]由2x-x2≥0解得0≤x≤2,则A=[0,2].又B={y|y=2x,x>0}=(1,+∞),∴A×B=[0,1]∪(2,+∞),故选A.13.(2014·巢湖质检)设集合A={x|x24+3y24=1},B={y|y=x2},则A∩B=()A.[-2,2] B.[0,2]C.[0,+∞) D.{(-1,1),(1,1)}[答案] B[解析]A={x|-2≤x≤2},B={y|y≥0},∴A∩B={x|0≤x≤2}=[0,2].二、填空题14.(文)(2013·湘潭模拟)设集合A={-1,1,3},B={a+2,a2+4},A∩B={3},则实数a=________.[答案] 1[解析]∵3∈B,又a2+4≥4,∴a+2=3,∴a=1.(理)已知集合A={0,2,a2},B={1,a},若A∪B={0,1,2,4},则实数a的值为________.[答案] 2[解析]∵A∪B={0,1,2,4},∴a=4或a2=4,若a=4,则a2=16,但16∉A∪B,∴a2=4,∴a=±2,又-2∉A∪B,∴a=2.15.设全集U=A∪B={x∈N*|lg x<1},若A∩(∁U B)={m|m=2n +1,n=0,1,2,3,4},则集合B=________.[答案]{2,4,6,8}[解析]A∪B={x∈N*|lg x<1}={1,2,3,4,5,6,7,8,9},A∩(∁U B)={m|m=2n+1,n=0,1,2,3,4}={1,3,5,7,9},∴B={2,4,6,8}.三、解答题16.(文)(2013·衡水模拟)设全集I=R,已知集合M={x|(x+3)2≤0},N={x|x2+x-6=0}.(1)求(∁I M)∩N;(2)记集合A=(∁I M)∩N,已知集合B={x|a-1≤x≤5-a,a∈R},若B∪A=A,求实数a的取值范围.[解析](1)∵M={x|(x+3)2≤0}={-3},N={x|x2+x-6=0}={-3,2},∴∁I M={x|x∈R且x≠-3},∴(∁I M)∩N={2}.(2)A=(∁I M)∩N={2},∵B∪A=A,∴B⊆A,∴B=∅或B={2}.当B =∅时,a -1>5-a ,∴a >3;当B ={2}时,⎩⎪⎨⎪⎧a -1=2,5-a =2,解得a =3.综上所述,所求a 的取值范围是{a |a ≥3}.(理)设集合A ={(x ,y )|y =2x -1,x ∈N *},B ={(x ,y )|y =ax 2-ax +a ,x ∈N *},问是否存在非零整数a ,使A ∩B ≠∅?若存在,请求出a 的值;若不存在,说明理由.[解析] 假设A ∩B ≠∅,则方程组⎩⎪⎨⎪⎧y =2x -1,y =ax 2-ax +a ,有正整数解,消去y 得, ax 2-(a +2)x +a +1=0.(*)由Δ≥0,有(a +2)2-4a (a +1)≥0, 解得-233≤a ≤233. 因a 为非零整数,∴a =±1,当a =-1时,代入(*),解得x =0或x =-1, 而x ∈N *.故a ≠-1.当a =1时,代入(*),解得x =1或x =2,符合题意. 故存在a =1,使得A ∩B ≠∅, 此时A ∩B ={(1,1),(2,3)}.考纲要求1.集合的含义与表示(1)了解集合的含义、元素与集合的“属于”关系.(2)能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.2.集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集.(2)在具体情境中,了解全集与空集的含义.3.集合的基本运算(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.(3)能使用韦恩图(Venn)表达集合的关系及运算.补充说明1.把握集合问题“解题技巧”:准确理解集合中元素的属性,会用数轴、Venn图和几何图形直观表示集合,掌握集合的关系与运算定义,用好集合的性质,恰当的对新定义进行翻译是解决集合问题的关键.2.牢记一条性质若集合A中含有n个元素,则A的子集有2n个,A的真子集有2n-1个.3.防范两个“易错点”(1)注意空集在解题中的应用,防止遗漏空集而导致失误.(2)对于含参数的两集合具有包含关系时,端点的取舍是易错点,对端点要单独考虑.备选习题1.(2013·广东理,1)设集合M={x|x2+2x=0,x∈R},N={x|x2-2x=0,x∈R},则M∪N=()A .{0}B .{0,2}C .{-2,0}D .{-2,0,2}[答案] D[解析] M ={0,-2},N ={0,2},∴M ∪N ={-2,0,2}. 2.设数集M ={x |m ≤x ≤m +34},N ={x |n -13≤x ≤n },且M ,N 都是集合{x |0≤x ≤1}的子集,如果把b -a 叫做集合{x |a ≤x ≤b }的“长度”,那么集合M ∩N 的“长度”的最小值是( )A.13B.23C.112D.512[答案] C[解析] 此题虽新定义了“长度”概念,但题意不难理解,只要求出M ∩N ,然后再求一个式子的最小值即可;如何求M ∩N 呢?若真这样理解的话,就走弯路了.其实,根本用不着求M ∩N ;集合M 的“长度”是34,由于m 是一个变量,因此,这个长度为34的区间可以在区间[0,1]上随意移动;同理,集合N 的长度为13且也可以在区间[0,1]上随意移动;两区间的移动又互不影响,因此M ∩N 的“长度”的最小值即为13-⎝⎛⎭⎪⎫1-34=112,故选C.[点评] 1.该题立意新颖,背景公平.对考生的思维能力和分析解决问题能力有较高的区分度.2.解答新定义题型,一定要先弄清新定义所提供的信息的含义,进行必要的提炼加工,等价转化为学过的知识,然后利用已掌握知识方法加以解答.3.集合M={x||x-2|-1=0},集合N={x|x2-3|x|+2=0},集合P={x|x2+5x+6≤0,x∈Z},全集为U,则图中阴影部分表示的集合是()A.{-1,1} B.{2,-2}C.{3,-3} D.∅[答案] C[解析]∵M={1,3},N={1,2,-1,-2},P={-2,-3},∴M∩N={1},N∩P={-2},故阴影部分表示的集合为{3,-3}.[点评]阴影部分在集合M、P中,不在集合N中,抓住这个要点是解题的关键.4.设集合A={3,5,7,9},B={3,4,6,8},全集U=A∪B,则集合∁U(A∩B)中的元素共有()A.3个B.4个C.5个D.6个[答案] D[解析]U=A∪B={3,4,5,6,7,8,9},A∩B={3},∴∁U(A∩B)={4,5,6,7,8,9},故选D.5.设集合A ={x |12<2x <2},B ={x |lg x >-1},则A ∪B =( )A .{x |x >-1}B .{x |-1<x <1}C .{x |x >110}D .{x |-1<x <10或x >10}[答案] A[解析] 先求集合A 、B ,再求A ∪B ,∵12<2x <2,即2-1<2x <21,结合y =2x 的单调性知-1<x <1,∴A ={x |-1<x <1},由lg x >-1得x >110,∴B ={x |x >110},∴A ∪B ={x |x >-1}.。
基础巩固强化一、选择题1.(文)若a、b、c成等比数列,则函数f(x)=ax2+bx+c的图象与x轴交点的个数是()A.0B.1C.2D.不确定[答案] A[解析]由题意知,b2=ac>0,∴Δ=b2-4ac=-3ac<0,∴f(x)的图象与x轴无交点.(理)已知数列{a n},{b n}满足a1=1,且a n、a n+1是函数f(x)=x2-b n x+2n的两个零点,则b10等于()A.24B.32C.48D.64[答案] D[解析]依题意有a n a n+1=2n,所以a n+1a n+2=2n+1,两式相除得a n+2a n=2,所以a1,a3,a5,…成等比数列,a2,a4,a6,…成等比数列,而a1=1,a2=2,所以a10=2×24=32,a11=1×25=32.又因为a n+a n+1=b n,所以b10=a10+a11=64,故选D.2.(文)小正方形按照下图中的规律排列:每小图中的小正方形的个数就构成一个数列{a n},有以下结论:①a 5=15;②数列{a n }是一个等差数列;③数列{a n }是一个等比数列;④数列的递推公式为:a n =a n -1+n (n ∈N *),其中正确的为( )A .①②④B .①③④C .①②D .①④[答案] D[解析] 观察图形可知a n =1+2+3+…+n =n (n +1)2.∴选D. (理)某同学在电脑中打出如下若干个圈:●○●○○●○○○●○○○○●○○○○○●……若将此若干个圈依此规律继续下去,得到一系列的圈,那么在前2014个圈中的●的个数是( )A .60B .61C .62D .63 [答案] C[解析] 第一次出现●在第1个位置;第二次出现●在第(1+2)个位置;第三次出现●在第(1+2+3)个位置;…;第n 次出现●在第(1+2+3+…+n )个位置.∵1+2+3+…+n =n (n +1)2,当n =62时,n (n +1)2=62×(62+1)2=1953,2014-1953=61<63,∴在前2014个圈中的●的个数是62.3.(2012·沈阳市二模)设等差数列{a n }的前n 项和为S n ,若a 2、a 4是方程x 2-x -2=0的两个实数根,则S 5的值为( )A.52 B .5 C .-52 D .-5 [答案] A[解析] ∵a 2、a 4是方程x 2-x -2=0的两实根, ∴a 2+a 4=1,∴S 5=5×(a 1+a 5)2=5(a 2+a 4)2=52. 4.(文)已知{a n }为等差数列,{b n }为正项等比数列,公式q ≠1,若a 1=b 1,a 11=b 11,则( )A .a 6=b 6B .a 6>b 6C .a 6<b 6D .以上都有可能[答案] B[解析] a 6=a 1+a 112,b 6=b 1b 11=a 1a 11, 由q ≠1得,a 1≠a 11. 故a 6=a 1+a 112>a 1a 11=b 6.(理)(2012·吉林省实验中学模拟)已知正数组成的等差数列{a n }的前20项的和是100,那么a 6·a 15的最大值是( )A .25B .50C .100D .不存在 [答案] A[解析] 由条件知,a 6+a 15=a 1+a 20=110S 20=110×100=10,a 6>0,a 15>0,∴a 6·a 15≤(a 6+a 152)2=25,等号在a 6=a 15=5时成立,即当a n =5(n ∈N *)时,a 6·a 15取最大值25.5.已知{a n }是等差数列,S n 为其前n 项和,若S 29=S 4000,O 为坐标原点,点P (1,a n ),点Q (2015,a 2015),则OP →·OQ→=( ) A .2015 B .-2015 C .0 D .1 [答案] A[解析] 由S 29=S 4000得到S n 关于n =29+40002=2014.5对称,故S n 的最大(或最小)值为S 2014=S 2015,故a 2015=0,OP →·OQ →=2015+a n ·a 2015=2015+a n ×0=2015,故选A.6.(2013·江南十校联考)已知函数f (x )=x a 的图象过点(4,2),令a n=1f (n +1)+f (n ),n ∈N *.记数列{a n }的前n 项和为S n ,则S 2013=( ) A.2012-1 B.2013-1 C.2014-1 D.2014+1[答案] C[解析] 由f (4)=2可得4a =2,解得a =12,则f (x )=x 12. ∴a n =1f (n +1)+f (n )=1n +1+n=n +1-n ,S 2013=a 1+a 2+a 3+…+a 2013=(2-1)+(3-2)+(4-3)+…+(2014-2013)=2014-1.二、填空题7.(文)已知{a n }是公差不为0的等差数列,{b n }是等比数列,其中a 1=2,b 1=1,a 2=b 2,2a 4=b 3,且存在常数α、β,使得a n =log αb n +β对每一个正整数n 都成立,则αβ=________.[答案] 4[解析] 设{a n }的公差为d ,{b n }的公比为q ,则⎩⎪⎨⎪⎧2+d =q ,2(2+3d )=q 2.解得⎩⎪⎨⎪⎧ q =2,d =0,(舍去)或⎩⎪⎨⎪⎧q =4,d =2.所以a n =2n ,b n =4n -1.若a n =log αb n +β对每一个正整数n 都成立,则满足2n =log α4n -1+β,即2n =(n -1)log α4+β,因此只有当α=2,β=2时上式恒成立,所以αβ=4.(理)在等比数列{a n }中,首项a 1=23,a 4=⎠⎛14(1+2x )d x ,则公比q为________.[答案] 3[解析] ∵a 4=⎠⎛14(1+2x )d x =(x +x 2)|41=(4+42)-(1+12)=18,∴q 3=a 4a 1=27,∴q =3.8.小王每月除去所有日常开支,大约结余a 元.小王决定采用零存整取的方式把余钱积蓄起来,每月初存入银行a 元,存期1年(存12次),到期取出本和息.假设一年期零存整取的月利率为r ,每期存款按单利计息.那么,小王存款到期利息为________元.[答案] 78ar[解析] 依题意得,小王存款到期利息为12ar +11ar +10ar +…+3ar +2ar +ar =12(12+1)2ar =78ar 元. 9.(文)已知m 、n 、m +n 成等差数列,m 、n 、mn 成等比数列,则椭圆x 2m +y 2n =1的离心率为________.[答案] 22[解析] 由2n =2m +n 和n 2=m 2n 可得m =2,n =4, ∴e =n -m n=22.(理)已知双曲线a n -1y 2-a n x 2=a n -1a n (n ≥2,n ∈N *)的焦点在y 轴上,一条渐近线方程是y =2x ,其中数列{a n }是以4为首项的正项数列,则数列{a n }的通项公式是________.[答案] a n =2n +1[解析] 双曲线方程为y 2a n -x 2a n -1=1,∵焦点在y 轴上, 又渐近线方程为y =2x , ∴a na n -1=2,又a 1=4,∴a n =4×2n -1=2n +1. 三、解答题10.(文)(2013·浙江萧山五校联考)已知二次函数y =f (x )的图象经过坐标原点,其导函数f ′(x )=2x +2,数列{a n }的前n 项和为S n ,点(n ,S n )(n ∈N *)均在函数y =f (x )的图象上.(1)求数列{a n }的通项公式;(2)设b n =2n ·a n ,T n 是数列{b n }的前n 项和,求T n . [解析] (1)设f (x )=ax 2+bx ,f ′(x )=2ax +b =2x +2, ∴a =1,b =2,f (x )=x 2+2x , ∴S n =n 2+2n ,∴当n ≥2时,a n =S n -S n -1=(n 2+2n )-[(n -1)2+2(n -1)]=2n +1,又a 1=S 1=3,适合上式,∴a n =2n +1. (2)b n =(2n +1)·2n ,∴T n =3·21+5·22+7·23+…+(2n +1)·2n , ∴2T n =3·22+5·23+7·24+…+(2n +1)·2n +1, 相减得-T n =3·21+2·(22+23+…+2n )-(2n +1)·2n +1 =6+2·4·(1-2n -1)1-2-(2n +1)·2n +1=(1-2n )·2n +1-2, ∴T n =(2n -1)·2n +1+2.(理)已知函数y =f (x )的图象经过坐标原点,其导函数为f ′(x )=6x -2,数列{a n }的前n 项和为S n ,点(n ,S n )(n ∈N *)在函数y =f (x )的图象上.(1)求数列{a n }的通项公式;(2)若数列{a n }和数列{b n }满足等式:a n =b 12+b 222+b 323+…+b n2n (n ∈N *),求数列{b n }的前n 项和T n .[解析] (1)由题意可设f (x )=ax 2+bx +c , 则f ′(x )=2ax +b =6x -2,∴a =3,b =-2, ∵f (x )过原点,∴c =0,∴f (x )=3x 2-2x .依题意得S n =3n 2-2n .n ≥2时,a n =S n -S n -1=(3n 2-2n )-[3(n -1)2-2(n -1)]=6n -5,n =1时,a 1=S 1=1适合上式. ∴a n =6n -5(n ∈N *). (2)∵a n =b 12+b 222+b 323+…+b n2n , ∴a n -1=b 12+b 222+b 323+…+b n -12n -1(n ≥2).相减得b n2n =6,∴b n =6·2n (n ≥2).b 1=2a 1=2,∴b n =⎩⎪⎨⎪⎧2 (n =1),6·2n (n ≥2).∴T n =2+6(22+23+…+2n )=3·2n +2-22.能力拓展提升一、选择题11.椭圆x 24+y 23=1上有n 个不同的点P 1、P 2、…、P n ,椭圆的右焦点为F ,数列{|P n F |}是公差大于11000的等差数列,则n 的最大值为( )A .2001B .2000C .1999D .1998[答案] B[分析] 公差确定后,首项和末项之差越大,等差数列的项数就越多(即n 越大),故P 1与P n 取长轴两端点时n 取最大值,可依据公差大于11000列不等式解.[解析] ∵|P n F |max =a +c =3,|P n F |min =a -c =1, d =a n -a 1n -1=3-1n -1>11000,n ∈N ,∴n max =2000,故选B.12.(文)数列{a n }是公差d ≠0的等差数列,数列{b n }是等比数列,若a 1=b 1,a 3=b 3,a 7=b 5,则b 11等于( )A .a 63B .a 36C .a 31D .a 13 [答案] A[解析] 设数列{b n }的首项为b 1,公比为q ,则⎩⎪⎨⎪⎧a 1+2d =a 1q 2,a 1+6d =a 1q 4.得d =a 14(q 4-q 2). ∴a 1+a 12(q 4-q 2)=a 1q 2, ∵q ≠1,∴q 2=2,d =a 12,于是b 11=a 1q 10=32a 1.设32a 1=a 1+(n -1)·a 12,则n =63, ∴b 11=a 63.(理)(2013·河北教学质量监测)已知数列{a n }满足:a 1=1,a n +1=a n a n +2(n ∈N *).若b n +1=(n -λ)(1a n +1)(n ∈N *),b 1=-λ,且数列{b n }是单调递增数列,则实数λ的取值范围为( )A .λ>2B .λ>3C .λ<2D .λ<3[答案] C[解析] 由已知可得1a n +1=2a n +1,1a n +1+1=2(1a n +1),1a 1+1=2≠0,则1a n+1=2n ,b n +1=2n (n -λ),b n =2n -1(n -1-λ)(n ≥2,n ∈N *),b 1=-λ也适合上式,故b n =2n -1(n -1-λ)(n ∈N *).由b n +1>b n ,得2n (n -λ)>2n -1(n -1-λ),即λ<n +1恒成立,而n +1的最小值为2,故实数λ的取值范围为λ<2.13.(文)如图,是一个算法的程序框图,该算法输出的结果是( )A.12B.23C.34D.45 [答案] C[解析] 循环过程为i =1<4→i =2,m =1,S =11×2; i =2<4→i =3,m =2,S =11×2+12×3;i =3<4→i =4,m =3,S =11×2+12×3+13×4;i =4<4不成立,输出S 的值. 故S =11×2+12×3+13×4=⎝⎛⎭⎪⎫1-12+⎝⎛⎭⎪⎫12-13+⎝⎛⎭⎪⎫13-14=1-14=34.(理)已知数列{a n }的各项均为正数,如图给出程序框图,当k =5时,输出的S =511,则数列{a n }的通项公式为( )A .a n =2nB .a n =2n -1C .a n =2n +1D .a n =2n -3[答案] B[解析] 由a i +1=a i +2知数列{a n }是公差为2的等差数列,由M =1a i ai +1及S =S +M 知,S =1a 1a 2+1a 2a 3+…+1a i a i +1, 由条件i ≤k 不满足时输出S 及输入k =5,输出S =511知,1a 1a 2+1a 2a 3+…1a 5a 6=12[(1a 1-1a 2)+(1a 2-1a 3)+…(1a 5-1a 6)]=12(1a 1-1a 6)=12(1a 1-1a 1+10)=5a 1(a 1+10)=511, ∵a 1>0,∴a 1=1,∴a n =2n -1. 二、填空题14.(2013·广东佛山一模)我们可以利用数列{a n }的递推公式,求出这个数列各项的值,使得这个数列中的每一项都是奇数,则a 24+a 25=________;研究发现,该数列中的奇数都会重复出现,那么第8个5是该数列的第________项.[答案] 28 640[解析] a 24+a 25=a 12+25=a 6+25=a 3+25=3+25=28. 5=a 5=a 10=a 20=a 40=a 80=a 160=a 320=a 640.15.已知数列{a n }的通项公式为a n =2n (n ∈N *),把数列{a n }的各项排列成如图所示的三角形数阵:2 22 23 24 25 2627 28 29 210……记M (s ,t )表示该数阵中第s 行的第t 个数,则M (11,2)对应的数是________(用2n 的形式表示,n ∈N ).[答案] 257[解析] 由数阵的排列规律知,第m 行的最后一个数是数列{a n }的第1+2+3+…+m =m (m +1)2项,且该行有m 项,由此可知第11行的第2个数是数列{a n }的第10×112+2=57项,对应的数是257.三、解答题16.(文)已知数列{a n }是公差d ≠0的等差数列,记S n 为其前n 项和.(1)若a 2、a 3、a 6依次成等比数列,求其公比q .(2)若a 1=1,证明点P 1⎝ ⎛⎭⎪⎫1,S 11,P 2⎝ ⎛⎭⎪⎫2,S 22,…,P n ⎝ ⎛⎭⎪⎫n ,S n n (n ∈N *)在同一条直线上,并写出此直线方程.[解析] (1)∵a 2、a 3、a 6依次成等比数列, ∴q =a 3a 2=a 6a 3=a 6-a 3a 3-a 2=3dd =3,即公比q =3.(2)证明:∵S n =na 1+n (n -1)2d ,∴S nn =a 1+n -12d =1+n -12d .∴点P n⎝⎛⎭⎪⎫n ,S n n 在直线y =1+x -12d 上. ∴点P 1,P 2,…,P n (n ∈N *)都在过点(1,1)且斜率为d2的直线上.此直线方程为y -1=d2(x -1).即dx -2y +2-d =0.(理)在等差数列{a n }中, 设S n 为它的前n 项和,若S 15>0,S 16<0,且点A (3,a 3)与B (5,a 5)都在斜率为-2的直线l 上,(1)求a 1的取值范围;(2)指出S 1a 1,S 2a 2,…,S 15a 15中哪个值最大,并说明理由.[解析] (1)由已知可得a 5-a 35-3=-2,则公差d =-2,∴⎩⎨⎧S 15=15a 1+15×142×d =15(a 1-14)>0,S16=16a 1+16×152×d =16(a 1-15)<0.∴14<a 1<15. (2)最大的值是S 8a 8,∵S 15=15a 8>0,S 16=8(a 8+a 9)<0, ∴a 8>0,a 9<0,即S 8最大.又当1≤i ≤8时,S i a i>0;当9≤i ≤15时,S ia i<0,∵数列{a n }递减,∴S 1a 1≤S 2a 2≤…≤S 8a 8,S 8a 8≥S 9a 9≥…≥S 15a 15⇒S 8a 8最大.考纲要求能在具体的问题情境中识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.补充说明1.等比数列综合问题的解题思路在解答等差、等比数列综合问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.但用“基本量法”并树立“目标意识”,“需要什么,就求什么”,往往能取得与“巧用性质”相同的解题效果,既要掌握“通法”,又要注重“特法”.2.通过数列通项公式观察数列特点和规律,在分析数列通项的基础上,判断求和类型,寻找求和的方法,将数列拆为基本数列,或转化为基本数列求和.求和过程中同时要对项数作出准确判断.3.含有字母的数列求和,常伴随着分类讨论.4.数列的渗透力很强,它和函数、方程、三角形、不等式等知识相互联系,优化组合,无形中加大了综合的力度.解决此类题目,必须对蕴藏在数列概念和方法中的数学思想有所了解,深刻领悟它在解题中的重大作用,常用的数学思想方法有:“函数与方程”、“数形结合”、“分类讨论”、“等价转换”等.备选习题1.设正项等比数列{a n}的前n项之积为T n,且T10=32,则1a5+1a6的最小值为()A.2 2 B. 2 C.2 3 D. 3[答案] B[解析]由条件知,T10=a1a2…a10=(a5a6)5=32,∵a n>0,∴a5a6=2,∴1a5+1a6=12·a5a6·(1a5+1a6)=12(a5+a6)≥12×2a5a6=2,等号在a5=a6=2时成立.2.设等差数列{a n}的前n项和为S n,则a6+a7>0是S9≥S3的() A.充分但不必要条件B.必要但不充分条件C .充要条件D .既不充分也不必要条件[答案] A[解析] ∵S 9≥S 3⇔a 4+a 5+a 6+a 7+a 8+a 9≥0⇔3(a 6+a 7)≥0⇔a 6+a 7≥0,∴a 6+a 7>0⇒a 6+a 7≥0,但a 6+a 7≥0⇒/ a 6+a 7>0,故选A.3.已知数列{a n }、{b n }满足a 1=12,a n +b n =1,b n +1=b n1-a 2n,则b 2014=( )A.20132014B.20142013C.20142015D.20152014 [答案] C[解析] ∵a n +b n =1,a 1=12,∴b 1=12, ∵b n +1=b n 1-a 2n ,∴b 2=b 11-a 21=23, ∴a 2=13,b 3=b 21-a 22=34,a 3=14,b 4=b 31-a 23=45,a 4=15,…,观察可见a n =1n +1,b n =n n +1,∴b 2014=20142015,故选C. 4.(2013·武汉调研)在如图所示的数表中,第i 行第j 列的数记为a i ,j ,且满足a 1,j =2j -1,a i,1=i ,a i +1,j +1=a i ,j +a i +1,j (i ,j ∈N *);又记第3行的3,5,8,13,22,39,…,为数列{b n },则(1)(2)数列{b n }的通项公式为________.[答案] (1)129 (2)b n =2n -1+n +1,n ∈N *5.已知f (x )=a 1x +a 2x 2+…+a n x n (n 为正偶数)且{a n }为等差数列,f (1)=n 2,f (-1)=n ,试比较f ⎝ ⎛⎭⎪⎫12与3的大小,并证明你的结论.[解析] 由f (1)=n 2,f (-1)=n 得,a 1=1,d =2.∴f ⎝ ⎛⎭⎪⎫12=⎝ ⎛⎭⎪⎫12+3⎝ ⎛⎭⎪⎫122+5⎝ ⎛⎭⎪⎫123+…+(2n -1)· ⎝ ⎛⎭⎪⎫12n , 两边同乘以12得,12f ⎝ ⎛⎭⎪⎫12=⎝ ⎛⎭⎪⎫122+3⎝ ⎛⎭⎪⎫123+…+(2n -3)⎝ ⎛⎭⎪⎫12n +(2n -1)⎝ ⎛⎭⎪⎫12n +1,两式相减得,12f ⎝ ⎛⎭⎪⎫12=12+2⎝ ⎛⎭⎪⎫122+2⎝ ⎛⎭⎪⎫123+…+2⎝ ⎛⎭⎪⎫12n -(2n -1)⎝ ⎛⎭⎪⎫12n +1=12+12⎝ ⎛⎭⎪⎫1-12n -11-12-(2n -1)12n +1.∴f ⎝ ⎛⎭⎪⎫12=3-2n +32n <3.。