《因式分解》同步练习2
- 格式:doc
- 大小:137.50 KB
- 文档页数:4
因式分解练习题精选二一、填空题:2.(a-3)(3-2a)=_______(3-a)(3-2a);12.若m2-3m+2=(m+a)(m+b),则a=______,b=______;15.当m=______时,x2+2(m-3)x+25是完全平方式.二、选择题:1.下列各式的因式分解结果中,正确的是[]A.a2b+7ab-b=b(a2+7a)B.3x2y-3xy-6y=3y(x-2)(x+1)C.8xyz-6x2y2=2xyz(4-3xy)D.-2a2+4ab-6ac=-2a(a+2b-3c)2.多项式m(n-2)-m2(2-n)分解因式等于[]A.(n-2)(m+m2) B.(n-2)(m-m2)C.m(n-2)(m+1) D.m(n-2)(m-1)3.在下列等式中,属于因式分解的是[]A.a(x-y)+b(m+n)=ax+bm-ay+bnB.a2-2ab+b2+1=(a-b)2+1C.-4a2+9b2=(-2a+3b)(2a+3b)D.x2-7x-8=x(x-7)-84.下列各式中,能用平方差公式分解因式的是[]A.a2+b2 B.-a2+b2C.-a2-b2 D.-(-a2)+b25.若9x2+mxy+16y2是一个完全平方式,那么m的值是[]A.-12 B.±24C.12 D.±127.若a2+a=-1,则a2+2a3-3a2-4a+3的值为[] A.8 B.7C.10 D.128.已知x2+y2+2x-6y+10=0,那么x,y的值分别为[] A.x=1,y=3 B.x=1,y=-3 C.x=-1,y=3 D.x=1,y=-39.把(m2+3m)4-8(m2+3m)2+16分解因式得[] A.(m+1)4(m+2)2 B.(m-1)2(m-2)2(m2+3m-2)C.(m+4)2(m-1)2 D.(m+1)2(m+2)2(m2+3m-2)210.把x2-7x-60分解因式,得[] A.(x-10)(x+6) B.(x+5)(x-12)C.(x+3)(x-20) D.(x-5)(x+12)11.把3x2-2xy-8y2分解因式,得[] A.(3x+4)(x-2) B.(3x-4)(x+2) C.(3x+4y)(x-2y) D.(3x-4y)(x+2y) 12.把a2+8ab-33b2分解因式,得[] A.(a+11)(a-3) B.(a-11b)(a-3b)C.(a+11b)(a-3b) D.(a-11b)(a+3b) 13.把x4-3x2+2分解因式,得[] A.(x2-2)(x2-1) B.(x2-2)(x+1)(x-1)C.(x2+2)(x2+1) D.(x2+2)(x+1)(x-1)14.多项式x2-ax-bx+ab可分解因式为[]A.-(x+a)(x+b) B.(x-a)(x+b) C.(x-a)(x-b) D.(x+a)(x+b) 15.一个关于x的二次三项式,其x2项的系数是1,常数项是-12,且能分解因式,这样的二次三项式是[] A.x2-11x-12或x2+11x-12B.x2-x-12或x2+x-12C.x2-4x-12或x2+4x-12D.以上都可以16.下列各式x3-x2-x+1,x2+y-xy-x,x2-2x-y2+1,(x2+3x)2-(2x+1)2中,不含有(x-1)因式的有[] A.1个 B.2个C.3个 D.4个17.把9-x2+12xy-36y2分解因式为[] A.(x-6y+3)(x-6x-3)B.-(x-6y+3)(x-6y-3)C.-(x-6y+3)(x+6y-3)D.-(x-6y+3)(x-6y+3)18.下列因式分解错误的是[] A.a2-bc+ac-ab=(a-b)(a+c)B.ab-5a+3b-15=(b-5)(a+3)C.x2+3xy-2x-6y=(x+3y)(x-2)D.x2-6xy-1+9y2=(x+3y+1)(x+3y-1)19.已知a2x2±2x+b2是完全平方式,且a,b都不为零,则a与b的关系为[] A.互为倒数或互为负倒数 B.互为相反数C.相等的数 D.任意有理数20.对x4+4进行因式分解,所得的正确结论是[] A.不能分解因式 B.有因式x2+2x+2 C.(xy+2)(xy-8) D.(xy-2)(xy-8) 21.把a4+2a2b2+b4-a2b2分解因式为[] A.(a2+b2+ab)2 B.(a2+b2+ab)(a2+b2-ab)C.(a2-b2+ab)(a2-b2-ab) D.(a2+b2-ab)222.-(3x-1)(x+2y)是下列哪个多项式的分解结果[] A.3x2+6xy-x-2y B.3x2-6xy+x-2yC.x+2y+3x2+6xy D.x+2y-3x2-6xy23.64a8-b2因式分解为[] A.(64a4-b)(a4+b) B.(16a2-b)(4a2+b)C.(8a4-b)(8a4+b) D.(8a2-b)(8a4+b)24.9(x-y)2+12(x2-y2)+4(x+y)2因式分解为[] A.(5x-y)2 B.(5x+y)2C.(3x-2y)(3x+2y) D.(5x-2y)225.(2y-3x)2-2(3x-2y)+1因式分解为[] A.(3x-2y-1)2 B.(3x+2y+1)2C.(3x-2y+1)2 D.(2y-3x-1)226.把(a+b)2-4(a2-b2)+4(a-b)2分解因式为[] A.(3a-b)2 B.(3b+a)2C.(3b-a)2 D.(3a+b)227.把a2(b+c)2-2ab(a-c)(b+c)+b2(a-c)2分解因式为[] A.c(a+b)2 B.c(a-b)2C.c2(a+b)2 D.c2(a-b)28.若4xy-4x2-y2-k有一个因式为(1-2x+y),则k的值为[] A.0 B.1C.-1 D.429.分解因式3a2x-4b2y-3b2x+4a2y,正确的是[] A.-(a2+b2)(3x+4y) B.(a-b)(a+b)(3x+4y)C.(a2+b2)(3x-4y) D.(a-b)(a+b)(3x -4y)30.分解因式2a2+4ab+2b2-8c2,正确的是[] A.2(a+b-2c) B.2(a+b+c)(a+b-c)C.(2a+b+4c)(2a+b-4c) D.2(a+b+2c)(a+b-2c)三、因式分解:1.m2(p-q)-p+q;2.a(ab+bc+ac)-abc;3.x4-2y4-2x3y+xy3;4.abc(a2+b2+c2)-a3bc+2ab2c2;5.a2(b-c)+b2(c-a)+c2(a-b);6.(x2-2x)2+2x(x-2)+1;7.(x-y)2+12(y-x)z+36z2;8.x2-4ax+8ab-4b2;9.(ax+by)2+(ay-bx)2+2(ax+by)(ay-bx);10.(1-a2)(1-b2)-(a2-1)2(b2-1)2;11.(x+1)2-9(x-1)2;12.4a2b2-(a2+b2-c2)2;13.ab2-ac2+4ac-4a;14.x3n+y3n;15.(x+y)3+125;16.(3m-2n)3+(3m+2n)3;17.x6(x2-y2)+y6(y2-x2);18.8(x+y)3+1;19.(a+b+c)3-a3-b3-c3;20.x2+4xy+3y2;21.x2+18x-144;22.x4+2x2-8;23.-m4+18m2-17;24.x5-2x3-8x;25.x8+19x5-216x2;26.(x2-7x)2+10(x2-7x)-24;27.5+7(a+1)-6(a+1)2;28.(x2+x)(x2+x-1)-2;29.x2+y2-x2y2-4xy-1;30.(x-1)(x-2)(x-3)(x-4)-48;31.x2-y2-x-y;32.ax2-bx2-bx+ax-3a+3b;33.m4+m2+1;34.a2-b2+2ac+c2;35.a3-ab2+a-b;36.625b4-(a-b)4;37.x6-y6+3x2y4-3x4y2;38.x2+4xy+4y2-2x-4y-35;39.m2-a2+4ab-4b2;40.5m-5n-m2+2mn-n2.四、证明(求值):1.已知a+b=0,求a3-2b3+a2b-2ab2的值.2.求证:四个连续自然数的积再加上1,一定是一个完全平方数.3.证明:(ac-bd)2+(bc+ad)2=(a2+b2)(c2+d2).4.已知a=k+3,b=2k+2,c=3k-1,求a2+b2+c2+2ab-2bc-2ac的值.5.若x2+mx+n=(x-3)(x+4),求(m+n)2的值.6.当a为何值时,多项式x2+7xy+ay2-5x+43y-24可以分解为两个一次因式的乘积.7.若x,y为任意有理数,比较6xy与x2+9y2的大小.8.两个连续偶数的平方差是4的倍数.【例3】用提公因式法分解因式:(1)12x2y-18xy2-24x3y3;(2)5x2-15x+5;(3)-27a2b+9ab2-18ab;(4)2x(a-2b)-3y(2b-a)-4z(a-2b).【例4】把下列多项式分解因式:(1)4x2-9;(2)16m2-9n2;(3)a3b-ab;(4)(x+p)2-(x+q)2.【例5】把下列多项式分解因式:(1)x2+14x+49;(2)(m+n)2-6(m+n)+9;(3)3ax2+6axy+3ay2;(4)-x2-4y2+4xy.【例6】把下列各式分解因式:(1)18x2y-50y3;(2)ax3y+axy3-2ax2y2.参考答案一、填空题:7.9,(3a-1)10.x-5y,x-5y,x-5y,2a-b 11.+5,-212.-1,-2(或-2,-1)14.bc+ac,a+b,a-c15.8或-2二、选择题:1.B 2.C 3.C 4.B 5.B 6.D 7.A 8.C 9.D 10.B 11.C 12.C 13.B 14.C 15.D 16.B 17.B 18.D 19.A 20.B 21.B 22.D 23.C 24.A 25.A 26.C 27.C 28.C 29.D 30.D三、因式分解:1.(p-q)(m-1)(m+1).8.(x-2b)(x-4a+2b).11.4(2x-1)(2-x).20.(x+3y)(x+y).21.(x-6)(x+24).27.(3+2a)(2-3a).31.(x+y)(x-y-1).38.(x+2y-7)(x+2y+5).四、证明(求值):2.提示:设四个连续自然数为n,n+1,n+2,n+36.提示:a=-18.∴a=-18.。
因式分解一、选择题(1)下列各式从左到右的变形,是因式分解的为( )A .x x x x x 6)3)(3(692+-+=+-B .103)2)(5(2-+=-+x x x xC .22)4(168-=+-x x xD .)2)(3()3)(2(-+=+-x x x x(2)观察下面计算962×95+962×5的运算,最简单的方法是( )A .96200100962)595(962596295962=⨯=+⨯=⨯+⨯B .96200)205(962)119(5962596295962=⨯⨯=+⨯⨯=⨯+⨯C .96200)96218278(5)96219962(5596295962=+⨯=+⨯⨯=⨯+⨯D .96200481091390596295962=+=⨯+⨯(3)下列从左到右的变形中,是因式分解的是( )A .ab a ab ab ab b a +-=+-)5(52B .1)1)(1(2-=-+x x xC .)1)(3(322+-=--x x x xD .2223)2)(2(34y x x y x +-+=+-二、填空题1.计算下列(1)—(3)题,并根据计算结果填写(4)—(6)题的结果.(1)____)1)(2(=--x x . (2)____)2(3=-x x .(3)____)2(2=-x . (4)____632=-x x .(5)____442=+-x x . (6)____232=+-x x .2.(1)22))((b a b a b a -=-+的运算是_____________;(2))2(2223-=-x x x x 的运算是_____________.3.根据乘法运算的算式,把下列多项式分解因式:4.根据乘法运算的算式,把下列多项式分解因式:三、解答题1.下列各式中从左到右的变形哪个是因式分解?(1)1))((1)()(+-+=++-+y x b a b a y b a x(2))(a bm a b am +=+(3))23(481222n m mn mn n m --=+-2.下列从左边到右边的变形中,哪些是分解因式?哪些不是?为什么?(1)xy x y x 64242⋅=;(2)25)5)(5(2-=-+x x x ;(3))1)(3(322-+=-+x x x x ;(4)1)23(31692+-=+-x x x x ;(5))(313131b a x bx ax +=+.3.下列由左边到右边的变形,哪些是因式分解,哪些不是?(1)4)2)(2(2-=-+x x x (2))2)(2(42-+=-x x x(3)x x x x x 3)2)(2(342+-+=+- (4))3)(2(652++=++x x x x(5)96)3(22+-=-y y y参考答案一、选择题(1)C (2)A (3)C二、填空题1.(1)232+-x x (2)x x 632- (3)442+-x x(4))2(3-x x (5)2)2(-x (6))1)(2(--x x2.(1)整式乘法;(2)分解因式.3.2)();3)(3();2)(();35(2a mn z y z y y x y x b a ab --++-+.4. )2)(2(y x y x -+;))(2(y x y x -+;2)(c ab -;)2(32c b a a +--.三、解答题1.(1)不是 (2)不是(提示:ab 不是整式) (3)是 2.(1)不是分解因式,因为分解因式是把一个多项式化成几个整式的积的形式,而y x 224是一个单项式;(2)不是分解因式,因为等号左边的)5)(5(-+x x 是几个整式的积的形式,而等号右边的252-x 是一个多项式;(3)是分解因式,因为等号左边的322-+x x 是一个多项式,且等号右边的)1)(3(-+x x 是两个整式的积的形式;(4)不是分解因式.因为等号左边的1692+-x x 虽然是一个多项式,但等号右边的1)23(3+-x x 不是几个整式的积的形式.(5)是分解因式,因为等号左边的bx ax 3131+是一个多项式,且等号右边的)(31b a x +是整式的积的形式. 3.(2)和(4)是因式分解;(1),(3),(5)不是因式分解.。
2022-2023学年人教版八年级数学上册《14.3因式分解》同步练习题(附答案)一.选择题1.下列等式中,从左到右的变形是因式分解的是()A.a(a﹣3)=a2﹣3a B.(a+3)2=a2+6a+9C.6a2+1=a2(6+)D.a2﹣9=(a+3)(a﹣3)2.4a2b3与2ab4c的公因式为()A.ab B.2ab C.2ab3D.2abc3.把多项式x2+2x﹣8因式分解,正确的是()A.(x﹣4)2B.(x+1)(x﹣8)C.(x+2)(x﹣4)D.(x﹣2)(x+4)4.下列多项式中,不能用乘法公式进行因式分解的是()A.a2﹣1B.a2+2a+1C.a2+4D.9a2﹣6a+1 5.若x2+px+q=(x﹣3)(x﹣5),则p+q的值为()A.15B.7C.﹣7D.﹣86.对于①x﹣3xy=x(1﹣3y),②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形,表述正确的是()A.都是因式分解B.都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解7.a2(a2﹣1)﹣a2+1的值()A.不是负数B.恒为正数C.恒为负数D.不等于08.若c2﹣a2﹣2ab﹣b2=10,a+b+c=﹣5,则a+b﹣c的值是()A.2B.5C.20D.99.已知a2+b2=2a﹣b﹣2,则3a﹣b的值为()A.4B.2C.﹣2D.﹣410.分解因式x2+ax+b,甲看错了a的值,分解的结果为(x+6)(x﹣1),乙看错了b的值,分解结果为(x﹣2)(x+1),那么x2+ax+b分解因式的正确结果为()A.(x﹣2)(x+3)B.(x+2)(x﹣3)C.(x﹣2)(x﹣3)D.(x+2)(x+3)11.小明是一位密码翻译爱好者,在他的密码手册中,有这样一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分别对应下列六个字:蜀、爱、我、巴、丽、美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码信息可能是()A.我爱美B.巴蜀美C.我爱巴蜀D.巴蜀美丽12.如果△ABC的三边a、b、c满足ac2﹣bc2=(a﹣b)(a2+b2),则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形13.(﹣8)2022+(﹣8)2021能被下列数整除的是()A.3B.5C.7D.9二.填空题14.分解因式x2+ax+b,甲看错a的值,分解结果是(x+6)(x﹣1),乙看错b的值,分解的结果是(x﹣2)(x+1),则a=,b=.15.若实数x满足x2﹣3x﹣1=0,则2x3﹣5x2﹣5x﹣2020的值为.16.多项式8x2m y n﹣1﹣12x m y n中各项的公因式为.17.已知a+b=1,则代数式a2﹣b2+2b+9的值为.18.若多项式x2﹣mx+n(m、n是常数)分解因式后,有一个因式是x﹣3,则3m﹣n的值为.19.若a=12,b=109,则ab﹣9a的值为.20.如图,六块纸板拼成一张大矩形纸板,其中一块是边长为a的正方形,两块是边长为b 的正方形,三块是长为a,宽为b的矩形(a>b).观察图形,发现多项式a2+3ab+2b2可因式分解为.21.已知多项式f(x)除以x﹣1,x﹣2,x﹣3的余数分别为1,4,5,则f(x)除以(x﹣1)(x﹣2)(x﹣3)所得余式的最大值为.三.解答题22.因式分解:(1)ax2﹣4ax+4a;(2)x2(m﹣n)+y2(n﹣m);(3)(x+2)(x+4)﹣3;(4)9(a+b)2﹣(a﹣b)2.23.把下列各式分解因式:(1)x2+3x﹣4;(2)a3b﹣ab;(3)3ax2﹣6axy+3ay2.24.因式分解:(1)﹣4x3+16x2﹣20x(2)a2(x﹣2a)2﹣2a(2a﹣x)3(3)(x2+2x)2﹣2(x2+2x)﹣3(4)x3+3x2﹣4(拆开分解法)25.如图是L形钢条截面,请写出它的面积公式.并计算:当a=54mm,b=54.5mm,c=8.5mm时的面积.26.(1)若代数式(m﹣2y+1)(n+3y)+ny2的值与y无关,且等腰三角形的两边长为m、n,求该等腰三角形的周长.(2)若x2﹣2x﹣5=0,求2x3﹣8x2﹣2x+2020的值.27.例题:已知二次三项式x2﹣4x+m中有一个因式是x+3,求另一个因式以及m的值.解:设另一个因式为x+n,得x2﹣4x+m=(x+3)(x+n).∴解得n=﹣7,m=﹣21.另一个因式为x﹣7,m的值为﹣21.仿照以上方法解答下面问题:已知二次三项式2x2+3x﹣k有一个因式是x﹣5,求另一个因式以及k的值.28.整体思想是数学解题中常见的一种思想方法:下面是某同学对多项式(x2+2x)(x2+2x+2)+1进行因式分解的过程.将“x2+2x”看成一个整体,令x2+2x=y,则原式=y2+2y+1=(y+1)2再将“y”还原即可.解:设x2+2x=y.原式=y(y+2)+1(第一步)=y2+2y+1(第二步)=(y+1)2(第三步)=(x2+2x+1)2(第四步).问题:(1)①该同学完成因式分解了吗?如果没完成,请你直接写出最后的结果;②请你模仿以上方法尝试对多项式(x2﹣4x)(x2﹣4x+8)+16进行因式分解;(2)请你模仿以上方法尝试计算:(1﹣2﹣3﹣…﹣2021)×(2+3+…+2022)﹣(1﹣2﹣3﹣…﹣2022)×(2+3+…+2021).参考答案一.选择题1.解:A.从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;B.从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;C.从等式的右边不是几个整式的积的形式,即从左到右的变形不属于因式分解,故本选项不符合题意;D.左到右的变形属于因式分解,故本选项符合题意;故选:D.2.解:4a2b3与2ab4c的公因式为2ab3,故选:C.3.解:x2+2x﹣8=(x﹣2)(x+4),故选:D.4.解:A、a2﹣1=(a+1)(a﹣1),可以运用公式法分解因式,不合题意;B、a2+2a+1=(a+1)2,可以运用公式法分解因式,不合题意;C、a2+4,无法利用公式法分解因式,符合题意;D、9a2﹣6a+1=(3a﹣1)2,可以运用公式法分解因式,不合题意;故选:C.5.解:∵x2+px+q=(x﹣3)(x﹣5),∴x2+px+q=x2﹣8x+15,故p=﹣8,q=15,则p+q=﹣8+15=7.故选:B.6.解:①x﹣3xy=x(1﹣3y),从左到右的变形是因式分解;②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形是整式的乘法,不是因式分解;所以①是因式分解,②是乘法运算.故选:C.7.解:∵a2(a2﹣1)﹣a2+1=a2(a2﹣1)﹣(a2﹣1)=(a2﹣1)(a2﹣1)=(a2﹣1)2,∴a2(a2﹣1)﹣a2+1的值不是负数.故选:A.8.解:∵c2﹣a2﹣2ab﹣b2=10,∴c2﹣(a2+2ab+b2)=10,∴c2﹣(a+b)2=10,∴(c+a+b)(c﹣a﹣b)=10,∵a+b+c=﹣5,∴c﹣a﹣b=﹣2,∴a+b﹣c=2,故选:A.9.解:∵a2+b2=2a﹣b﹣2,∴a2﹣2a+1+b2+b+1=0,∴,∴a﹣1=0,b+1=0,∴a=1,b=﹣2,∴3a﹣b=3+1=4.故选:A.10.解:因为(x+6)(x﹣1)=x2+5x﹣6,(x﹣2)(x+1)=x2﹣x﹣2,由于甲看错了a的值没有看错b的值,所以b=﹣6,乙看错了b的值而没有看错a的值,所以a=﹣1,所以多项式x2+ax+b为x2﹣x﹣6=(x﹣3)(x+2)故选:B.11.解:(x2﹣y2)a2﹣(x2﹣y2)b2=(x2﹣y2)(a2﹣b2)=(x+y)(x﹣y)(a+b)(a﹣b),由已知可得:我爱巴蜀,故选:C.12.解:∵ac2﹣bc2=(a﹣b)(a2+b2),∴(a﹣b)(a2+b2﹣c2)=0,∴a=b或a2+b2=c2,即该三角形是等腰三角形或直角三角形.故选:D.13.解:∵(﹣8)2022+(﹣8)2021=(﹣8)2021×(﹣8)+(﹣8)2021=(﹣8)2021×(﹣8+1)=(﹣8)2021×(﹣7)=82021×7.∴能被7整除.故选:C.二.填空题14.解:∵分解因式x2+ax+b,甲看错a的值,分解结果是(x+6)(x﹣1),∴x2+ax+b=x2+5x﹣6,故b=﹣6;∵乙看错b的值,分解的结果是:∴x2+ax+b=(x﹣2)(x+1)=x2﹣x﹣2,∴a=﹣1则a=﹣1,b=﹣6.故答案为:﹣1,﹣6.15.解:∵x2﹣3x﹣1=0,∴x2﹣3x=1,∴2x3﹣5x2﹣5x+2020=2x3﹣6x2+x2﹣3x﹣2x+2020=2x(x2﹣3x)+(x2﹣3x)﹣2x+2020=2x+1﹣2x+2020=2021,故答案为:2021.16.解:系数的最大公约数是4,各项相同字母的最低指数次幂是x m y n﹣1,所以公因式是4x m y n﹣1,故答案为:4x m y n﹣1.17.方法一:解:∵a2﹣b2+2b+9=(a+b)(a﹣b)+2b+9又∵a+b=1,∴原式=a﹣b+2b+9=a+b+9=10.方法二:解:∵a2﹣b2+2b+9=a2﹣(b2﹣2b+1)+10=a2﹣(b﹣1)2+10=(a﹣b+1)(a+b﹣1)+10.又∵a+b=1,∴原式=10.18.解:设另一个因式为x+a,则(x+a)(x﹣3)=x2+(﹣3+a)x﹣3a,∴﹣m=﹣3+a,n=﹣3a,∴m=3﹣a∴3m﹣n=3(3﹣a)﹣(﹣3a)=9﹣3a+3a=9,故答案为:9.19.解:因为a=12,b=109,所以ab﹣9a=a(b﹣9)=12×(109﹣9)=12×100=1200,故答案为:1200.20.解:根据图形得到长方形的面积为:a2+ab+ab+ab+b2+b2=a2+3ab+2b2,也可以为(a+b)(a+2b),则根据此图,多项式a2+3ab+2b2分解因式的结果为(a+b)(a+2b),故答案为:(a+b)(a+2b).21.解:∵(x﹣1)(x﹣2)(x﹣3)的结果是三次多项式,∴多项式f(x)除以(x﹣1)(x﹣2)(x﹣3)所得余式为二次多项式,设这个余式为ax2+bx+c,由题意得:,解得:.∴f(x)除以(x﹣1)(x﹣2)(x﹣3)所得余式为﹣x2+6x﹣4.∵﹣x2+6x﹣4=﹣(x﹣3)2+5,∴f(x)除以(x﹣1)(x﹣2)(x﹣3)所得余式的最大值为5.故答案为:5.三.解答题22.解:(1)原式=a(x2﹣4x+4)=a(x﹣2)2;(2)原式=x2(m﹣n)﹣y2(m﹣n)=(m﹣n)(x2﹣y2)=(m﹣n)(x+y)(x﹣y);(3)原式=x2+6x+8﹣3=x2+6x+5=(x+1)(x+5);(4)原式=[3(a+b)+(a﹣b)][3(a+b)﹣(a﹣b]=(4a+2b)(2a+4b)=4(2a+b)(a+2b).23.解:(1)x2+3x﹣4=(x+4)(x﹣1);(2)a3b﹣ab=ab(a2﹣1)=ab(a+1)(a﹣1);(3)3ax2﹣6axy+3ay2=3a(x2﹣2xy+y2)=3a(x﹣y)2;24.解:(1)﹣4x3+16x2﹣20x=﹣4x(x2﹣4x+5);(2)a2(x﹣2a)2﹣2a(2a﹣x)3=a2(2a﹣x)2﹣2a(2a﹣x)3=a(2a﹣x)2[a﹣2(2a﹣x)]=a(2a﹣x)2[a﹣4a+2x]=a(2a﹣x)2(﹣3a+2x);(3)(x2+2x)2﹣2(x2+2x)﹣3=[(x2+2x)﹣3][(x2+2x)+1]=(x2+2x﹣3)(x2+2x+1)=(x+3)(x﹣1)(x+1)2;(4)x3+3x2﹣4=(x3+2x2)+(x2﹣4)=x2(x+2)+(x+2)(x﹣2)=(x+2)(x2+x﹣2)=(x+2)(x+2)(x﹣1)=(x+2)2(x﹣1).25.解:L形钢条的面积=ac+(b﹣c)c=ac+bc﹣c2=c(a+b﹣c);当a=54mm,b=54.5mm,c=8.5mm时,原式=8.5×(54+54.5﹣8.5)=850(mm2),即面积为850mm2.26.解:(1)(m﹣2y+1)(n+3y)+ny2=mn+3my﹣2ny﹣6y2+n+3y+ny2=mn+n+(3m﹣2n+3)y+(n﹣6)y2∵代数式的值与y无关,∴,∴,①若等腰三角形的三边长分别为6,6,3,则等腰三角形的周长为15.②若等腰三角形的三边长分别为6,3,3,则不能组成三角形.∴等腰三角形的周长为15.(2)∵x2﹣2x﹣5=0,∴x2=2x+5,∴2x3﹣8x2﹣2x+2020=2x(2x+5)﹣8x2﹣2x+2020=4x2+10x﹣8x2﹣2x+2020=﹣4x2+8x+2020=﹣4(2x+5)+8x+2020=﹣8x﹣20+8x+2020=2000.27.解:设另一个因式为(2x+a),得2x2+3x﹣k=(x﹣5)(2x+a),则2x2+3x﹣k=2x2+(a﹣10)x﹣5a,∴,解得a=13,k=65,故另一个因式为(2x+13),k的值为65.28.解:(1)①没有,设x2+2x=y.原式=y(y+2)+1(第一步)=y2+2y+1(第二步)=(y+1)2(第三步)=(x2+2x+1)2(第四步)=(x+1)4(第五步).故答案为:(x+1)4;②设x2﹣4x=y.原式=y(y+8)+16=y2+8y+16=(y+4)2=(x2﹣4x+4)2=(x﹣2)4;(2)设x=1﹣2﹣3﹣...﹣2021,y=2+3+ (2022)则1﹣2﹣3﹣…﹣2022=x﹣2022,2+3+…+2021=y﹣2022,x+y=1+2022=2023,所以原式=xy﹣(x﹣2022)(y﹣2022)=xy﹣xy+2022(x+y)﹣20222=2022×2023﹣20222=2022(2022+1)﹣20222=2022.。
初中数学因式分解综合训练培优练习2(附答案详解)1.下列各式分解因式正确的是A .()()2228244a b a b a b -=+- B .()22693x x x -+=-C .()22224923m mn n m n -+=-D .()()()()x x y y y x x y x y -+-=-+2.因式分解:a (n -1)2-2a (n -1)+a.3.分解因式:412x 3y xy -+4.因式分解:(1)316x x - (2)221218x x -+5.因式分解:(1)﹣3x 3+6x 2y ﹣3xy 2; (2)a 3-4ab 2.6.2221x x y ++-7.(x 2+2x)2+2(x 2+2x)+18.分解因式:(1) 3a 3-6a 2+3a .(2) a 2(x -y)+b 2(y -x).9.因式分解:(1)3349x y xy - (2)222(6)6(6)9x x ---+10.因式分解: (1) x 2﹣36;(2) xy 2﹣x ;(3) ab 4﹣4ab 3+4ab 2;(4) (m +1)(m ﹣9)+8m .11.已知ab =-3,a +b =2.求下列各式的值: (1)a 2+b 2; (2)a 3b +2a 2b 2 +ab 3; (3)a -b .12.(1)因式分解:3a 3+12a 2+12a ;2016+20162-20172(2)解不等式组:()263125x x x -<⎧⎨+≤+⎩,并将解集在数轴上表示出来.(3)解分式方程:2236x 1x 1x 1+=+--.13.观察下列式子:23(1)(1)1x x x x +-+=+;23(2)(24)8x x x x +-+=+;2233(2)(42)8m n m mn n m n +-+=+;……(1)上面的整式乘法计算结果比较简洁,类比学习过的平方差公式,完全平方公式的推导过程,请你写出一个新的乘法公式(用含a 、b 的字母表示),并加以证明;(2)直接用你发现的公式写出计算结果:(2a +3b )(4a 2﹣6ab +9b 2)= ;(3)分解因式:m 3 + n 3 + 3mn (m + n ).14.分解因式:4322221x x x x ++++15.因式分解:(1)x 2y -2xy +xy 2; (2)422x -+.16.222---x xy y =__________17.分解因式212x 123y xy y -+-=___________18.将22363ax axy ay -+分解因式是__________.19.在实数范围内分解因式:4244x x -+=_____________.20.因式分解:m 3n ﹣9mn =______.21.分解因式:339a b ab -=_____________.22.分解因式:x 3y ﹣2x 2y+xy=______.23.分解因式:3x 2﹣3y 2=_____.24.因式分解:2328x y y -=_________.25.分解因式:am 2﹣9a=_________________.26. 分解因式:(p+1)(p ﹣4)+3p =_____.27.因式分解:x 3﹣6x 2y +9xy 2=____.28.分解因式:222x 2y -= ______.29.分解因式:22xy xy x -+-=__________.30.分解因式:a 3b +2a 2b 2+ab 3=_____.31.分解因式:3a 2+6ab+3b 2=________________.32.分解因式:29y x y -=_____________.33.分解因式:4a 2b ﹣b =_____.34.分解因式:222m -=_________________________.35.分解因式:2a 2﹣18=________.36.分解因式:x 3﹣2x 2+x=______.37.因式分解:34x x -=____________________.参考答案1.B【解析】【分析】利用完全平方公式a 2-2ab+b 2=(a-b )2和平方差公式以及提公因式法分别进行分解即可.【详解】A. ()()2222282(4)222a b a b a b a b -=-=+-,故该选项错误; B. ()22693x x x -+=-,分解正确;C. ()22224923m mn n m n -+≠-,故原选项错误;D. ()()()()2()x x y y y x x y x y x y -+-=--=-,故原选项错误. 故选B.【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.2.a(n-2)2【解析】试题分析:根据题意,先提公因式a ,然后把n-1看做一个整体,利用完全平方公式分解即可.试题解析:原式=a[(n-1)2-2(n-1)+1]=a[(n-1)-1]2=a(n-2)2点睛:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解). 3.()()32121xy x x -+-【解析】试题分析:根据因式分解的方法,先提公因式-3xy ,然后根据平方差公式因式分解即可. 试题解析:()()()4212x 334132121y xy xy x xy x x -+=--=-+- 4.(1)(4)(4)x x x +-;(2)22(3)x -【解析】试题分析:根据因式分解的方法步骤,一提(公因式)二套(平方差公式,完全平方公式)三检查(是否分解彻底),可直接进行因式分解.试题解析:(1)原式=()216x x -=()()44x x x +-(2)原式=()2269x x -+=()223x -5.(1)-3x (x-y )2;(2) a (a+2b )(a-2b ).【解析】试题分析:根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解),可以直接接计算即可.试题解析:(1)﹣3x 3+6x 2y ﹣3xy 2=-3x (x 2-2xy+y 2)=-3x (x-y )2(2)a 3-4ab 2=a (a 2-4b 2)=a (a+2b )(a-2b )点睛:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解). 6.(1)(1)x y x y +++-【解析】解:原式=()221x y +-=()()11x y x y +++- 7.4(1)x +【解析】解:原式=()2221x x ++=()41x +8.(1) 3 a (a -1)2;(2) (x -y)(a -b)(a+b );(3)(a+7b )(7a+b )【解析】试题分析:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解). 试题解析:(1) 原式=3 a (a 2-2a+3)=3 a (a -1)2;(2) 原式= (x -y)(a 2-b 2)= (x -y)(a -b)(a+b );(3) 原式=[4(a+b)-3(a -b)] [4(a+b)+3(a -b)]=(a+7b )(7a+b ).9.(1)(2)22(3)(3)x x +- 【解析】试题分析:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解). 试题解析:(1)3349x y xy -=xy (2x-3y )(2x+3y )(2)()()2226669x x ---+ =(x 2-6-3)2=(x+3)2(x-3)210.(1)(x +6)(x ﹣6).(2)x (y ﹣1)(y +1).(3)ab 2(b ﹣2)2. (4)(m +3)(m ﹣3).【解析】试题分析:(1)利用平方差公式进行因式分解即可;(2)先提公因式,再根据平方差公式分解即可;(3)先提公因式,再根据完全平方公式分解即可;(4)先根据乘法公式计算,再合并同类项,最后根据平方差公式分解即可.试题解析:(1)x 2﹣36=(x +6)(x ﹣6).(2)xy2﹣x=x(y2﹣1)=x(y﹣1)(y+1).(3)ab4﹣4ab3+4ab2=ab2(b2﹣4b+4)=ab2(b﹣2)2.(4)(m+1)(m﹣9)+8m=m2﹣9m+m﹣9+8m=m2﹣9=(m+3)(m﹣3).点睛:此题主要考查了因式分解,解题的关键是灵活选用适当的方法进行饮食费解。
沪教新版七年级上册《第12章因式分解》2024年同步练习卷一、选择题:本题共5小题,每小题3分,共15分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列各式从左到右的变形中,是因式分解的为()A. B.C. D.2.如果一个多项式因式分解的结果是,那么这个多项式是()A. B. C. D.3.下列各式中,是完全平方式的是()A. B. C. D.4.把多项式分解因式的结果是()A. B.C. D.5.已知a,b,c是的三边长,且,则的形状为()A.钝角三角形B.等边三角形C.直角三角形D.等腰直角三角形二、单选题:本题共1小题,每小题5分,共5分。
在每小题给出的选项中,只有一项是符合题目要求的。
6.若能在整数范围内因式分解,则k可取的整数值有()A.2个B.3个C.4个D.6个三、填空题:本题共14小题,每小题3分,共42分。
7.多项式中各项的公因式是______.8.分解因式:______.9.分解因式:______.10.如果多项式,那么m的值为______.11.如果,且,则n的值是______.12.已知,,则______.13.已知,则的值是__________.14.若长方形的面积是,且其中一边长为,则长方形的另一边长是______.15.已知正方形的面积是,利用分解因式写出表示该正方形的边长的代数式______.16.已知,,则的值为______.17.分解因式,甲看错了a值,分解的结果是,乙看错了b值,分解的结果是,那么分解因式正确的结果应该是______.18.已知是一个完全平方式,则______.19.已知,则______.20.如果二次三项式为整数在整数范围内可分解因式,那么a的取值可以是______.四、解答题:本题共10小题,共80分。
解答应写出文字说明,证明过程或演算步骤。
21.本小题8分分解因式:22.本小题8分分解因式:计算:23.本小题8分分解因式:24.本小题8分分解因式:25.本小题8分分解因式:26.本小题8分因式分解:27.本小题8分因式分解:;已知:x、y为正整数,、且,求x、y的值.28.本小题8分阅读下面解题过程:分解因式:解:然后按照上述解题思路,完成下列因式分解:29.本小题8分利用乘法分配律可知:______;______.由整式乘法与因式分解的关系,我们又可以得到因式分解中的另两个公式:______;______.请利用新的公式对下列各题进行因式分解.;30.本小题8分先阅读下面例题的解法,然后解答后面的问题.例:若多项式分解因式的结果中有因式,求实数m的值.解:设为整式,若,则或由得左式为零,所以是方程的解,所以,所以问题:若多项式分解因式的结果中有因式,则实数p是多少?答案和解析1.【答案】C【解析】解:A、是整式的乘法运算,故选项错误;B、右边不是整式乘积的形式,故选项错误;C、,正确;D、右边不是整式乘积的形式,故选项错误.故选:根据因式分解的定义作答.因式分解是把一个多项式化成几个整式的积的形式,熟练地掌握因式分解的定义是解题关键.2.【答案】B【解析】解:故选:根据平方差公式得,进而解决此题.本题主要考查平方差公式以及因式分解的定义,熟练掌握平方差公式以及因式分解的定义是解决本题的关键.3.【答案】A【解析】解:,属于完全平方式;B.不属于完全平方式;C.不属于完全平方式;D.不属于完全平方式;故选:完全平方式分两种,一种是完全平方和公式,就是两个整式的和括号外的平方;另一种是完全平方差公式,就是两个整式的差括号外的平方.此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.4.【答案】C【解析】解:原式故选:先分两组,前面一组利用完全平方公式分解,然后利用平方差公式因式分解即可.本题考查了因式分解-分组分解:分组分解法一般是针对四项或四项以上多项式的因式分解,分组有两个目的,一是分组后能出现公因式,二是分组后能应用公式.5.【答案】B【解析】解:,,,即,,,,,的形状为等边三角形.故选:欲判断三角形的形状,不妨试着从边的关系出发,求出a、b、c之间的关系;给等式两边同时乘以2,再利用完全平方公式进行配方,可得到;接下来根据非负数的性质可得答案.考查学生综合运用数学知识的能力.此题是一道把等边三角形的判定、因式分解和非负数的性质结合求解的综合题.6.【答案】D【解析】【分析】本题主要考查因式分解的意义和十字相乘法分解因式,对常数项的不同分解是解本题的关键,属于拔高题.根据十字相乘法的分解方法和特点可知:k的值应该是20的两个因数的和,从而得出k的值.【解答】解:,,,,,,则k的值可能为:,,,,,,故整数k可以取的值有6个,故选:7.【答案】【解析】解:,所以多项式中各项的公因式是故答案为:先变形得出,再找出多项式的公因式即可.本题考查了公因式,能熟记找公因式的方法①系数找各项系数的最大公因数,②相同字母找最低次幂是解此题的关键.8.【答案】【解析】解:,故答案为:先提公因式,再利用平方差公式继续分解即可解答.本题考查了提公因式法与公式法的综合运用,一定要注意如果多项式的各项含有公因式,必须先提公因式.9.【答案】【解析】解:,,故答案为:先提取公因式,再对余下的多项式利用完全平方公式继续分解.本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.10.【答案】【解析】解:,故答案为:把等式右边利用完全平方公式展开,然后根据对应项系数相等解答.本题考查了公式法分解因式,熟记完全平方公式的公式结构是解题的关键.11.【答案】【解析】解:,,,,故答案为:先根据两平方项确定出这两个数,即可确定n的值.本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.12.【答案】【解析】解:,即,且①,②,①+②,得:,解得,故答案为:由,即得出,结合,将两式相加消去b即可得.本题主要考查分式的加减法,解题的关键是掌握平方差公式和等式的性质.13.【答案】7【解析】解:,,故答案为:把已知条件两边分别平方,然后整理即可求解.完全平方公式:本题主要考查了完全平方公式,利用公式把已知条件两边平方是解题的关键.14.【答案】【解析】解:矩形的长为,故答案为:由题意得矩形的长为,然后利用多项式除以单项式的法则即可求出结果.本题考查多项式除以单项式运算.多项式除以单项式,先把多项式的每一项都分别除以这个单项式,然后再把所得的商相加.15.【答案】【解析】解:,正方形的边长的代数式是因为正方形的面积是,可以分解为,又有正方形的面积等于边长的平方可得,正方形的边长的代数式是此题考查对完全平方公式再实际中的应用,应熟练识记完全平方公式:16.【答案】4【解析】解:原式,当,时,原式故答案是:首先对所求的式子提公因式,然后利用完全平方公式分解,最后把,代入求值.本题考查了分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.17.【答案】【解析】解:分解因式,甲看错了a值,分解的结果是,,,乙看错了b值,分解的结果是,,,故答案为:根据已知分解因式,甲看错了a值,分解的结果是,可得出b的值,再根据乙看错了b值,分解的结果是,可求出a的值,进而因式分解即可.此题主要考查了因式分解的意义,根据已知分别得出a,b的值是解决问题的关键.18.【答案】或2【解析】解:由于,则,或故答案为:或这里首末两项是x和5这两个数的平方,那么中间一项为加上或减去x和5的积的2倍,故,再解k即可.此题主要考查了完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.19.【答案】6【解析】解:已知等式变形得:,,,,,,,,解得:,,,则故答案为:已知等式左边14分为,结合后利用完全平方公式化简,再利用非负数的性质求出x,y与z的值,代入原式计算即可求出值.此题考查了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键.20.【答案】或【解析】解:8可以分解为和,当8可以分解为时,根据十字相乘因式分解,,则;8可以分解为时,根据十字相乘因式分解,,则;故答案是或根据因式分解十字相乘,将8分解为和,再按照十字相乘进行因式分解即可.本题考查的是因式分解,用十字相乘的方法时,要注意数字的符号不能出现差错.21.【答案】解:【解析】将前两项分组后两项分组,进而提取公因式再利用平方差公式分解因式.此题主要考查了分组分解法因式分解,正确进行分组是解题关键.22.【答案】解:;【解析】先进行变形,再运用提公因式法进行因式分解;先运用平方差公式进行运算,再计算单项式乘以多项式.此题考查了整式乘法和因式分解的能力,关键是能准确运用对应法则和方法进行求解.23.【答案】解:【解析】先分组,分成,再运用完全平方公式分解.本题考查了因式分解.分解因式的一般步骤是:一提公因式,二套用公式,三分组,解本题的关键在于运用分组分解法进行因式分解,注意因式分解要彻底,一定要分解到每个因式都不能再分解为止.24.【答案】解:【解析】先将拆分为,再分组,利用完全平方公式及平方差公式求解即可.本题考查了分组分解法,分组分解法一般是针对四项或四项以上多项式的因式分解,分组有两个目的,一是分组后能出现公因式,二是分组后能应用公式.25.【答案】解:【解析】先利用完全平方公式和多项式乘以多项式展开,重新组合即可得出结论.此题主要考查了因式分解,完全平方公式,多项式乘以多项式,重新分组是解本题的关键.26.【答案】解:原式【解析】根据完全平方公式,可得答案.本题考查了因式分解,利用了完全平方公式分解因式.27.【答案】解:;,,,、y为正整数,,与也是整数,,,或,【解析】根据分组分解法分解因式即可;根据结论整体代入即可得到结论.本题考查了因式分解-分组分解法,熟练掌握分解因式的方法解题的关键.28.【答案】解:【解析】直接利用例题进行补项,进而分解因式得出答案.此题主要考查了分组分解法分解因式,正确补项是解题关键.29.【答案】【解析】解:;;;;;;故答案为:,,;根据多项式乘多项式的法则计算即可,再根据推导的公式进行因式分解.本题考查了因式分解和多项式乘多项式的逆向应用能力30.【答案】解:设为整式,若,则或由得左式为零,所以是方程的解,所以,所以【解析】仿照题例,先设,再求一次方程的值,代入计算得结果.本题考查了解一元一次方程、高次方程,理解题例,掌握题例的步骤是解决本题的关键.。
人教版八年级数学14.3 因式分解同步训练一、选择题(本大题共10道小题)1. 下列从左边到右边的变形,属于因式分解的是()A.(x+1)(x-1)=x2-1B.x2-2x+1=x(x-2)+1C.x2-4y2=(x-2y)2D.x2+2x+1=(x+1)22. 2019·晋州期末把下列各式分解因式,结果为(x-2y)(x+2y)的多项式是() A.x2-4y2B.x2+4y2C.-x2+4y2D.-x2-4y23. 多项式6a3b2-3a2b3因式分解时,应提取的公因式为()A.3a2b2B.3a3b2C.3a2b3D.3a3b34.小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小a小b小x小y小x小y小a小b小x2小y2小a2小b2小小小小小小小小小小小小小小小小小小小小小小小小(x2小y2)a2小(x2小y2)b2小小小小小小小..小小小小小小小小小小()A. 小小小B. 小小小C. 小小小小D. 小小小小5. 若a+b=3,a-b=7,则b2-a2的值为()A.-21 B.21 C.-10 D.106. 计算552-152的结果是()A.40 B.1600 C.2400 D.28007. 计算(-2)2020+(-2)2019所得的正确结果是()A.22019B.-22019C.1 D.28. 将a 3b -ab 分解因式,正确的结果是 ( )A .a (a 2b -b )B .ab (a -1)2C .ab (a +1)(a -1)D .ab (a 2-1)9. 对于任意整数n ,多项式(n +7)2-(n -3)2的值都能( )A .被20整除B .被7整除C .被21整除D .被n +4整除10. 若a ,b ,c 是三角形三边的长,则代数式2222a b c ab +--的值( ).A.大于零B.小于零 C 大于或等于零D .小于或等于零二、填空题(本大题共7道小题)11. 小小小小小(2a 小b )2小(a 小2b )2小________小12. 小小小小9a 3小ab 2小小小小小小小小________小13. 小小小小x (x 小2)小(2小x )小小小小________小14. 2019·杭州 分解因式:1-x 2=________.15. 计算:10×912-10×92=________.16. 2018·成都已知x +y =0.2x +3y =1则式子x 2+4xy +4y 2的值为________.17. 已知n 是正整数,且4216100n n -+是质数,那么n =_______.三、解答题(本大题共4道小题)18. 分解因式:221x ax x ax a +++--19. 分解因式:22(23)9(1)x x +--20. 分解因式:()()()2a a b a b a a b +--+21. 分解因式:398x x -+人教版 八年级数学 14.3 因式分解 同步训练-答案一、选择题(本大题共10道小题)1. 【答案】D2. 【答案】A3. 【答案】A4. 【答案】C小小小小(x 2小y 2)a 2小(x 2小y 2)b 2小(x 2小y 2)(a 2小b 2)小(x 小y )(x 小y )(a 小b )(a 小b ) 小小小小小小小小小小小小小小小小小小小小小小小小小“小小小小”小小小小C.5. 【答案】A6. 【答案】D [解析] 552-152=(55+15)×(55-15)=70×40=2800.7. 【答案】A [解析] (-2)2020+(-2)2019=-2×(-2)2019+(-2)2019=(-2)2019×(-2+1)=22019.8. 【答案】C [解析] a 3b -ab =ab(a 2-1)=ab(a +1)(a -1).9. 【答案】A [解析] (n +7)2-(n -3)2=[(n +7)-(n -3)][(n +7)+(n -3)]=10(2n +4)=20(n +2),故多项式(n +7)2-(n -3)2的值都能被20整除.10. 【答案】B【解析】222222222(2)()()()a b c ab a ab b c a b c a b c a b c +--=-+-=--=-+--又因为a ,b ,c 是三角形三边的长,所以a c b +>,a b c <+即0a b c -+>,0a b c --<,()()0a b c a b c -+--<,22220a b c ab +--<二、填空题(本大题共7道小题)11. 【答案】3(a 小b )(a 小b ) 小小小小(2a 小b )2小(a 小2b )2小[(2a 小b )小(a 小2b )][(2a 小b )小(a 小2b )]小(3a 小3b )(a 小b )小3(a 小b )(a 小b )小12. 【答案】a (3a 小b )(3a 小b ) 小小小小9a 3小ab 2小a(9a 2小b 2)小a(3a小b)(3a小b)小13. 【答案】(x 小2)(x 小1) 小小小小小小小小(x 小2)小小小x (x 小2)小(2小x )小(x 小2)(x 小1)小14. 【答案】(1-x)(1+x) [解析] 1-x 2=(1-x)(1+x).15. 【答案】82000 [解析] 原式=10×912-10×92=10×(912-92)=10×(91+9)(91-9)=82000.16. 【答案】0.36 [解析] 因为x +y =0.2x +3y =1所以2x +4y =1.2即x +2y =0.6.则原式=(x +2y)2=0.36.17. 【答案】3n =【解析】原式422222222010036(10)(6)(610)(610)n n n n n n n n n =++-=+-=-+++. 又因为4216100n n -+是质数,且n 是正整数,且26101n n ++≠,故26101n n -+=,3n =.三、解答题(本大题共4道小题)18. 【答案】2(1)(1)a x x ++-【解析】解法一:按字母x 的幂来分组.221x ax x ax a +++--22()()(1)x ax x ax a =+++-+2(1)(1)(1)x a x a a =+++-+2(1)(1)a x x =++-解法二:按字母a 的幂来分组.221x ax x ax a +++--22()(1)ax ax a x x =+-++-22(1)(1)a x x x x =+-++-2(1)(1)a x x =++-原式的6项是平均分配的,或者分成三组,每组两项;或者分成两组,每组三项.如果分组的目的是使第二步与第三步都有公因式可提,那么就必须平均分配.特别注意结合选主元思想,在系数上分析分组!19. 【答案】5(6)x x -【解析】[][]22(23)9(1)(23)3(1)(23)3(1)5(6)x x x x x x x x +--=+--++-=-20. 【答案】()2ab a b -+【解析】()()()2a a b a b a a b +--+()()()()()()22a a b a b a b a a b b ab a b =+--+=+-=-+⎡⎤⎣⎦21. 【答案】 2(1)(8)x x x -+-【解析】332298199(1)(1)9(1)(1)(8)x x x x x x x x x x x -+=--+=-++--=-+-。
分解因式1.把下列各式因式分解d(a-by ^2a2(b-a)2 -2ab(b-a)2兀 + y = 32、不解方程组一「求代数式(2兀+ y)(2x —3y) + 3x(2x + y)的值。
[5x - 3y = -23、分解因式(1) 18x3y2-2x3(2) (x2-6x)2+18(x2-6x)+814、分解因式(1) 2x2+2xy-3x-3y (2)a2-b2+4a-4b5、证明:8I7 -279 -913能被45整除。
一、选择题1.下列各式从左到右的变形是分解因式的是()・A. a (a—b) =a2—ab;B・ a2—2a+l=a (a—2) +1C. X2—x=x (x—1);D. x2—1= (x+-)(X-y x y )‘丄)y2.把下列各式分解因式正确的是()A. x y2—x2y=x (y2—xy);B. 9xyz—6 x2y2= =3xyz (3—2xy)C. 3 a2x—6bx+3x=3x (a2—2b):1 , 1D. — x v2+ — x 2V=- XV (x+y)2 " 2 .23. -6x n-3x2n分解因式正确的是()A・ 3 (-2x n-x2n) B・-3x“ (2-x n) C・一3 (2x n+x2n) D・-3x“ (x"+2)4、—6xyz4-3xy2—9x2y 的公因式是()A. —3xB. 3xzC. 3yzD. —3xy5、把多项式(3a—4b) (7a-8b) + (lla-12b) (8b-7a)分解因式的结果是()A・ 8 (7a~8b) (a-b) ;B. 2 (7a-8b) 2 :C. 8 (7a-8b) (b-a) :D. -2 (7a-8b)6.把(x-y) 2- (y-x)分解因式为()A・(x—y) (x—y—1) B・(y—x) (x—y—1) C・(y—x) (y—x—1) D. (y—x) (y—x+1) 7.下列各个分解因式中正确的是()A. 1 Oab 2c4-6ac24-2ac=2ac (5b24-3c)B. (a—b) 3— (b—a) 2= (a—b) 2 (a—b+1)C.x (b+c—B) —y (a—b—c) —a+b—c= (b+c—a) (x+y—1)D.(a—2b) (3a+b) —5 (2b—a) 2= (a—2b) (lib—2a)8.若a+b=4,则a2+2ab+b2的值是()A. 8B. 16C. 29、下列各式中不能用平方差公式分解的是()A. ~a2+b2B. -x2-y2C. 49x2y2-z2D. 16m4-25n210、•下列各式中能用完全平方公式分解的是()①x?-4x+4; ®6X2+3X+1 ;③ 4X2-4X+1 ;④ x2+4xy+2y2; @9x2-20xy+16y2A.①® B•①(§)IK分解因式3X2-3X4的结果是()A. 3 (x+y2) (x-y2)B. 3 (x+y2) (x+y) (x-y)C. 3 (x-y2)2D. 3 (x-y)2(x+y)2 12、若k-12xy+9x2是一个完全平方式,那么k应为( )A・2 B.4 C. 2y2 D. 4y213•若X2+2 (m-3) x+16,是一个完全平方式,那么m应为( )A. -5B.3C.7D.7 或-1%1.填空题1 •分解因式:/w3~4m= _________ •2.如果a+b=l(b ab=21,则a2b+ab2的值为 ____________ .3.将x"-y"分解因式的结果为(x2+j2)(x+j)(x-j),则H的值为4•若a/+24j+/F (ZMT3) \ 则沪_____ , b= ______ , nr ______5.分解因式x2-4y2= __________________ ; ma2+2ma+m= _______ _6.分解因式2x3y+8x2y2+8xy3 _____________7・已知X2—y2=69, x+y=3,则x—y= _______8. _________________________________ 把a2b+b3-2ab2分解因式的结果是9> 一个长方形的面积是(*2—9) 2米,其长为(X+3)米,用含有x的整式表示它的宽为_米・10.分解因式:a3—ab2= _______三、计算题1>把下列各式分解因式:(1) 15X (a—b) 2—3y (b—a) ; (2) (a—3) 2— (2a—6)⑶;(4) fl1 "2a a A + flA a . (5) -6ah2 .⑹-6a^^l5ab2-9ac2 . (7) «(x-y)-»+^ . (8) j a+4^ -4^y ;⑼z a Gi-A)+4(i-fl) ;(w) <^ + 4)8-15?2、分解因式:(X2+4)2-16X2.3、分解因式(1) 16x2y2z2-9; (2) 81 (a+b)2-4(a-b)24.己知a4-b=-4, ab=2,求多项式4a2b+4ab2-4a-4b 的值。
因式分解同步练习题以及答案
因式分解同步练习题以及答案
因式分解同步练习(解答题)
.把下列各式分解因式:
①a2+10a+25 ②m2-12mn+36n2
③xy3-2x2y2+x3y ④(x2+4y2)2-16x2y2
.已知x=-19,y=12,求代数式4x2+12xy+9y2的值.
.已知│x-y+1│与x2+8x+16互为相反数,求x2+2xy+y2的值.答案:
.①(a+5)2;②(m-6n)2;③xy(x-y)2;④(x+2y)2(x-2y)2
通过上面对因式分解同步练习题目的学习,相信同学们已经能很好的掌握了吧,预祝同学们在考试中取得很好的成绩。
因式分解同步练习(填空题)
同学们对因式分解的内容还熟悉吧,下面需要同学们很好的'完成下面的题目练习。
因式分解同步练习(填空题)
.已知9x2-6xy+k是完全平方式,则k的值是________.
.9a2+(________)+25b2=(3a-5b)2
.-4x2+4xy+(_______)=-(_______).
.已知a2+14a+49=25,则a的值是_________.
答案:
.y2 6.-30ab 7.-y2;2x-y 8.-2或-12
通过上面对因式分解同步练习题目的学习,相信同学们已经能很好的掌握了吧,预祝同学们在考试中取得很好的成绩。
因式分解同步训练一、选择题(本大题共10道小题)1. 下列从左边到右边的变形,属于因式分解的是( )A.(x+1)(x-1)=x2-1B.x2-2x+1=x(x-2)+1C.x2-4y2=(x-2y)2D.x2+2x+1=(x+1)22. 2019·晋州期末把下列各式分解因式,结果为(x-2y)(x+2y)的多项式是( ) A.x2-4y2B.x2+4y2C.-x2+4y2D.-x2-4y23. 多项式6a3b2-3a2b3因式分解时,应提取的公因式为( )A.3a2b2B.3a3b2C.3a2b3D.3a3b34. 小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a-b,x-y,x+y,a+b,x2-y2,a2-b2分别对应下列六个字:昌、爱、我、宜、游、美.现将(x2-y2)a2-(x2-y2)b2因式分解,结果呈现的密码信息可能是( )A. 我爱美B. 宜昌游C. 爱我宜昌D. 美我宜昌5. 若a+b=3,a-b=7,则b2-a2的值为( )A.-21 B.21 C.-10 D.106. 计算552-152的结果是( )A.40 B.1600 C.2400 D.28007. 计算(-2)2020+(-2)2019所得的正确结果是( )A.22019B.-22019C.1 D.28. 将a3b-ab分解因式,正确的结果是( )A .a (a 2b -b )B .ab (a -1)2C .ab (a +1)(a -1)D .ab (a 2-1)9. 对于任意整数n ,多项式(n +7)2-(n -3)2的值都能( )A .被20整除B .被7整除C .被21整除D .被n +4整除10. 若,,是三角形三边的长,则代数式的值( ).A.大于零B.小于零 C 大于或等于零D .小于或等于零二、填空题(本大题共7道小题)11. 分解因式:(2a +b )2-(a +2b )2=________.12. 把多项式9a 3-ab 2分解因式的结果是________.13. 分解因式x (x -2)+(2-x )的结果是________.14. 2019·杭州 分解因式:1-x 2=________.15. 计算:10×912-10×92=________.16. 2018·成都已知x +y =0.2x +3y =1则式子x 2+4xy +4y 2的值为________.17. 已知是正整数,且是质数,那么_______.三、解答题(本大题共4道小题)18. 分解因式:19. 分解因式:20. 分解因式: a b c 2222a b c ab +--n 4216100n n -+n =221x ax x ax a +++--22(23)9(1)x x +--()()()2a a b a b a a b +--+21. 分解因式:人教版 八年级数学 14.3 因式分解 同步训练-答案一、选择题(本大题共10道小题)1. 【答案】D 2. 【答案】A3. 【答案】A4. 【答案】C 【解析】(x 2-y 2)a 2-(x 2-y 2)b 2=(x 2-y 2)(a 2-b 2)=(x +y )(x -y )(a +b )(a -b ) ,根据题中的相应式子对应的密码信息可得,结果可能为“爱我宜昌”,故选择C.5. 【答案】A6. 【答案】D [解析] 552-152=(55+15)×(55-15)=70×40=2800.7. 【答案】A [解析] (-2)2020+(-2)2019=-2×(-2)2019+(-2)2019=(-2)2019×(-2+1)=22019.8. 【答案】C [解析] a 3b -ab =ab(a 2-1)=ab(a +1)(a -1).9. 【答案】A [解析] (n +7)2-(n -3)2=[(n +7)-(n -3)][(n +7)+(n -3)]=10(2n +4)=20(n +2),故多项式(n +7)2-(n -3)2的值都能被20整除.398x x -+10. 【答案】B【解析】又因为,,是三角形三边的长,所以,即,,,二、填空题(本大题共7道小题)11. 【答案】3(a +b )(a -b ) 【解析】(2a +b )2-(a +2b )2=[(2a +b )+(a +2b )][(2a +b )-(a +2b )]=(3a +3b )(a -b )=3(a +b )(a -b ).12. 【答案】a (3a +b )(3a -b ) 【解析】9a 3-ab 2=a(9a 2-b 2)=a(3a +b)(3a -b).13. 【答案】(x -2)(x -1) 【解析】公因式是(x -2),所以x (x -2)+(2-x )=(x -2)(x -1).14. 【答案】(1-x)(1+x) [解析] 1-x 2=(1-x)(1+x).15. 【答案】82000 [解析] 原式=10×912-10×92=10×(912-92)=10×(91+9)(91-9)=82000.16. 【答案】0.36 [解析] 因为x +y =0.2x +3y =1所以2x +4y =1.2即x +2y =0.6.则原式=(x +2y)2=0.36.17. 【答案】【解析】原式.又因为是质数,且是正整数,且,故,.三、解答题(本大题共4道小题)18. 【答案】【解析】解法一:按字母的幂来分组.解法二:按字母的幂来分组.222222222(2)()()()a b c ab a ab b c a b c a b c a b c +--=-+-=--=-+--a b c a c b +>a b c<+0a b c -+>0a b c --<()()0a b c a b c -+--<22220a b c ab +--<3n =422222222010036(10)(6)(610)(610)n n n n n n n n n =++-=+-=-+++4216100n n -+n 26101n n ++≠26101n n -+=3n =2(1)(1)a x x ++-x 221x ax x ax a +++--22()()(1)x ax x ax a =+++-+2(1)(1)(1)x a x a a =+++-+2(1)(1)a x x =++-a 221x ax x ax a +++--22()(1)ax ax a x x =+-++-22(1)(1)a x x x x =+-++-2(1)(1)a x x =++-原式的6项是平均分配的,或者分成三组,每组两项;或者分成两组,每组三项.如果分组的目的是使第二步与第三步都有公因式可提,那么就必须平均分配.特别注意结合选主元思想,在系数上分析分组!19. 【答案】【解析】20. 【答案】【解析】21. 【答案】【解析】 5(6)x x -[][]22(23)9(1)(23)3(1)(23)3(1)5(6)x x x x x x x x +--=+--++-=-()2ab a b -+()()()2a a b a b a a b +--+()()()()()()22a a b a b a b a a b b ab a b =+--+=+-=-+⎡⎤⎣⎦2(1)(8)x x x -+-332298199(1)(1)9(1)(1)(8)x x x x x x x x x x x -+=--+=-++--=-+-。
因式分解
一、选择题
(1)下列各式从左到右的变形,是因式分解的为( )
A .x x x x x 6)3)(3(692+-+=+-
B .103)2)(5(2-+=-+x x x x
C .22)4(168-=+-x x x
D .)2)(3()3)(2(-+=+-x x x x
(2)观察下面计算962×95+962×5的运算,最简单的方法是( )
A .96200100962)595(962596295962=⨯=+⨯=⨯+⨯
B .96200)205(962)119(5962596295962=⨯⨯=+⨯⨯=⨯+⨯
C .96200)96218278(5)96219962(5596295962=+⨯=+⨯⨯=⨯+⨯
D .96200481091390596295962=+=⨯+⨯
(3)下列从左到右的变形中,是因式分解的是( )
A .ab a ab ab ab b a +-=+-)5(52
B .1)1)(1(2-=-+x x x
C .)1)(3(322+-=--x x x x
D .2223)2)(2(34y x x y x +-+=+-
二、填空题
1.计算下列(1)—(3)题,并根据计算结果填写(4)—(6)题的结果.
(1)____)1)(2(=--x x . (2)____)2(3=-x x .
(3)____)2(2=-x . (4)____632=-x x .
(5)____442=+-x x . (6)____232=+-x x .
2.(1)22))((b a b a b a -=-+的运算是_____________;
(2))2(2223-=-x x x x 的运算是_____________.
3.根据乘法运算的算式,把下列多项式分解因式:
4.根据乘法运算的算式,把下列多项式分解因式:
三、解答题
1.下列各式中从左到右的变形哪个是因式分解?
(1)1))((1)()(+-+=++-+y x b a b a y b a x
(2))(a b m a b am +=+ (3))23(481222n m mn mn n m --=+-
2.下列从左边到右边的变形中,哪些是分解因式?哪些不是?为什么?
(1)xy x y x 64242⋅=;
(2)25)5)(5(2-=-+x x x ;
(3))1)(3(322-+=-+x x x x ;
(4)1)23(31692+-=+-x x x x ;
(5))(3
13131b a x bx ax +=+. 3.下列由左边到右边的变形,哪些是因式分解,哪些不是?
(1)4)2)(2(2-=-+x x x (2))2)(2(42-+=-x x x
(3)x x x x x 3)2)(2(342+-+=+- (4))3)(2(652++=++x x x x
(5)96)3(22+-=-y y y
参考答案
一、选择题
(1)C (2)A (3)C
二、填空题
1.(1)232+-x x (2)x x 632- (3)442+-x x
(4))2(3-x x (5)2)2(-x (6))1)(2(--x x
2.(1)整式乘法;(2)分解因式.
3.2)();3)(3();2)(();35(2a mn z y z y y x y x b a ab --++-+.
4. )2)(2(y x y x -+;))(2(y x y x -+;2)(c ab -;)2(32c b a a +--.
三、解答题
1.(1)不是 (2)不是(提示:a
b 不是整式) (3)是 2.(1)不是分解因式,因为分解因式是把一个多项式化成几个整式的积的形式,而y x 224是一个单项式;
(2)不是分解因式,因为等号左边的)5)(5(-+x x 是几个整式的积的形式,而等号右边的252-x 是一个多项式;
(3)是分解因式,因为等号左边的322-+x x 是一个多项式,且等号右边的)1)(3(-+x x 是两个整式的积的形式;
(4)不是分解因式.因为等号左边的1692+-x x 虽然是一个多项式,但等号右边的1)23(3+-x x 不是几个整式的积的形式.
(5)是分解因式,因为等号左边的bx ax 3
131+是一个多项式,且等号右边的)(3
1b a x +是整式的积的形式. 3.(2)和(4)是因式分解;(1),(3),(5)不是因式分解.。