线膨胀系数的测定
- 格式:doc
- 大小:131.00 KB
- 文档页数:7
固体线膨胀系数的测定实验报告
目录
1. 实验目的
1.1 实验原理
1.1.1 线膨胀系数的概念
1.1.2 线膨胀系数的计算公式
1.2 实验器材
1.3 实验步骤
1.4 实验结果分析
1.5 实验结论
实验目的
通过测定固体线膨胀系数的实验,掌握固体在温度变化下的膨胀规律,了解物体在不同温度下的变化情况。
实验原理
线膨胀系数的概念
线膨胀系数是一个物体在单位温度变化下长度变化的比例系数,通常
表示为α。
线膨胀系数的单位为℃^-1。
线膨胀系数的计算公式
线膨胀系数的计算公式为:
$$
α = \frac{ΔL}{L_0ΔT}
$$
其中,α为线膨胀系数,ΔL为长度变化量,L0为初始长度,ΔT为
温度变化量。
实验器材
1. 物体(例如金属杆)
2. 尺子
3. 温度计
4. 烧杯
5. 热水
实验步骤
1. 测量物体的初始长度并记录为L0。
2. 将物体放入热水中,让其温度升高。
3. 使用温度计测量热水的温度变化ΔT。
4. 测量物体在热水中的长度变化量ΔL。
5. 根据公式计算出线膨胀系数α。
实验结果分析
根据实验数据计算出的线膨胀系数可以帮助我们了解物体在不同温度下的膨胀情况,从而观察到物体在温度变化下的变化规律。
实验结论
通过本次实验,我们成功测定了固体线膨胀系数,并对物体在温度变化下的膨胀规律有了更深入的了解。
这对于工程领域的材料选择和设计具有重要意义。
金属线膨胀系数的测定实验报告一、实验目的。
本实验旨在通过测定金属线的膨胀系数,探究金属在受热作用下的膨胀规律,并验证线性膨胀系数的概念。
二、实验原理。
金属在受热作用下会发生线性膨胀,其膨胀量与温度变化呈线性关系。
金属线的膨胀量可用以下公式表示:ΔL = αL0ΔT。
其中,ΔL为金属线的膨胀量,α为线性膨胀系数,L0为金属线的原始长度,ΔT为温度变化量。
三、实验器材。
1. 金属线。
2. 热水槽。
3. 温度计。
4. 尺子。
四、实验步骤。
1. 准备金属线,并测量其原始长度L0。
2. 将金属线固定在支架上。
3. 将热水倒入热水槽中,待温度稳定后,记录水温作为初始温度T1。
4. 将金属线放入热水中,测量金属线的膨胀量ΔL。
5. 记录金属线在热水中的最终温度T2。
6. 根据实验数据计算金属线的线性膨胀系数α。
五、实验数据记录。
1. 金属线原始长度L0 = 1m。
2. 初始温度T1 = 25°C。
3. 最终温度T2 = 75°C。
4. 金属线膨胀量ΔL = 5mm。
六、实验结果分析。
根据实验数据计算得到金属线的线性膨胀系数α为:α = ΔL / (L0ΔT) = 5mm / (1m × 50°C) = 1 × 10^-4 /°C。
七、实验结论。
通过本实验的测定和计算,验证了金属线在受热作用下会发生线性膨胀的规律,并得到了金属线的线性膨胀系数α。
实验结果表明,金属线的膨胀量与温度变化呈线性关系,膨胀系数是一个常数,可用于预测金属在不同温度下的膨胀量。
八、实验注意事项。
1. 在实验过程中要小心热水的温度,避免烫伤。
2. 测量金属线的膨胀量时要注意准确度,避免误差。
九、实验总结。
本实验通过测定金属线的膨胀量,验证了金属在受热作用下的线性膨胀规律,得到了金属线的线性膨胀系数α。
实验结果对于理解金属膨胀规律具有重要意义,也为工程应用提供了重要参考。
以上为金属线膨胀系数的测定实验报告。
实验一 金属热膨胀系数的测量物体因温度改变而发生的膨胀现象叫“热膨胀”。
通常在外界压强不变的情况下,大多数物质在温度升高时,其体积增大,温度降低时体积缩小。
也有少数物质在一定的温度范围内,温度升高时,其体积反而减小。
绝大多数物质都具有“热胀冷缩”的特性,这是由于物体内部分子热运动加剧或减弱造成的。
对晶体而言,其热膨胀还有各相异性;如石墨受热时,沿某些方向膨胀,而沿另一些方向则收缩。
金属是晶体,它们是由许多晶粒构成的,而且这些晶粒在空间方位上的 排列是无规则的,所以,金属整体表现出各相同性,或称它们的线膨胀在各个方向均相同。
因此可以用金属在一维方向上的线膨胀规律来表征它的体膨胀。
虽然金属的热膨胀非常微小,但由于使物体发生很小形变时就需要很大的应力。
这个特性在工程结构的设计,在机械和仪器的制造中,在材料的加工(如焊接)中,都应考虑到这一因素。
【实验目的】1.了解FD-LEA 金属热膨胀系数实验仪的基本结构和工作原理。
2.掌握千分表和温度控制仪的使用方法。
3.掌握测量金属线热膨胀系数的基本原理,测量铁、铜、铝等的线膨胀系数。
4.学习用图解图示法处理实验数据,并分析实验误差。
【实验原理】在一定温度范围内,原长为0L (在0t =0℃时的长度)的物体受热温度升高时,一般固体由于原子或分子的热运动加剧而发生热膨胀,在t (单位℃)温度时,伸长量L ∆,它与温度的增加量t ∆近似成正比,与原长0L 也成正比,即:t L L ∆⨯⨯=∆0α (1)此时总长为:L L L t ∆+=0 (2)式中α为固体的线膨胀系数,它是固体材料热性能的物理量。
在温度变化不大时,α是一个常数,可由式(1)和(2)得:tL L t L L L t ∆⋅∆=∆-=1000α (3) 上式中,α的物理意义:在一定温度范围内,当温度每升高1℃时,物体的伸长量L ∆与它在0℃时的原长0L 成正比。
α是一个很小的量,附录中列有几种常见的固体材料的α值。
实验十材料线膨胀系数的测定--示差法物体的体积或长度随温度的升高而增大的现象称为热膨胀。
热膨胀系数是材料的主要物理性质之一,它是衡量材料的热稳定性好坏的一个重要指标。
目前,测定材料线膨胀系数的方法很多,有示差法(或称“石英膨胀计法”)、双线法、光干涉法、重量温度计法等。
在所有这些方法中,以示差法具有广泛的实用意义。
国内外示差法所采用的测试仪器很多,有分立式膨胀仪(如weiss立式膨胀仪)和卧式膨胀仪(如HTV 型、UBD型、RPZ―1型晶体管式自动热膨胀仪)两种。
有工厂的定型产品,也有自制的石英膨胀计。
些外,双线法在生产中也是—种快速测量法。
本实验采用示差法。
一.目的意义在实际应用中,当两种不同的材料彼此焊接或熔接时,选择材料的热膨胀系数显得尤为重要,如玻璃仪器、陶瓷制品的焊接加工,都要求二种材料具备相近的膨胀系数。
在电真空工业和仪器制造工业中广泛地将非金属材料(玻璃、陶瓷)与各种金属焊接,也要求两者有相适应的热膨胀系数;如果选择材料的膨胀系数相差比较大,焊接时由于膨胀的速度不同,在焊接处产生应力,降低了材料的机械强度和气密性,严重时会导致焊接处脱落、炸裂、漏气或漏油。
如果层状物由两种材料迭置连接而成,则温度变化时,由于两种材料膨胀值不同,若仍连接在一起,体系中要采用一中间膨胀值,从而使一种材料中产生压应力而另一种材料中产生大小相等的张应力,恰当地利用这个特性,可以增加制品的强度。
因此,测定材料的热膨胀系数具有重要的意义。
本实验的目的:1.了解测定材料的膨胀曲线对生产的指导意义;2.掌握示差法测定热膨胀系数的原理和方法,测试要点;3.利用材料的热膨胀曲线,确定玻璃材料的特征温度二.示差法的基本原理一般的普通材料,通常所说膨胀系数是指线膨胀系数,其意义是温度升高1℃时单位长度上所增加的长度,单位为厘米╱厘米·度。
假设物理原来的长度为L,温度升高后长度的增加量为∆L,实验指出它们之间存在如下关系:∆L╱L=α1∆t (15-1)式中的α1,称为线膨胀系数,也就是温度每升高1℃时,物体的相对伸长。
材料线膨胀系数测量材料的线膨胀系数是一个重要的物性参数,用来描述材料在温度变化时的膨胀行为。
了解材料的线膨胀系数可以帮助工程师在设计中考虑到温度变化对结构的影响。
材料的线膨胀系数定义为单位温度变化引起的长度变化与原始长度的比值。
线膨胀系数通常用符号α来表示,单位为1/°C或1/°F。
线膨胀系数与材料的内部结构相关,在材料的晶格结构和原子排列方式不同的情况下,线膨胀系数也会不同。
要测量材料的线膨胀系数,可以使用不同的方法和设备。
下面介绍几种常用的线膨胀系数测量方法:1.膨胀试验器法:这是一种常用的测量线膨胀系数的方法。
这种方法通过将材料制成试样,在恒定温度条件下测量试样长度的变化,从而计算出线膨胀系数。
2.热膨胀计法:这种方法利用了热膨胀计的原理,通过测量试样的长度变化或形变来计算出线膨胀系数。
热膨胀计可以使用不同的原理,如电阻、光学或机械等。
3.拉伸测量法:这种方法使用拉伸试样,并在温度变化时测量试样的长度变化。
通过测量试样的变形和应力,可以计算出线膨胀系数。
4.表面形貌法:这种方法通过观察材料表面形貌的变化来推测材料的线膨胀系数。
这种方法不需要具体的测量设备,但是相对准确度较低。
无论使用哪种方法1.选择合适的试样形状和尺寸。
试样的尺寸和形状应保证能够准确测量长度变化,并具有代表性。
2.控制好温度变化的方式和范围。
要保证温度变化均匀并且在一定范围内,以充分测量材料的膨胀行为。
同时,要避免过大的温度变化引起材料的热失控或损坏。
3.测量仪器的准确性和稳定性。
仪器的精度和稳定性对于测量结果的准确性至关重要。
应保证仪器的校准和维护,并进行合理的测量数据处理和分析。
总之,材料的线膨胀系数测量是一个复杂而重要的过程。
准确测量材料的线膨胀系数可以为工程设计提供重要的参考数据,帮助工程师考虑到温度变化对结构的影响,避免材料的膨胀引起的不必要问题。
不同的测量方法和设备可以根据实际需要选择,但要确保测量过程的准确性和可靠性。
材料线膨胀系数测定杆膨胀测量法是最常用的一种测量方法。
其原理是通过测量金属杆在温度变化下的长度变化来求得杆材料的线膨胀系数。
测量时首先将杆材料固定在装置上,将装置放在恒温槽中,然后通过温度变化使杆材料发生膨胀或收缩,通过对杆材料的长度变化进行测量,再将测量到的长度变化数据与温度变化数据进行对比,就可以求得杆材料的线膨胀系数。
光栅测量法是近年来发展起来的一种新型测量方法。
其原理是通过光栅的干涉原理实现对材料线膨胀系数的测量。
测量时首先将材料制成薄片,将之固定在测量台上。
测量台上放置一组光栅,将光栅分成两个部分。
当材料发生膨胀或收缩时,光栅之间的相位差会发生变化,通过测量光栅之间的相位差的变化,就可以求得材料的线膨胀系数。
电容测量法也是一种常用的测量方法。
其原理是通过在材料上开设两个电容,当材料发生膨胀或收缩时,电容之间的距离会发生变化,从而使得电容的电容值发生变化。
通过测量电容值的变化,就可以求得材料的线膨胀系数。
在进行材料线膨胀系数测定时,需要注意以下几点:1.温度控制:在测量过程中,必须严格控制温度的稳定性,以确保测量结果的准确性。
2.实验设备:需要选择合适的实验设备,包括温度控制装置、测量仪器等。
3.样品制备:样品制备过程中要保证材料的均匀性和准确性,避免造成误差。
4.测量精度:在测量过程中,需要注意仪器的精确度与测量精度,以确保测量结果的准确性。
总之,材料线膨胀系数的测定是材料研究和工程应用中的一个重要参数。
通过选择合适的测量方法和仪器设备,严格控制实验条件,可以获得准确可靠的线膨胀系数数据,为材料设计和应用提供参考依据。
测量金属线膨胀系数的方法金属的膨胀系数是指在单位温度变化下,金属材料单位长度的线膨胀量。
测量金属线膨胀系数的方法有多种,下面将介绍其中几种常用的方法。
1. 热胀冷缩法热胀冷缩法是一种常用的测量金属线膨胀系数的方法。
该方法利用热胀冷缩的原理,通过测量金属材料在不同温度下的长度变化来计算金属线膨胀系数。
具体操作步骤如下:(1)首先,选择一段金属线材料,并将其固定在测量装置上。
(2)然后,将装置置于恒温箱中,并将温度控制在不同的温度下,如20℃、30℃、40℃等。
(3)测量每个温度下金属线的长度,并记录下来。
(4)根据测得的数据,计算金属线膨胀系数的值。
公式为:膨胀系数 = (L2 - L1)/(L1 × ΔT),其中L1为初始长度,L2为不同温度下的长度变化,ΔT为温度变化。
2. 拉伸法拉伸法也是一种常用的测量金属线膨胀系数的方法。
该方法通过施加不同的拉力来测量金属材料在不同温度下的长度变化,进而计算金属线膨胀系数。
具体操作步骤如下:(1)首先,选择一段金属线材料,并将其固定在拉伸装置上。
(2)然后,通过拉伸装置施加不同的拉力,使金属线逐渐延长。
(3)同时,利用测量装置测量金属线的长度,并记录下来。
(4)根据测得的数据,计算金属线膨胀系数的值。
公式为:膨胀系数 = (L2 - L1)/(L1 × ΔT),其中L1为初始长度,L2为不同温度下的长度变化,ΔT为温度变化。
3. 光栅法光栅法是一种利用光栅原理测量金属线膨胀系数的方法。
该方法利用光栅装置对金属线进行光学测量,通过测量金属线在不同温度下的光栅位移来计算金属线膨胀系数。
具体操作步骤如下:(1)首先,选择一段金属线材料,并将其固定在测量装置上。
(2)然后,将光栅装置对准金属线,使光栅的光束垂直射向金属线。
(3)随后,通过调整光栅装置,使光栅与金属线的光斑重合。
(4)测量不同温度下的光栅位移,并记录下来。
(5)根据测得的数据,计算金属线膨胀系数的值。
材料热膨胀系数测定材料的热膨胀系数是指材料在温度变化过程中,单位温度变化引起的长度、体积或密度的变化速率。
当物体处于不同温度下时,由于温度的变化会导致物体的尺寸变化,这在工程领域中是非常常见的现象。
例如,建筑物、桥梁、飞机和汽车等实际工程结构都面临着温度变化所引起的热膨胀问题。
如果不了解材料的热膨胀系数,就很难进行结构设计和工程施工,因此研究材料的热膨胀系数对于工程应用具有重要意义。
一、材料热膨胀系数测定方法1.线膨胀系数的测定:线膨胀系数是指单位长度的材料在温度变化下的长度变化。
常用的方法有:a)膨胀条法:该方法是将待测材料制成一条长条状,放置在一定长度的测量装置中,通过加热或降温,测量其长度变化来计算线膨胀系数。
b)光杠杆法:该方法利用光学原理测量材料的长度变化。
通过将射入材料的光束通过反射或折射,在材料加热或降温的过程中,测量光束的偏转角来反映材料的长度变化。
c)压电晶体法:该方法利用压电晶体的性质,通过在晶体的应力变化下,测量晶体上的电压变化从而计算线膨胀系数。
2.体膨胀系数的测定:体膨胀系数是指单位体积的材料在温度变化下的体积变化。
常用的方法有:a)定容法:该方法是将待测材料置于一个容器中,通过加热或降温,测量其体积的变化来计算体膨胀系数。
b)浮力法:该方法利用浸泡在液体中的待测材料,通过测量液体中的浮力随温度的变化,来计算体膨胀系数。
c)数字全息的投影干涉法:该方法通过在待测材料上投射一个数字全息,利用干涉条纹的变化来测量材料的体膨胀系数。
二、热膨胀系数的测量技术的应用领域1.建筑物结构设计:在建筑物的设计和施工中,需要考虑到材料的热膨胀系数。
例如,当建筑物处于高温季节时,材料会膨胀,如果没有合理的设计,可能导致建筑物的结构损坏。
2.桥梁工程:在桥梁工程中,不同材料的热膨胀系数可能不同,如果不考虑这种差异,桥梁可能会由于温度变化而产生应力集中,从而导致结构的破坏。
因此,了解不同材料的热膨胀系数对桥梁工程的结构设计非常重要。
线膨胀系数的测定一、概述FD-LEA-B线膨胀系数测定仪是固体线膨胀系数的一种精密测定仪,固体线膨胀系数测量已列入大专院校的物理实验教学大纲中.本仪器对各种固体的热胀冷缩的特性可做出定量检测,并可对金属的线膨胀系数做精确测量.本仪器的恒温控制由高精度数字温度传感器与单片电脑组成,炉内具有特厚良导体纯铜管作导热,在达到炉内温度热平衡时,炉内温度不均匀性≤±0.3℃,读数分辨率为0.1℃,加热温度控制范围为室温至80.0℃.本仪器为高等院校测量金属线膨胀系数的优质仪器.二、仪器简介1.仪器结构如图1所示,它由恒温炉、恒温控制器、千分表、待测样品等组成.图1内部结构示意图1.大理石托架2.加热圈3.导热均匀管4.测试样品5.隔热罩6.温度传感器7.隔热棒 8.千分表 9.扳手 10.待测样品 11.套筒2.仪器使用方法:1)被测物体为Φ8×400(mm)的圆棒;2)整体要求平稳,因伸长量极小,故实验时应避免振动;3)千分表安装须适当固定 (以表头无转动为准)且与被测物体有良好的接触(读数在0.2—0.3mm处较为适宜,然后再转动表壳校零);三、技术指标1.温度控制分辨率:0.1℃;2.样品加热炉内空间温度达到平衡时,温度不均匀性≤±0.3℃;3.温度控制范围:室温至80℃;4.伸长量测量精度:0.001mm,最大测量范围为0.000—1.000mm;5.被测金属样品为Φ8×400(mm)的圆棒;6.温控仪使用环境和外型尺寸: 1)输入电源:220V±10% 50Hz—60Hz2)湿度:85%3)温度:0—40.0℃4)外型尺寸:315×250×140(mm)5)仪器重量:约3kg7.电加热恒温箱外型尺寸:560×120×20 (mm) .四、实验项目1.测量铁、铜、铝棒的线膨胀系数;2.测量其它固体物质的线膨胀系数(要求加工成Φ8×400mm的圆棒);3.学习用作图法求物理量,并分析实验误差;4.学会使用千分表和掌握温度控制仪的操作方法.五、注意事项1.不能用千分表去测量表面粗糙的毛坯工件或者凹凸变化量很大的工作,以防过早损坏表的零件,使用中应避免量杆过多地做无效运动,以防加快传动件的磨损;2.测量时,量杆的移动不宜过大,更不可超过它的量程终止端,绝对不可敲打表的任何部位,以防损坏表的零件;3.不要无故拆卸千分表内零件,不许将千分表浸放在冷却液或其它液体内使用;4.千分表在使用后,要擦净装盒,不能任意涂擦油类,以防粘上灰尘影响灵活性.线膨胀系数测试实验【实验目的】1. 测定固体在一定温度区域内的平均线膨胀系数;2. 了解控温和测温的基本知识;3. 用最小二乘法处理实验数据.【实验原理】线胀系数α的定义是,α的物理意义是,在压强保持不变的条件下,温度升高1℃所引起的物体长度的相对变化.即PL L ⎪⎭⎫ ⎝⎛∂∂=θα1 (1) 在温度升高时,一般固体由于原子的热运动加剧而发生膨胀,设L 0为物体在初始温度0θ下的长度,则在某个温度1θ时物体的长度为)](1[010θθα-+=L L T (2)在温度变化不大时,α是一个常数,可以将式(1)写为)(1)(0100100θθδθθα-=--=L L L L L T (3) α是一个很小的量,附录中列出了几种常见固体材料的α值.当温度变化较大时,α与θ∆有关,可用θ∆的多项式来描述:+∆+∆+=2θθαc b a其中c b a ,,为常数.在实际测量中,由于θ∆相对比较小,一般地,忽略二次方及以上的小量.只要测得材料在温度1θ至2θ之间的伸长量21L δ,就可以得到在该温度段的平均线膨胀系数α:)()(1212112112θθδθθα-=--≈L L L L L (4)其中1L 和2L 为物体分别在温度1θ和2θ下的长度,1221L L L -=δ是长度为1L 的物体在温度从1θ升至2θ的伸长量.实验中需要直接测量的物理量是21L δ,1L ,1θ和2θ. 为了使α的测量结果比较精确,不仅要对21L δ,1θ和2θ进行测量,还要扩大到对1i L δ和相应的i θ的测量.将式(4)改写为以下的形式:,2,1),(111=-=i L L i i θθαδ (5)实验中可以等间隔改变加热温度(如改变量为10℃),从而测量对应的一系列1i L δ.将所得数据采用最小二乘法进行直线拟合处理,从直线的斜率可得一定温度范围内的平均线膨胀系数α.【实验仪器】图2 仪器的外观实验主机、加热器、待测样品棒等.【实验过程】1.接通电加热器与温控仪输入输出接口和温度传感器的航空插头;2.旋松千分表固定架螺栓,转动固定架至使被测样品(Ф8×400mm 金属棒)能插入特厚壁紫铜管内,再插入传热较差的如不锈钢短棒,用力压紧后转动固定架,在安装千分表架时注意被测物体与千分表测量头保持在同一直线;3.将千分表安装在固定架上,并且扭紧螺栓,不使千分表转动,再向前移动固定架,使千分表读数值在0.2—0.3mm 处,固定架给予固定.然后稍用力压一下千分表滑络端,使它能与绝热体有良好的接触,再转动千分表圆盘使读数为零;4.接通温控仪的电源设定需加热的值,一般可分别增加温度为20℃、30℃、40℃、50℃,按确定键开始加热;5.当显示值上升到大于设定值,电脑自动控制到设定值,正常情况下在±0.30℃左右波动一、二次,同学可以记录θ∆和l ∆,并通过公式α=θ∆⋅∆l l 计算线膨胀系数并观测其线性情况;6.换不同的金属棒样品,分别测量并计算各自的线膨胀系数,并与公认值比较,求出其百分误差.【注意事项】1.千分表在实验时严禁用手直接拉动当中的量杆损坏千分表.【思考题】1. 测量L δ除了用千分表,还可用什么方法?试举例说明.2. 在实验装置支持的条件下,在较大范围内改变温度,确定α与θ的关系.请设计实验方案,并考虑处理数据的方法.【附录一】固体的线膨胀系数参考数据表【附录二】千分表使用说明书一、产品简介千分表是一种将量杆的直线位移通过机械系统传动转变为主指针的角位移,沿度盘圆周上有均匀的标尺标记,可用于绝对测量、相对测量、形位公差测量和检测设备的读数头.二、技术数据三、使用方法(一)使用前的准备工作:1.检验千分表的灵敏程度,左手托住表的后部,度盘向前用眼观看,右手拇指轻推表的测头,试验量杆移动是否灵活.2.检验千分表的稳定性,将千分表夹持在表架上,并使测头处于工作状态,反复几次提落防尘帽自由下落测头,观看指针是否指向原位.(二)使用中的测量方法和读数方法:1.先把表夹在表架或专用支架上,所夹部位应尽是靠近下轴根部(不可影响旋动表圈),夹牢即可,不可夹得过紧.2.校对零位校对零位有两种方法:第一种:旋转表的外圈,使度盘的“0”位对准指针;第二种:轻轻敲打表架的悬臂,使其升起或下降,通过升降量杆的压缩量,这等于旋转表指针去对准度盘的“0”位.校对零位时,应使表的测头对好基准面,并使量杆有(0.02~0.2)mm的压缩量,再紧固住表.对好零位后,应反复几次提落防尘帽(升落0.1mm~0.2mm左右),待针位稳定后方可旋动外圈对零.对零后还要复检表的稳定性,直到针位既稳又准方可使用.3.测量测平面时,应使表的量杆轴线与所测表面垂直,禁防出现倾斜现象.测量圆柱体时,量杆轴线应通过工件中心并与母线垂直.测量过程中,大小针都在转动,分度值为0.001mm,大针每转一格为0.001mm;小针转一格,大指针转一圈.测量时,应记住大小指针的起始值,待测量后所测取数值再减去起始值,看读数时,视线应垂直于度盘看指针位置,以防出现视差.【附录三】恒温控制仪使用说明1.面板操作简图如图3图3 主机面板示意图1)当面板电源接通数字显示为“FdHc”,表示本公司产品,随后即自动转向“A××.×”表示当时传感器温度,显示“b= =.=”表示等待设定温度;2)按升温键,数字即由零逐渐增大至用户所需的设定值,最高可选80.0℃;3)如果数字显示值高于用户所需要的温度值,可按降温键,直至用户所需要的设定值;4)当数字设定值达到用户所需的值时,即可按确定键,开始对样品加热,同时指示灯亮,发光频闪与加热速率成正比;5)确定键的另一用途可作选择键,可选择观察当时的温度值和先前设定值;6)用户如果需要改变设定值可按复位键,重新设置.。
简述线膨胀系数的测定原理
线膨胀系数是一个衡量物质在温度变化下长度变化程度的物理量。
其测定原理可以通过以下步骤进行:
1. 准备样品:选择所需测量的物质样品,并将其切割成适当的尺寸。
2. 安装测量装置:将样品安装到测量装置中。
常见的测量装置包括热膨胀仪或光学仪器。
3. 设定实验条件:设定所需的实验温度范围,并将温度控制在设定的范围内。
4. 测量长度变化:随着温度变化,仪器会测量样品的长度变化。
这可以通过使用光学技术测量样品的长度,或者通过测量电阻或信号的变化来实现。
5. 计算线膨胀系数:根据测量的数据,可以计算出样品在特定温度下的线膨胀系数。
线膨胀系数通常以每摄氏度的长度变化(或百分比变化)表示。
需要注意的是,线膨胀系数的测定可能会受到一些因素的影响,例如测量装置的准确性、环境条件的变化等。
因此,在进行实际测量时,还需要进行实验校准和控制误差。
材料线膨胀系数测量材料的线膨胀系数是指材料在温度变化时单位温度变化引起的单位长度变化。
它是一个反映材料热膨胀性能的重要参数,对于材料的设计和应用非常关键。
本文将介绍材料线膨胀系数的测量方法及其应用。
测量方法:材料线膨胀系数的测量通常会采用热膨胀仪或光栅测量系统。
其中,热膨胀仪主要通过测量材料在不同温度下的长度来计算线膨胀系数。
而光栅测量系统则是利用光栅的原理,通过测量材料表面的位移来计算材料的线膨胀系数。
热膨胀仪的测量步骤如下:1.准备样品:选取需要测量线膨胀系数的材料样品,并进行表面处理,确保材料表面光滑和平行度要求。
2.搭建测量系统:将样品固定在测量装置上,并将热电偶连接到材料的制样区域以测量温度变化。
3.温度控制:设置初始温度,并根据实验需要进行温度逐渐升高或下降。
4.记录长度变化:在温度变化过程中,通过位移传感器或测微仪测量样品的长度变化。
5.计算线膨胀系数:根据样品的长度变化和温度变化,利用公式计算出材料的线膨胀系数。
光栅测量系统的测量步骤如下:1.准备样品:与热膨胀仪的测量步骤相同。
2.接入光栅系统:将光栅传感器固定在样品的一侧,并保持光栅的相对位置不变。
3.记录位移变化:在温度变化过程中,通过光栅传感器测量样品表面的位移变化。
4.计算线膨胀系数:根据位移变化和温度变化,利用光栅原理计算出材料的线膨胀系数。
应用:1.材料选型:在设计产品时,需要考虑材料的热膨胀性能,以避免因温度变化导致的变形和破裂。
2.结构设计:材料线膨胀系数的测量结果可以用于预测结构在温度变化时的变形,从而对结构进行合理设计。
3.工程测量:在工程测量中,能够准确测量材料的线膨胀系数有助于工程测量中的温度校正。
综上所述,材料线膨胀系数的测量是一个重要的过程,通过热膨胀仪或光栅测量系统可以准确测量材料在温度变化下的长度变化,并计算出材料的线膨胀系数。
这一参数对于材料设计和应用都具有重要的意义。
【DOC】金属线膨胀系数测定实验目的:通过测定金属线在不同温度下的长度变化,确定金属线的膨胀系数。
实验原理:金属材料在受热后,由于分子热运动加剧,分子间的距离扩大,材料的长度也会发生变化。
根据引力法则,分子间的距离增加相当于引力减小,因此金属材料在受热时会发生向外的膨胀。
金属材料在单位温度变化时的长度变化量与其初始长度的比值称为膨胀系数,通常用α表示。
根据式子:△L = αL0△T式中,△L为温度变化ΔT时的长度变化,L0为原长度,α为膨胀系数。
实验材料:金属线、恒温水浴、温度计、游标卡尺实验步骤:1. 准备一段金属线,量取其长度L0,记录下来。
2. 将金属线固定在架子上,使它可以自由伸长和收缩。
3. 将温度计放入恒温水浴中,使水温逐渐升高,记录下每次升温时的温度值ΔT。
4. 在每次升温之前,用游标卡尺测量金属线的长度,记录每次测量值。
5. 重复以上步骤,直到温度升高到一定值为止。
6. 根据记录的数据,画出金属线的长度变化曲线,计算出金属线的膨胀系数。
实验注意事项:1. 金属线固定时应使其自由伸长和收缩,防止受力过大影响测量结果。
2. 在测量金属线长度时,应注意游标卡尺的精度和读数准确度。
3. 温度计应校准,确保温度测量准确。
实验数据及计算:温度(℃)变化量ΔT(℃)初始长度L0(mm)长度变化△L(mm)膨胀系数α(×10^-6 K^-1)20℃(室温) 0 500 0 /30℃ 10 500 0.1 20.040℃ 10 500 0.2 40.050℃ 10 500 0.3 60.060℃ 10 500 0.4 80.0根据实验数据,可绘制出金属线的长度变化曲线,如下图所示:金属线的膨胀系数α = (△L/L0)/ ΔT将实验数据带入计算,得出金属线的膨胀系数为:α = 80.0×10^-6 K^-1实验结论:通过实验可以得出,金属线的膨胀系数随着温度的升高而增大。
金属线的膨胀系数是每个金属材料固有的性质,可以用于热膨胀计及其它热学应用中。
金属线胀系数的测定数据一、引言金属线胀系数是指金属在温度变化下的线胀程度,是一个重要的物理性质参数。
了解金属线胀系数对于工程设计和材料选择具有重要意义。
在本文中,我们将介绍金属线胀系数的测定方法,并提供一些实际测定数据作为参考。
二、测定方法1. 线膨胀计法:通过测量金属线在温度变化下的长度变化,计算出线胀系数。
这种方法适用于较小温度范围内的测定,如常温到200摄氏度范围。
2. 热电偶法:利用热电偶原理,测量金属线两端的温度差,并计算出线胀系数。
这种方法适用于高温范围的测定,如200摄氏度以上的温度范围。
3. 拉伸法:通过测量金属线在不同温度下的拉伸变化,计算出线胀系数。
这种方法适用于较大温度范围内的测定,如常温到1000摄氏度范围。
三、实际测定数据以下是一些常见金属的线胀系数测定数据,供参考:1. 铝:线胀系数为23.1×10^-6/摄氏度。
铝是一种轻质金属,在温度变化下线胀较为明显,常用于制造飞机和汽车等产品。
2. 铜:线胀系数为16.6×10^-6/摄氏度。
铜是一种导电性能良好的金属,常用于电线电缆和管道等应用领域。
3. 钢:线胀系数为12.0×10^-6/摄氏度。
钢是一种常用的结构材料,线胀系数较低,适用于各种温度条件下的工程设计。
4. 不锈钢:线胀系数为17.3×10^-6/摄氏度。
不锈钢具有耐腐蚀性能,常用于制造厨具和化工设备等。
5. 铁:线胀系数为11.8×10^-6/摄氏度。
铁是一种常见的金属材料,线胀系数较低,适用于各种结构和机械应用。
四、应用和意义金属线胀系数的测定数据对于工程设计和材料选择具有重要意义。
在建筑结构设计中,了解金属线胀系数可以帮助工程师预测材料在不同温度下的变形和应力分布,从而提高结构的安全性和稳定性。
在热工设备设计中,了解金属线胀系数可以帮助工程师选择合适的材料,并合理设计热胀冷缩的补偿装置,以避免因温度变化而引起的设备破坏或故障。
如下是关于金属线膨胀系数的测定实验总结:一、引言1.1 金属线膨胀系数的概念在物理学中,金属线膨胀系数是指金属材料在受热时长度的增加量与原来长度的比值。
这一物理性质在工程实践中具有十分重要的应用,因此对金属线膨胀系数进行准确测定是十分必要的。
1.2 实验目的本实验旨在通过测定不同金属材料的线膨胀系数,探索金属材料在受热时的行为规律,为工程应用提供准确的数据支持。
二、实验原理和方法2.1 线膨胀系数的计算公式金属的线膨胀系数通常用α表示,它与温度变化的关系可用以下公式表示:ΔL = αL0ΔT其中,ΔL为金属的长度变化量,L0为金属原来的长度,ΔT为温度变化量。
2.2 实验方法本实验选取了不同金属材料的丝材进行测定,首先将金属丝固定在实验装置上,然后利用恒温箱对金属丝进行升温和降温处理,通过测定金属丝的长度变化量和温度变化量,最终计算获得金属线膨胀系数。
三、实验结果和数据分析3.1 实验结果我们分别选取了铜丝、铁丝和铝丝进行了线膨胀系数的测定实验,得到了它们在不同温度下的长度变化数据。
3.2 数据分析通过对实验数据的分析,我们可以发现不同金属材料的线膨胀系数存在一定的差异性,这与金属的物理性质和分子结构有着密切的关系。
四、实验总结4.1 结果总结通过本次实验,我们成功地测定了铜丝、铁丝和铝丝的线膨胀系数,为金属材料在受热时的行为规律提供了准确的数据支持。
4.2 感悟与思考在实验过程中,我们对金属线膨胀系数的测定方法和影响因素有了更深入的了解,也更加认识到金属材料的性能对工程应用的重要性。
五、个人观点在今后的工程应用中,我们需要更加重视金属材料的线膨胀系数这一物理性质,并通过实验手段获取准确的数据,以保证工程设计的精确性和可靠性。
金属线膨胀系数的测定实验对于深入理解金属材料的物理性质具有重要的意义,也为工程应用提供了重要的参考依据。
希望通过本次实验总结,能够对相关领域的研究和实践起到一定的启发作用。