实验11 电热法测固体的线胀系数
- 格式:doc
- 大小:80.00 KB
- 文档页数:4
固体线膨胀系数的测量一、实验目的测定金属棒的线胀系数,并学习一种测量微小长度的方法。
二、实验原理固体的线膨胀系数和体膨胀系数是固体热学特性的重要参数,通常体膨胀系数是线膨胀系数的3倍左右,本实验主要介绍固体线膨胀系数的测量方法。
线膨胀是指材料在受热膨胀时,在一维方向上的伸长。
在一定的温度范围内,固体受热后,其长度都会增加,设物体原长为L ,由初温t 1加热至末温t 2,物体伸长了△L ,则线膨胀系数满足:即上式中△L 是个极小的量,我们采用光杠杆测量。
光杠杆法测量△L :如下图(见教材杨氏模量原理)1.当金属杆伸长△L 时,从望远镜中叉丝所对标尺刻度前后为b 1、b 2,这时有 即则固体线膨胀系数为:三、实验仪器尺读望远镜,米尺,固体线膨胀系数测定仪,铜棒,光杠杆,温度计。
四、实验内容及步骤1、在实验界面单击右键选择“开始实验”()12t t L L -=∆αlLDbb ∆=-212()Dlb bL 212-=∆()12t t L L-∆=α()()kDLl t t DL b b l 221212=--=α2、调节平面镜至竖直状态3、打开望远镜视野,并调节方位、聚焦、目镜使得标尺刻线清晰,且中央叉丝读数为0.0mm4、单击铜棒测量长度,单击温度计显示铜棒温度,打开电源加热,记录每升高10度时标尺读数直至温度升高到90度止5、单击卷尺,分别测量l、D6、以t 为横轴,b 为纵轴作b -t 关系曲线,求直线斜率k7、代入公式计算线膨胀系数值 有图得K =0.3724=1.206x10-5 /C五、实验数据记录与处理六、思考题()()k DLl t t DL b b l 221212=--=α1.对于一种材料来说,线胀系数是否一定是一个常数?为什么?不是。
因为同一材料在不同的温度区域,其线性系数是不同的,有实验结果的事实可证明。
2.你还能想出一种测微小长度的方法,从而测出线胀系数吗?目前想不到更好地方法。
固体线膨胀系数测定实验报告一、实验目的掌握固体线膨胀系数测定的基本原理和方法,了解固体热膨胀的规律,探究不同材料的膨胀性能。
二、实验原理α=ΔL/(L0×ΔT)三、实验仪器和材料1.实验仪器:线膨胀测定装置、温度计、恒温槽、电磁铁等。
2.实验材料:不同材质的试样。
四、实验步骤1.将不同材料的试样固定在线膨胀测定装置上。
2.将线膨胀测定装置放入恒温槽中,并将温度调至初始温度。
3.记录下试样的初始长度L0。
4.开始测量后,通过电磁铁控制试样的温度变化。
5.每隔一定时间,测量试样的长度变化ΔL,并记录下温度变化ΔT。
6.重复以上步骤,直到试样温度变化范围内的线膨胀量连续三次测量结果相近为止。
五、实验数据处理和分析1.按照实验步骤记录得到的数据,计算出每组试样的线膨胀系数α。
2.绘制试样温度变化与线膨胀量变化的曲线图。
3.比较不同材料的线膨胀系数大小,分析不同材料的膨胀性能。
六、实验结果和讨论通过实验测定,得到了不同材料的线膨胀系数α,并绘制了温度变化与线膨胀量变化的曲线图。
实验结果表明,在相同温度范围内,不同材料的线膨胀系数有所差异。
这表明了不同材料在受热膨胀时的表现不同。
根据实验得到的结果,我们可以进一步探究不同材料的热膨胀性能。
在实际应用中,我们可以根据不同的需求选择合适的材料进行设计与制造。
例如,在工程领域中,考虑到热膨胀可能引起的变形问题,我们可以选择线膨胀系数较小的材料,从而最大程度地减小因热膨胀引起的结构变形。
七、实验总结通过这次实验,我掌握了固体线膨胀系数测定的基本原理和方法。
实验中,我了解到了不同材料在受热膨胀时的表现不同,这对于材料选择与应用有着重要的意义。
同时,我也深刻认识到实验的重要性和实验操作的细致性要求,只有严格按照实验步骤进行,才能获得准确的实验数据和可靠的实验结果。
在今后的学习和工作中,我将继续深入学习和研究固体线膨胀的相关知识,不断提升自己的实验技能和科研能力,为材料科学与工程领域的发展做出自己的贡献。
Pasco固体线膨胀系数的测量实验报告-实验目的:1.了解物体“热胀冷缩”的程度和特性,绘制材料“伸长量—时间”、“温度变化量—时间”曲线。
2.学习用计算机控制对固体线膨胀系数的实时测量技术。
实验原理:在相同的条件下,不同的材料,其线膨胀的程度各不相同。
实验表明,在一定变化范围内,原长度为L的固体受热后,其相对伸长量△L/L=a△t式中a称为固体的线膨胀系数。
在一般情况下,温度变化不大的范围内,对于一种确定的固体材料,可以认为线膨胀系数是一个具有确定值的常数。
在本实验中测量出棒状材料长度变化的增量△L,利用a=△L/(L×△t)。
a的物理意义是:棒状材料在温度变化区域内,温度每升高一度时的相对伸长量,单位是1/℃。
严格的讲,求出的a是温度变化△t区域内的平均线膨胀系数。
实验利用沸腾的水蒸气来加热待测金属杆,并保持末温度不变。
采用温度传感器自动读取待测金属杆的温度变化量△t,转动传感器自动测量棒状物体的伸长量△L,根据公式便可求得待测金属杆的线膨胀系数。
实验仪器:计算机、科学工作站、转动传感器、热敏电阻传感器、水蒸气锅实验内容:1.测量出待测金属杆在室温下的原长记为L。
2.连接好实验装置,固定好金属杆,用水蒸气锅给水加热直至沸腾。
3.打开科学工作室默认窗口界面,选择转动传感器和热敏电阻传感器,设置传感器工作系数,插入图表。
4.待水烧开后分别对三根金属棒进行测量。
5.利用螺旋测微器测量仪器的直径。
实验数据:金属棒的原长均为45.7厘米,仪器的直径为2.605毫米铝棒温度变化:红铜棒温度变化:黄铜棒:温度变化:数据分析与讨论:铝棒,△t=62.4℃,△L=0.73mm故a=26.6×10^(-6)/℃;红铜棒:△t=69℃,△L=0.43mm故a=13.7×10^(-6) /℃;黄铜棒:△t=63.6℃, △L=0.61mm故a=21.1×10^(-6) /℃;比较课本上的固体线膨胀系数表得实验中存在误差,但在误差允许的范围内测量的结果还是接近的。
固体线膨胀系数的测定绝大多数物质具有热胀冷缩的特性,在一维情况下,固体受热后长度的增加称为线膨胀。
在相同条件下,不同材料的固体,其线膨胀的程度各不相同,我们引入线膨胀系数来表征物质的膨胀特性。
线膨胀系数是物质的基本物理参数之一,在道路、桥梁、建筑等工程设计,精密仪器仪表设计,材料的焊接、加工等各种领域,都必须对物质的膨胀特性予以充分的考虑。
【实验目的】1、学习测量固体线膨胀系数的一种方法。
2、了解一种位移传感器——数字千分表的原理及使用方法。
3、了解一种温度传感器——AD590的原理及特性。
4、通过仪器的使用,了解数据自动采集、处理、控制的过程及优点。
5、学习用最小二乘法处理实验数据。
【实验原理】1、线膨胀系数设在温度为t1时固体的长度为L1,在温度为t2时固体的长度为L2。
实验指出,当温度变化范围不大时,固体的伸长量△L= L2-L1与温度变化量△t= t2-t1及固体的长度L1成正比。
即:△L=αL1△t (1)式中的比例系数α称为固体的线膨胀系数,由上式知:α=△L/Ll·1/△t (2)可以将α理解为当温度升高1℃时,固体增加的长度与原长度之比。
多数金属的线膨胀系数在(0.8—2.5)×10-5/℃之间。
线膨胀系数是与温度有关的物理量。
当△t很小时,由(2)式测得的α称为固体在温度为t1时的微分线膨胀系数。
当△t是一个不太大的变化区间时,我们近似认为α是不变的,由(2)式测得的α称为固体在t1—t2温度范围内的线膨胀系数。
由(2)式知,在L1已知的情况下,固体线膨胀系数的测量实际归结为温度变化量△t与相应的长度变化量△L的测量,由于α数值较小,在△t不大的情况下,△L也很小,因此准确地测量△L及t是保证测量成功的关键。
2、微小位移的测量及数字千分表测量微小位移,以前用得最多的是机械百分表,它通过精密的齿条齿轮传动,将位移转化成指针的偏转,表盘最小刻度为0.01mm,加上估读,可读到0.001mm,这种百分表目前在机械加工行业仍广泛使用。
固体线胀系数的测定实验报告固体线胀系数的测定实验报告引言:固体线胀系数是材料热胀冷缩特性的重要指标之一。
通过测定材料在不同温度下的线胀变化,可以确定材料的线胀系数,为材料的热胀冷缩行为提供重要参考。
本实验旨在通过测定铝棒在不同温度下的线胀变化,计算出铝的线胀系数。
实验步骤:1. 实验器材准备:- 铝棒:长度为30cm,直径为1cm;- 温度计:具有较高精度的数字温度计;- 夹具:用于固定铝棒,确保其在实验过程中不发生位移;- 温度控制装置:用于控制实验室内的温度。
2. 实验操作:- 将铝棒固定在夹具上,并确保其水平放置;- 将温度计的探头与铝棒接触,记录下初始温度;- 打开温度控制装置,将实验室温度调整至25摄氏度;- 每隔10摄氏度,记录下铝棒的长度,并记录相应的温度;- 测定范围为25摄氏度至100摄氏度。
数据处理:根据实验数据,我们可以计算出铝的线胀系数。
线胀系数(α)的计算公式为:α = (ΔL / L0) / ΔT其中,ΔL为铝棒的长度变化量,L0为初始长度,ΔT为温度变化量。
我们可以根据测定的数据,绘制出铝的线胀系数与温度的关系曲线图,并通过拟合曲线,得到更精确的线胀系数。
结果与讨论:根据实验数据,我们得到了铝的线胀系数与温度的关系曲线图。
从图中可以看出,在温度升高的过程中,铝的线胀系数逐渐增大。
这是因为随着温度的升高,固体分子的热运动增加,分子间的距离扩大,导致材料的线胀。
而铝的线胀系数相对较小,说明铝具有较好的热胀冷缩性能。
通过拟合曲线,我们得到了铝的线胀系数为0.0000225/℃。
这一数值与文献值相符合,说明实验结果较为准确。
结论:通过本实验,我们成功测定了铝的线胀系数,并得到了较准确的结果。
线胀系数是材料热胀冷缩特性的重要指标,对于工程设计和材料选用具有重要意义。
本实验为我们提供了一种简单有效的测定固体线胀系数的方法,并且验证了铝的线胀系数与温度的关系。
固体线胀系数实验报告1. 实验目的本实验旨在通过测量固体材料在不同温度下的线胀量,计算得到固体线胀系数,以便研究该材料的热膨胀性质。
2. 实验原理固体的热膨胀是指固体物质在温度变化时的体积或长度的增加。
线胀系数(α)是指在单位温度变化下,固体材料单位长度的变化量。
线胀系数的计算公式如下:α= (ΔL / L0) / ΔT其中,α为线胀系数,ΔL为长度变化量,L0为原始长度,ΔT为温度变化量。
本实验选用了金属样品进行热膨胀实验,根据材料的线胀特性,将样品固定在测量仪器上,通过在控制的温度范围内升温,测量线胀量,进而计算得到线胀系数。
3. 实验器材- 热膨胀测量仪:用于固定和测量样品的长度变化量,同时提供恒定的温度环境。
- 金属样品:选用具有热膨胀性质的固体材料作为实验样品,如铝、铜等。
4. 实验步骤1. 将金属样品固定在热膨胀测量仪上,确保样品稳固不动。
2. 设置热膨胀测量仪的温度范围,并将温度调节到初始温度。
3. 开始记录温度和样品长度数据。
4. 将热膨胀测量仪的温度逐步升高,每隔一定温度间隔记录一次样品长度。
5. 当达到最终温度后,停止温度升高,继续记录样品长度。
6. 根据记录的数据,计算得到线胀系数。
5. 数据处理与结果分析根据实验记录的数据,我们可以绘制出温度和样品长度的曲线图。
根据曲线的斜率即可计算得到线胀系数。
实验结果显示,金属样品在温度升高时,其长度随温度的增加而增加。
通过计算得到的线胀系数可以反映金属材料的热膨胀性质。
6. 实验误差分析实验中可能存在的误差包括温度测量误差和长度测量误差。
温度测量误差可能来自于温度传感器的精度限制,长度测量误差可能来自于仪器的粗糙度。
为了减小误差,我们可以多次重复实验,取平均值来增加测量的准确性。
此外,在实验操作中要尽量避免人为因素对实验结果的影响,严格按照操作规程进行实验。
7. 实验结论通过本实验测量得到金属样品的线胀系数,从而为研究该金属材料的热膨胀性质提供了参考数据。
固体线膨胀系数的测定大多数固体材料内部分子热运动的剧烈程度与物体的温度有关,故而都遵从热胀冷缩的规律。
固体的体积随温度升高而增大的现象称为热膨胀。
固体热膨胀时,它在各个线度上(如长、宽、高、直径等)都要膨胀,我们把物体线度的增长称为线膨胀;将体积的增大称为体膨胀。
若固体在各方向上热膨胀规律相同时,可以用固体在一个方向上的线膨胀规律来表征它的体膨胀,所以线膨胀系数是很多工程技术中选材料的重要技术指标。
在道路、桥梁、建筑等工程设计、精密仪器仪表设计、材料的焊接、加工等领域都必须考虑该参数的影响。
线膨胀系数的测量方法有很多种,包括:光杠杆法、千分表法、读书显微镜法、光学干涉法、组合法等,本实验采用千分表法测金属线膨胀系数,用FD-LEB 线膨胀系数测定仪进行测量。
一、实验目的1.学习测量固体线膨胀系数的方法;2.掌握用千分表测量微小长度变化的方法;3.练习作图法处理实验数据的方法;4.分析影响测量精度的因素。
二、实验原理固体受热后的长度L 和温度t 之间的关系为:)1(20 +++=t t L L βα (1)式中L 0为温度t=0℃时的长度, βα、是和被测物质有关的数值很小的常数,而β以后的各系数和α相比甚小,所以常温下可以忽略,则上式可写成:)1(0t L L α+= (2)式中α就是固体的线膨胀系数,其物理意义为温度每升高一度时物体的伸长量与它在零度时的长度比,单位是摄氏度分之一。
如果在温度t 1和t 2时,金属杆的长度分别为L 1和L 2,则有:)1(101t L L α+= (3) )1(202t L L α+= (4) 联立(3)、(4)式可得:)(1122112t L L t L L L --=α。
由于L 2与L 1相差微小,1/12≈L L 所以上式可近似写为tL L ∆∆=1α。
式中12L L L -=∆是固体当温度变化12t t t -=∆时相对应的伸长量。
该式通常可简单表示为:t L L ∆∆=α。
固体线膨胀系数的测定实验报告
固体线膨胀系数的测定实验报告
实验目的:本实验旨在测量一种材料的固体线膨胀系数。
实验原理:当材料受到温度变化时,其热膨胀系数表示材料在单位温度变化时,长度或体积变化的百分比。
热膨胀是物理性质。
它描述了随温度升高而对应体积变化的比例,其中热膨胀系数就是衡量变化的指标。
实验中,通过改变材料的温度,测量温度和长度之间的关系,从而计算出材料的固体线膨胀系数。
实验装置:实验所用的装置包括:精密钢丝、温度测量仪、电子天平。
实验步骤:
1. 用电子天平称量一根精密钢丝的质量,记录其质量m。
2. 把精密钢丝放入一个恒温箱中,控制温度T。
3. 在恒温箱中保持温度T恒定,并不断观察精密钢丝的长度L,并定时记录。
4. 将所记录的温度和长度数据代入公式计算固体线膨胀系数α。
实验结果:
实验中测得的精密钢丝的质量m=50g,当恒温箱内的温度T=20℃时,钢丝的长度L=100cm,当恒温箱内的温度T=80℃时,钢丝的长度L=102cm。
根据以上数据,计算出精密钢丝的固体线膨胀系数α=0.02/℃。
实验结论:从本实验结果可以看出,精密钢丝的固体线膨胀系数为0.02/℃,表明精密钢丝具有较强的热膨胀性能。
实验总结:本实验中,我们通过改变材料的温度,测量温度和长度之间的关系,从而计算出材料的固体线膨胀系数。
实验结果表明,精密钢丝的固体线膨胀系数较低,说明精密钢丝具有较强的热膨胀性能。
固体线膨胀系数的测定实验报告一、实验目的。
本实验旨在通过实验方法测定不同材料的线膨胀系数,探究固体在温度变化下的膨胀规律,加深对固体热膨胀性质的理解。
二、实验原理。
固体的线膨胀系数是指单位长度的材料在温度升高1摄氏度时,长度增加的比例。
通常用α表示,单位为℃-1。
根据热膨胀原理,材料的线膨胀系数可以通过测量温度变化前后的长度变化来计算。
三、实验仪器与材料。
1. 测温仪。
2. 固体样品。
3. 温度控制装置。
4. 尺子。
四、实验步骤。
1. 将固体样品放置在温度控制装置中,初始测量其长度L0。
2. 通过温度控制装置升高固体样品的温度,每隔一定温度间隔测量一次其长度L。
3. 记录每次测量的温度T和长度L,并计算温度变化前后的长度变化ΔL。
4. 重复以上步骤,直至获得足够的数据。
五、实验数据处理。
根据实验数据计算每个温度间隔下的线膨胀系数α,即ΔL/L0ΔT。
六、实验结果与分析。
通过实验数据处理,得到不同温度下固体的线膨胀系数。
分析数据发现,不同材料的线膨胀系数存在差异,且随着温度的升高,线膨胀系数也会有所变化。
这与固体的热膨胀规律相符合。
七、实验结论。
通过本次实验,我们成功测定了固体的线膨胀系数,并发现了不同材料在温度变化下的膨胀规律。
这为我们深入理解固体的热膨胀性质提供了实验数据支持。
八、实验总结。
本次实验通过测定固体线膨胀系数,加深了我们对固体热膨胀性质的认识。
同时,实验过程中我们也发现了一些问题和不足之处,希望在今后的实验中能够改进和完善。
以上为固体线膨胀系数的测定实验报告内容,希望对您有所帮助。
固体线热膨胀系数的测定【实验目的】材料的线膨胀指的是材料受热后一维长度的伸长。
当温度升高时,一般固体由于其原子或分子的热运动加剧,粒子间的平均距离发生变化,温度越高,其平均距离越大,这就是固体的热膨胀。
热膨胀是物质的基本热学性质之一。
物体的热膨胀不仅与物质种类有关。
对金属晶体而言,由于它们是由许多晶粒构成的,这些晶粒在空间方位上排列是无规则的,整体表现出各相同性。
它们的线膨胀在各个方向均相同。
虽然固体的热膨胀非常微小,但使物体发生很小形变时就需要很大的应力。
在建筑工程、机械装配、电子工业等部门中都需要考虑固体材料的热膨胀因素。
因此固体线胀系数是选择材料的一项重要指标,测定固体的线膨胀系数具有重要的实际意义。
1. 掌握测量固体线热膨胀系数的基本原理。
测量铁、铜、铝棒的线热膨胀系数。
2. 学会使用千分表,掌握温度控制仪的操作。
3. 学习图解图示法处理实验数据。
【实验原理】设为物体在温度时的长度,则该物体在时的长度可由下式表示:(1)其中,为该物体的线膨胀系数,在温度变化不大时,可视为常数。
将式(23-1)改写为:(2)可见,的物理意义为:温度每升高时物体的伸长量与它在时的长度之比,单位为:或。
实际测量中,一般只能测得材料在温度及时的长度及,设是常量,则有:(3)由式(6)即可求得物体在温度之间的平均线膨胀系数。
其中,微小长度变化量可直接用千分表测量。
本实验对金属铁、铜、铝进行测量求出不同金属的线膨胀系数。
【实验仪器】FD-LEA固体线热膨胀系数测定仪(一套)、(电加热箱、千分表、温控仪)金属棒、电源线、加热线、传感器及电缆仪器介绍1.千分表是一种测定微小长度变化量的仪表,其外形结构如图1所示。
外套管G用以固定仪表本身;测量杆M被压缩时,指针H转过一格。
而指针P则转过一周,表盘上每周等分小格,每小格即代表0.001mm,千分表亦由此得名。
图1千分表2.FD-LEA固体线热膨胀系数测定仪由电加热箱和温控仪两部分组成。
固体线胀系数的测定绝大多数物体都具有 “热胀冷缩” 的特性, 这是由于构成物体的微观粒子热运动随温度的升、 降而加剧或减弱造成的。
固体材料的线胀系数是反映固体材料受热膨胀时, 在一维方向上伸长性质的重要参数。
线胀 系数是选用材料的一项重要指标, 是材料工程、 热力工程和自动控制技术中的一个重要技术参数, 在工程设计(如桥梁和过江电缆工程) 、精密仪表设计,材料的焊接和加工中都必须加以考虑。
、实验目的1. 学会一种测定金属线胀系数的方法。
2. 掌握光杠杆法测量长度微小变化量的原理和方法。
3. 学会用最小二乘法处理数据。
、实验原理设金属棒在温度 t o 时的长度为 L o ,当其温度上升到 t 时,它的长度 L t 可由下式表示:L t =L o 1 t t o(1)式中, 即为该物体的线胀系数。
可将式( 1)改写成:L t L o L L o t t oL o t t o由此可见,线胀系数 的物理意义是温度每升高 1 o C 时物体的伸长量 L 与原长之比。
般 随温度有微小的变化,但在温度变化不太大时,可把它当作常量。
由式( 2)可以看出,测量线胀系数的关键是准确测量长度的微小变化量估算一下 L 的大小。
若 L o 500mm ,温度变化 t t o 100 C ,金属线胀系数 的数量级 为10 5 C 1 ,则可估算出 L 0.50mm 。
对于这么微小的长度变化量,用普通量具如钢尺 和游标卡尺无法进行精确测量,一般采用千分表法(分度值为0.001mm ),光杠杆法,光学干涉本实验采用光杠杆法, 整套实验装置由固体线胀系数测定仪, 光杠杆和尺读望远镜等几部分 组成,如图 1 所示。
2)L 。
我们先粗略图 1 测定固体线胀系数的实验装置光杠杆测微小长度改变量的原理:参照图 2,假定开始时光杠杆平面镜 M 的法线 on o 在水平位置,则标尺 S 上的标度线 n o 发 出的光通过平面镜 M 反射进入望远镜,在望远镜中形成n o 的象而被观察到。
百度文库实验11电热法测固体的线胀系数当固体温度升高时,由于分子的热运动加剧,固体分子间平均距离增大,结果使固体体积发生膨胀;反之当温度降低时,固体体积就会收缩,这就是“热胀冷缩”现象。
任何固体都具有“热胀冷缩”特性,材料的热胀系数就是表示物质的“热胀冷缩”特性的,是物质的基本属性之一。
在建筑设计、工程施工及机械加工制造等工程技术中,常常需要知道材料的热胀系数,以便在设计或施工中留有余地或充分利用固体的热膨胀性质。
【实验目的】1 •学习测定金属杆的线膨胀系数的方法;2 •进一步熟悉用光杠杆测定微小伸长量的原理和方法。
【预习检测题】1 •本实验的直接测量量有哪几个?分别用什么仪器,用什么方法测量?间接测量量是什么?与直接测量量的关系如何?2•光杠杆利用了什么原理?有什么优点?3 •如何才能在望远镜中迅速找到标尺的像?【实验原理】1 •固体的线膨胀系数固体受热引起的长度增加,称为线膨胀,长度变化的大小取决于温度的改变,材料的种类和材料的原长度。
设在温度为t o C时金属杆的长度为L o,当温度升至t C时其长度为L,则金属杆的伸长量△ L正比于原长度和温差。
即:△L=L —L o= a L o (t—t o) = a L o A t ( 5.3.1)式中a称为固体的线膨胀系数。
不同的物质线胀系数不同,同一质料的线胀系数因温度不同稍有些改变。
对于大多数固体在不太大的温度范围内可以把它看作常数,故常用平均线胀系数为:L L。
(5.3.2)t由⑵式可以看出物体线胀系数a的物理意义是:在数值上等于当温度每升高 1 C时,金属杆每单位原长度的伸长量。
实验过程中,只要侧出A L、L o和相应的A t值,就可以求得线胀系数a的值。
由于固体的长度变化量A L很小,不易直接测量,在实验时可采用光杠杆法测量金属杆的伸长量A L。
2. 光杠杆测量法由光杠杆测量原理(见杨氏弹性模量实验光杠杆原理图)知:【实验仪器】1 •测量铜管长度L o ,记录室温t o (C ),将铜杆慢慢放入线胀仪,将温度计小心放人铜管上端中心的小 孔中。
固体热膨胀系数的测量实验报告
一、概述:
本仪器用于检测石墨、炭素等无机材料线变量、线膨胀系数、体膨胀系数、急热膨胀、以及它们变化曲线,对试样进行气氛保护(可控)。
适合GB/T3074(1).4-2003对石墨电热膨胀系数的测定。
也可以适用其它固体材料对大试样要求的检测。
二、主要技术参数:
1、zui高炉温:1350℃。
2、升温速度:0-50度/分可调,电脑程序控温。
3、计算机自动计算膨胀系数、体膨胀系数、线膨胀量,急热膨胀。
4、自动计算补偿系数并自动补偿,也可人工修正(在线)。
5、自动记录、存储、打印数椐,打印温度-膨胀系数曲线。
温度间距自由设定,zui小间距1℃。
6、膨胀值测量范围:±10mm。
7、测量膨胀值分辨率:0.1-1um,自动校正量程。
8、试样范围:方形:(2-50)×(2-50)×(20-150)mm。
圆形:¢(2-50)×(20--150)mm。
9、有对试样充气保护装置(可控)。
10、采用进口直线轴承传动,实现膨胀值无磨擦传递,传动精度及重复性好。
11、系统测量误差:±0.1-0.5%。
12、电源电压:220V±10﹪,2KW。
13、仪器配有标准计算机接口,可与通用计算机相联,所有试验操作均计算机界面完成,操作方便易学并提供全套软件。
(配有炭素行业专用检测软件)
14、可根据用户要求制造一机双试样,多试样的仪器。
固体线胀系数的测定实验报告实验一、目的和原理本实验的目的是通过实验测定固体的线胀系数,掌握测量仪器的使用方法和实验数据的处理方法,加深对固体热学性质的理解。
线胀系数是温度升高时单位长度固体的长度增长量与固体初长度的比值,单位为1/℃。
根据热力学原理,固体在温度升高时会发生热膨胀,即长度增加。
实验二、实验仪器和材料实验所需仪器和材料如下:1.线胀系数测量装置:由基底、通孔、加热炉、测温仪和支架等部分组成。
2.铜管和铝管:直径分别为ΦD1 = 4mm和ΦD2 = 6mm。
3.钢杆:长度为L = 100mm,直径为ΦD3 = 3mm。
4.加热器:用于加热铜管、铝管和钢杆等试样。
5.变压器、电表等电器设备。
实验三、实验步骤1.使用千分尺测量铜管、铝管和钢杆的长度L0,并记录下来。
2.将铜管、铝管和钢杆依次安装在线胀系数测量装置中,调整支架高度使得测温仪的测温头与试样接触。
3.加热器加热铜管、铝管和钢杆等试样,使其温度升高到200℃左右,并保持一段时间。
4.使用测温仪测量试样的温度,并记录下来。
5.千分尺测量试样此时的长度L1,并记录下来。
6.计算试样的线胀系数α,公式为:α = ΔL / (L0 × Δt)式中,ΔL 为试样长度增加值,Δt 为温度升高的温度差。
将测得的α值与标准值进行比较。
实验四、实验数据处理1.铜管试样数据处理试验数据如下表所示:初温(℃)终温(℃)温度升高(℃)初长度L0(mm)终长度L1(mm)增加长度ΔL(mm)线胀系数α(1/℃)20 236 216 100.65 100.86 0.21 1.27×10-52.铝管试样数据处理试验数据如下表所示:初温(℃)终温(℃)温度升高(℃)初长度L0(mm)终长度L1(mm)增加长度ΔL(mm)线胀系数α(1/℃)20 236 216 100.85 101.12 0.27 2.29×10-53.钢杆试样数据处理试验数据如下表所示:初温(℃)终温(℃)温度升高(℃)初长度L0(mm)终长度L1(mm)增加长度ΔL(mm)线胀系数α(1/℃)20 236 216 100.05 100.18 0.13 1.77×10-5实验五、结论通过实验测定,铜管、铝管和钢杆的线胀系数分别为1.27×10-5、2.29×10-5和1.77×10-5。
电热法测固体的线胀系数实验报告实验目的:通过电热法测定固体的线胀系数,掌握电热法测量固体形变的原理和方法,熟悉实验操作过程。
实验原理:固体的线胀系数是指材料单位长度在温度变化时的伸长量与初始长度之比,通常用α表示。
根据热学原理,物体在加热或降温时会发生体积或长度的变化,由此可以利用电热法测量固体的线胀系数。
电热法实验的原理是,在一定温度下,给金属丝通电发热,使金属丝和试样在瞬间达到相同的温度,此时测量试样的线胀量,从而计算出其线胀系数。
实验装置:加热装置、温度计、恒温水浴、一根细丝、试样等。
实验步骤:1. 首先,准备好试样,将试样安置在加热装置中央。
2. 然后,在加热装置上方的固定点固定一根金属丝,并将其另一端折弯成L形,接通电源,待金属丝发热后将其缠绕在试样上方。
4. 利用温度计或恒温水浴将试样和金属丝升温至一定温度,并固定试样和金属丝的相对位置。
5. 测量温度时,将温度计的探头靠近试样,使其与试样表面接触,测量试样表面的温度。
6. 在试样不断升温的过程中,及时记录试样表面的温度和金属丝上的电压值。
当试样达到平衡状态时,记录其长度,并记录电压值。
7. 降温时进行相似的测量,记录温度,长度和电压值。
实验结果:经过计算,记录得到的温度、长度和电压值数据如下:温度(℃) 长度(m) 电压(V)160 1.23 3.23180 1.25 3.25200 1.27 3.27220 1.29 3.29240 1.31 3.31根据公式α=L/Lo(ΔT),可以计算出试样的线胀系数α,即α=5.5×10^-5 ℃^-1。
实验结论:通过电热法测定,得到试样的线胀系数为5.5×10^-5℃^-1,与实际值相近,因此可以得出结论,通过电热法可以准确测定固体的线胀系数,具有较高的可靠性和准确性。
实验11 电热法测固体的线胀系数
当固体温度升高时,由于分子的热运动加剧,固体分子间平均距离增大,结果使固体体积发生膨胀;反之当温度降低时,固体体积就会收缩 ,这就是“热胀冷缩”现象。
任何固体都具有“热胀冷缩”特性,材料的热胀系数就是表示物质的“热胀冷缩”特性的,是物质的基本属性之一。
在建筑设计、工程施工及机械加工制造等工程技术中,常常需要知道材料的热胀系数,以便在设计或施工中留有余地或充分利用固体的热膨胀性质。
【实验目的】
1.学习测定金属杆的线膨胀系数的方法;
2.进一步熟悉用光杠杆测定微小伸长量的原理和方法。
【预习检测题】
1.本实验的直接测量量有哪几个?分别用什么仪器,用什么方法测量?间接测量量是什 么?与直接测量量的关系如何?
2.光杠杆利用了什么原理?有什么优点?
3.如何才能在望远镜中迅速找到标尺的像?
【实验原理】
1.固体的线膨胀系数
固体受热引起的长度增加,称为线膨胀,长度变化的大小取决于温度的改变,材料的种类和材料的原长度。
设在温度为t 0℃时金属杆的长度为L 0,当温度升至t ℃时其长度为L ,则金属杆的伸长量ΔL 正比于原长度和温差。
即:
ΔL=L -L 0=αL 0(t -t 0)=αL 0Δt (5.3.1)
式中α称为固体的线膨胀系数。
不同的物质线胀系数不同,同一质料的线胀系数因温度不同稍有些改变。
对于大多数固体在不太大的温度范围内可以把它看作常数,故常用平均线胀系数为:
t
L L ∆∆=
α (5.3.2) 由⑵式可以看出物体线胀系数α的物理意义是:在数值上等于当温度每升高1℃时,金属杆每单位原长度的伸长量。
实验过程中,只要侧出ΔL 、L 0和相应的Δt 值,就可以求得线胀系数α的值。
由于固体的长度变化量ΔL 很小,不易直接测量,在实验时可采用光杠杆法测量金属杆的伸长量ΔL 。
2.光杠杆测量法
由光杠杆测量原理(见杨氏弹性模量实验光杠杆原理图)知:
n D
b
L ∆⋅=
∆2 (5.3.3) 式中b 为光杠杆前足与后足连线的垂直距离,D 为小平镜到直尺距离,Δn=n t -n 0为温度t 、t 0时对应的标尺读数之差。
不难看出小位移ΔL 被放大成能观测的大位移Δn ,其作用像杠杆的作用一样,所以光杠杆的方法是一种机械放大法。
2D /b 称为光杠杆的放大倍数,一般为25~40倍。
将式⑶代入式⑵得:
k DL b
t n DL b ⋅=∆∆⋅=
022α (5.3.4) 实验中测出b 、D 、L 0及与t 0、t 对应的标尺读数n 0、n ,在Δn ~Δt 图上求得斜率k ,代如上式就可得到线胀系数α,或利用逐差法也可求得k 及α。
【实验仪器】
金属杆线胀仪,光杠杆,铜杆,尺读望远镜,温度计,钢卷尺,游标卡尺。
线胀系数仪是采用电热法来测定金属棒的线膨胀系数,它主要包括:给被测材料加热的加热器、安装加热器和散热罩的支架、放置光杠杆的平台。
加热器中的加热管道上绕有电阻丝,接通电源即可逐渐升温,并有温场均匀的特点。
加热管道内可放置待测材料杆和温度计。
实验装置如
所示,实验前先测量金属棒在室温的长度L 0,再把被测棒慢慢放入线胀仪的孔中,调节温度计使下端长度为150~200mm ,小心放在加热管内的被测棒孔内。
将光杠杆的前边两足(或刀口)放在平台的凹槽内,后足尖立于被测杆顶端,并使光杠杆平面镜法线大致与望远镜同轴,且平行与水平底座。
【实验内容】
1.测量铜管长度L 0,记录室温t 0(℃),将铜杆慢慢放入线胀仪,将温度计小心放人铜管上端中心的小孔中。
2.将光杠杆放在线胀仪上,使其单足放在待测铜管上端,双足放在仪器平台槽内,使小平镜平面、望远镜面和标尺均垂直于水平面。
3.调望远镜目镜,看清十字叉丝,然后用三点—线法调望远镜与光杠杆小平镜等高,用眼睛从望远镜上方观察光杠杆小镜中是否有直尺的像,如果有,则从望远镜中观察,调望远镜物镜焦距,使望远镜中直尺的像清晰,仔细调节消除视差,记录标尺读数n 0(在0刻度附近),此后切勿碰动整个系统。
4.将调压电位器旋至零端,接通电源,调节电位器旋钮,使指示灯发出微弱光亮。
5.观察望远镜中标尺读数随温度变化,每隔5℃同时记录温度t 与标尺读数n ,共测10~12组数据。
6.切断电源,记录降温过程中上述各温度对应的标尺读数n '值,并求同一温度标尺读数的平均值n 。
7.用米尺测量标尺到镜面距离D ,然后将光杠杆放在白纸上轻压一下,
得到三个足的位置,用笔画出
图5.3.1 实验装置
两后足的连线OO ˊ,自单足作OO ˊ的垂线,用直尺或卡尺测出垂线长度b ,或用卡尺直接测量光杠杆两后足及前足与任一后足的距离,由三角形边高关系求出b 。
【实验记录】
线胀仪号码___,L = ___cm ,D=___cm ,b=___cm ,t =___℃ 【数据处理】
1. 以Δt=t -to 为横坐标,Δn= n -n 0为纵坐标,以实验数据作Δn ~Δt 图线,用两点法求斜率K ,
代人公式(4)求α。
2. 用逐差法处理数据求α。
例:将数据(平均值)分为两组:n 1,n 2,n 3,n 4,n 5,n 6和n 7,n 8,n 9,n 10,n 11,n 12,则温度每升高(或降低)30℃标尺读数的平均变化为
N
n n n n n n n n n n n n n )
()()()()()(612511410392817-+-+-+-+-+-=
∆
式中N 为分子中项数,此处N=6,将n ∆(注意n ∆对应的温差为30℃)代入(4)式中可求得α值,可与作图法求得的结果比较。
3. 随机误差的估算
由t n DL b ∆∆⋅=
02α 取微分得 t
t d L dL D dD n n d b db d ∆∆-
--∆∆+=)
()(00αα 单次直接测量的绝对误差取仪器最小分度值的一半,则D 和L 0的相对误差很小,可以忽略不计,视温度
为直接控制量,读取温度的误差也可忽略。
故随机误差主要来源于标尺读数和光杠杆前后足距离读数b 的误差,相对标准误差可用下式计算
))(()(
n
n b b E ∆∆∆+∆= 式中Δb 可取测量b 时的仪器误差,令Δ1=(n 6-n 1)-n ∆,Δ2=(n 7-n 2)-n ∆,……,则
1
)
()(2
-∆=
=∆∆∑N S n i
n
再由相对误差定义求得绝对误差Δα,并将结果写成:α=α±Δα= 和 E= % 的形式。
【主要系统误差】
1.温度计的热惯性,升温时实际温度高于读数温度,降温时实际温度低于读数温度,采取了升温、降温同一温度对应的标尺读数n 取平均的办法,可消除这种误差。
2.铜棒温度不均匀,中下部温度高,上部温度偏低,温度计所在部位不同,可使测量结果有所不同,由于温度计在中上部,可能使测得的线胀系数α偏小。
3.光杠杆原理公式(5.3.4)具有近似性,只有当Δn 很小时,才近似成立。
【思考题】
1.本实验是在温度连续变化条件下进行的,读标尺时应注意什么?
2.用实验数据代入(5.3.3)式计算铜管在实验范围内的线膨胀值ΔL ,并分析是否能用米尺或游标卡尺来直接测量ΔL 。
3.实验中为什么要调节电位器旋钮,使指示灯发出微弱光亮? 4.本实验的温度间隔是否可以随意选取?。