对数与对数函数学案
- 格式:doc
- 大小:404.00 KB
- 文档页数:10
写教案能帮助教师更好地安排课堂教学时间,教案要结合实际的教学进度和学生的学习能力,才能更好地帮助学生提高学习效果,下面是范文社小编为您分享的对数及对数函数教案8篇,感谢您的参阅。
对数及对数函数教案篇1【学习目标】一、过程目标1通过师生之间、学生与学生之间的互相交流,培养学生的数学交流能力和与人合作的精神。
2通过对对数函数的学习,树立相互联系、相互转化的观点,渗透数形结合的数学思想。
3通过对对数函数有关性质的研究,培养学生观察、分析、归纳的思维能力。
二、识技能目标1理解对数函数的概念,能正确描绘对数函数的图象,感受研究对数函数的意义。
2掌握对数函数的性质,并能初步应用对数的性质解决简单问题。
三、情感目标1通过学习对数函数的概念、图象和性质,使学生体会知识之间的有机联系,激发学生的.学习兴趣。
2在教学过程中,通过对数函数有关性质的研究,培养观察、分析、归纳的思维能力以及数学交流能力,增强学习的积极性,同时培养学生倾听、接受别人意见的优良品质。
教学重点难点:1对数函数的定义、图象和性质。
2对数函数性质的初步应用。
教学工具:多媒体学前准备】对照指数函数试研究对数函数的定义、图象和性质。
对数及对数函数教案篇2对数函数及其性质教学设计1.教学方法建构主义学习观,强调以学生为中心,学生在教师指导下对知识的主动建构。
它既强调学习者的认知主体作用,又不忽视教师的指导作用。
高中一年级的学生正值身心发展的过渡时期,思维活跃,具有一定的独立性,喜欢新鲜事物,敢于大胆发表自己的见解,不过思维还不是很成熟.在目标分析的基础上,根据建构主义学习观,及学生的认知特点,我拟采用“探究式”教学方法。
将一节课的核心内容通过四个活动的形式引导学生对知识进行主动建构。
其理论依据为建构主义学习理论。
它很好地体现了“学生为主体,教师为主导,问题为主线,思维为主攻”的“四为主”的教学思想。
2.学法指导新课程强调“以学生发展为核心”,强调培养学生的自主探索能力与合作学习能力。
2.2.4 对数函数及其性质(1)【学习目标】1.能举例说明对数函数的意义,能准确画出对数函数的图象;2.能根据图像的得出函数性质,能体会数形结合思想在函数中的运用.【学习重点】 对数函数的概念、图像与性质.【难点提示】归纳一般对数函数的性质,底数a 对对数函数性质的影响.【学法提示】1.请同学们课前将学案与教材7076P -结合进行自主学习(对教材中的文字、图象、表格、符号、观察、思考、说明与注释、例题及解答、阅读与思考、小结等都要仔细阅读)、小组讨论,积极思考提出更多、更好、更深刻的问题,为课堂学习做好充分的准备;2.在学习过程中用好“十二字学习法”即:“读”、“挖”、“举”、“联”、“用”、“悟”、“听”、“问”、“通”、“总”、“研”、“会”,请在课堂上敢于提问、敢于质疑、敢于讲解与表达.【学习过程】 一、学习准备1.什么叫函数?请准确叙述出函数的概念 ; 函数的性质包括的内容有 ;2.3.(教材P67例6)生物机体内碳14的“半衰期”为5730年,湖南长沙马王堆汉墓女尸出土时,碳14的残余量约占原始含量的76.7%,试推算马王堆古墓的年代. 上节课我们已得到碳的含量P 与生物死亡年数t 的关系:logt P =,请同学们用函数的概念考察一下上面关系式中t 是P 的函数吗? 二、探究新知 1.对数函数的概念●情景问题 用清水漂洗衣服,若每次能去污垢的34,写出存留污垢x 表示的漂洗次数y 的关系式,请根据关系式计算若要使存留的污垢不超过原有的164,则至少要漂洗几次?●观察与思考 根据学习准备2所列关系式,利用计算器完成下表:请观察上面学习准 备3中的log t P =和上面的14log y x =,用函数的概念判断这两个关系式是否是函数关系?如果是函数关系,再请观察下列函数有何共同特点: (1)2log y x = ;(2)3log y x = ;(3)12log y x = ;(4)13log y x = ;(5)5log y x =.●归纳概括 一般地,当a >0且a ≠1时,函数log a y x =叫做对数函数(logarithmic function),自变量是x ; 函数的定义域是(0,+∞).●快乐体验 1.判断下列函数哪些是对数函数? ①2log (1)y x =+;②log 3x y =;③ln y x =;④()l g f tt =;⑤3l o g 2y x =;⑥22log y x =;⑦5lo g 2xy =; ⑧4log 1y x =+;⑨2log (0,2)c u x c c =>≠;⑩()lg ()f x x x N *=∈ .解:●挖掘与拓展 (1)对数函数有何特征,函数的自变量位于何处?能改变位置吗?自变量x 能取负数吗,为什么?(2)对数函数中为何限制底数0a >且1a ≠?(3)对数函数也是一个形式定义,只有形如log (0,1,0)ay x a a x =>≠>的函数才叫对数函数.2.对数函数的图像与性质●画图体验 (1)请在平面标系中用列表描点法画出下列对数函数的图象. ○12log y x =; ○23log y x =. (2) 请在平面标系中用列表描点法画出下列对数函数的图象.○10.5log y x =; ○20.25log y x =.●看图思考 (1)观察上面1题中画出的两个函数图像有何共同特征? (2)观察上面2题中画出的两个函数图像有何共同特征?:●快乐体验 1.已知函数()log a y f x x ==,(1)试求:1(1)()()f f a f a,,; (2)结合对数函数的图象,分析上面三个点对函数图象有何影响? 解:2. 求下列函数的定义域与值域(0,1)a a >≠:(1)2log a y x =;(2)log (4)a y x =-;. 解:●挖掘与拓展 1. 对数函数的图象中有三个重要的分界点1(1,0)(,1)(,1)a a-、、,这三个点将图象分为四段,其对应的函数值也分为明显的四段;2. 函数图象都在y 轴右侧,向y 轴正负方向无限延伸,非奇非偶函数(链接1) 三、典例赏析例1 求下列函数的定义域:(1)y ;(2)71log 13y x=- 思路启迪:求函数的定义域的原则是使各表达式有意义,然后建立不等式(组),再通过解不等式而达到解决问题有目的.解:●解后反思 求对数型函数的定义域应注意什么? ●变式练习 求函数3242(4)lg()x y x x -=-的定义域.解:例2 比较下列各式的大小:(1)ln3.4,ln8.5; (2)log 5.1,log 5.9a a ;思路启迪:大小比较问题常通过构造函数,通过讨论函数的单调性而达到解决问题的目的,本题你想到了需要构造的函数了吗?快手试试吧.解:●解后反思 比较大小的方法是什么?在运用函数性质时应注意哪些问题? ●变式练习 比较下列各题中两个数值的大小.(1)22log 3log 3.5和; (2)0.30.3log 4log 0.7和;(3)0.70.7log 1.6log 1.8和.例3.在同一坐标系内作出y =log 2x 与y =log 5x 的图象,并比较两组数的大小. (1)2log 0.7与5log 0.7;(2)32log 3与56log 5.解:●解后反思 这两组数各有何特点,各是如何比较大小的?还有方法吗?●变式练习 设2log a π=,2log b =,log c = 则( ).A .a b c >>;B .a c b >>;C .b a c >>;D .b c a >>.四、学习反思1.本节课我们学习了哪些数学知识、数学思想方法,实现了我们的学习目标吗?如:对数函数的概念、图象和性质你都理解与掌握了吗?求对数型函数的定义域、利用对数函数的单调性比较大小等解题方法都能运用与其题中吗?(链接2)2.通过本节课的学习与课前的预习比较有哪些收获?有哪些要改进和加强的呢?3.对本节课你还有独特的见解吗?本节课的数学知识与生活有怎样的联系?感受到本节课数学知识与方法的美在哪里?五、学习评价 1.已知下列不等式,比较正数m 、n 的大小.(1)3log m <3log n ; (2)0.3log m >0.3log n ; (3)log a m >log a n (a >1). 2.比大小:(1)log 67 log 7 6 ; (2)log 31.5 log 2 0.8. 3..求下列函数的定义域.(1)y (2)y (3)3log (3-)()y x a x =+.4.解下列方程.(1)55log (3)log (21)x x =+; (2)lg(1)x =-.5.解不等式.(1)55log (3)log (21)x x <+; (2)lg(1)1x -<.6.见教材第74页习题2.2A 组的8题,B 组的1、2、4、5.◆承前启后 我们在学习了对数函数的性质、它还有那些重要的运用呢?对数函数在什么条件下函数的值域为全体实数R ?链接2. 两个同底数的对数比较大小的一般步骤:①确定所要考查的对数函数;②根据对数底数判断对数函数增减性; ③比较真数大小,然后利用对数函数的增减性判断两对数值的大小. 底数不确定时,需要对底数分类讨论.继续追思:两个底数不同的对数比较大小的方法又如何?一般步骤呢?。
对数函数【学习目标】(1)通过具体实例,了解对数函数的概念.能用描点法或借助计算工具画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点.(2)知道对数函数y =log a x 与指数函数y =a x 互为反函数(a >0,且a ≠1).(3)收集、阅读对数概念的形成与发展的历史资料,撰写小论文,论述对数发明的过程以及对数对简化运算的作用.【学习重难点】对数的概念与对数函数.【学习过程】 【第1课时】一、自主学习知识点一:对数函数的概念函数y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).状元随笔形如y =2log 2x ,y =log 2x3都不是对数函数,可称其为对数型函数. a >1 0<a <1状元随笔底数a 与1的大小关系决定了对数函数图象的“升降”:当a >1时,对数函数的图象“上升”;当0<a <1时,对数函数的图象“下降”.知识点三:反函数一般地,指数函数y =a x (a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数,它们的定义域与值域正好互换.教材解难: 1.教材P 130思考根据指数与对数的关系,由y =⎝ ⎛⎭⎪⎫125730x(x ≥0)得到x =log y (0<y ≤1).如图,过y 轴正半轴上任意一点(0,y 0)(0<y 0≤1)作x 轴的平行线,与y =⎝ ⎛⎭⎪⎫125730x(x ≥0)的图象有且只有一个交点(x0,y 0).这就说明,对于任意一个y ∈(0,1],通过对应关系x =log y ,在[0,+∞)上都有唯一确定的数x 和它对应,所以x 也是y 的函数.也就是说,函数x =logy ,y ∈(0,1]刻画了时间x 随碳14含量y 的衰减而变化的规律.2.教材P 132思考利用换底公式,可以得到y =log 12x =-log 2x .因为点(x ,y )与点(x ,-y )关于x 轴对称,所以y =log 2x 图象上任意一点P (x ,y )关于x 轴的对称点P 1(x ,-y )都在y =log 12x 的图象上,反之亦然.由此可知,底数互为倒数的两个对数函数的图象关于x 轴对称.根据这种对称性,就可以利用y =log 2x 的图象画出y =log 12x 的图象.3.教材P 138思考一般地,虽然对数函数y =log a x (a >1)与一次函数y =kx (k >0)在区间(0,+∞)上都单调递增,但它们的增长速度不同.随着x 的增大,一次函数y =kx (k >0)保持固定的增长速度,而对数函数y =log a x (a >1)的增长速度越来越慢.不论a 的值比k 的值大多少,在一定范围内,log a x 可能会大于kx ,但由于log a x 的增长慢于kx 的增长,因此总会存在一个x 0,当x >x 0时,恒有log a x <kx .4.4.1对数函数的概念 基础自测:1.下列函数中是对数函数的是( ) A .y =log 14xB .y =log 14(x +1)C .y =2log 14xD .y =log 14x +1解析:形如y =log a x (a >0,且a ≠1)的函数才是对数函数,只有A 是对数函数. 答案:A2.函数y =x ln (1-x )的定义域为( ) A .(0,1) B .[0,1) C .(0,1] D .[0,1]解析:由题意,得⎩⎨⎧x ≥0,1-x >0,解得0≤x <1;故函数y =x ln (1-x )的定义域为[0,1).答案:B3.函数y=log a(x-1)(0<a<1)的图象大致是()解析:∵0<a<1,∴y=log a x在(0,+∞)上单调递减,故A,B可能正确;又函数y=log a(x-1)的图象是由y=log a x的图象向右平移一个单位得到,故A正确.答案:A4.若f(x)=log2x,x∈[2,3],则函数f(x)的值域为________.解析:因为f(x)=log2x在[2,3]上是单调递增的,所以log22≤log2x≤log23,即1≤log2x≤log23.答案:[1,log23]二、素养提升题型一:对数函数的概念例1:下列函数中,哪些是对数函数?(1)y=log a x(a>0,且a≠1);(2)y=log2x+2;(3)y=8log2(x+1);(4)y=log x6(x>0,且x≠1);(5)y=log6x.解析:(1)中真数不是自变量x,不是对数函数.(2)中对数式后加2,所以不是对数函数.(3)中真数为x+1,不是x,系数不为1,故不是对数函数.(4)中底数是自变量x,而非常数,所以不是对数函数.(5)中底数是6,真数为x,系数为1,符合对数函数的定义,故是对数函数.用对数函数的概念例如y=log a x(a>0且a≠1)来判断.方法归纳:判断一个函数是对数函数的方法跟踪训练1:若函数f (x )=(a 2-a +1)log (a +1)x 是对数函数,则实数a =________. 解析:由a 2-a +1=1,解得a =0或a =1. 又底数a +1>0,且a +1≠1,所以a =1. 答案:1对数函数y =log a x 系数为1.题型二:求函数的定义域(教材P 130例1) 例2:求下列函数的定义域: (1)y =log 3x 2;(2)y =log a (4-x )(a >0,且a ≠1).解析:(1)因为x 2>0,即x ≠0,所以函数y =log 3x 2的定义域是{x |x ≠0}. (2)因为4-x >0,即x <4,所以函数y =log a (4-x )的定义域是{x |x <4}. 真数大于0. 教材反思:求定义域有两种题型,一种是已知函数解析式求定义域,常规为:分母不为0;0的零次幂与负指数次幂无意义;偶次根式被开方式(数)非负;对数的真数大于0,底数大于0且不等于1.另一种是抽象函数的定义域问题.同时应注意求函数定义域的解题步骤.跟踪训练2:求下列函数的定义域: (1)y =lg (x +1)+3x 21-x ;(2)y =log (x -2)(5-x ). 解析:(1)要使函数有意义, 需⎩⎨⎧ x +1>0,1-x >0,即⎩⎨⎧x >-1,x <1.∴-1<x <1,∴函数的定义域为(-1,1).(2)要使函数有意义,需⎩⎨⎧5-x >0,x -2>0,x -2≠1,∴⎩⎨⎧x <5,x >2,x ≠3.∴定义域为(2,3)∪(3,5).真数大于0,偶次根式被开方数大于等于0,分母不等于0,列不等式组求解. 题型三:对数函数的图象问题例3:(1)函数y =x +a 与y =log a x 的图象只可能是下图中的( )(2)已知函数y =log a (x +3)-1(a >0,a ≠1)的图象恒过定点A ,若点A 也在函数f (x )=3x +b 的图象上,则f (log 32)=________.(3)如图所示的曲线是对数函数y =log a x ,y =log b x ,y =log c x ,y =log d x 的图象,则a ,b ,c ,d 与1的大小关系为________.解析:(1)A 中,由y =x +a 的图象知a >1,而y =log a x 为减函数,A 错;B 中,0<a <1,而y =log a x 为增函数,B 错;C 中,0<a <1,且y =log a x 为减函数,所以C 对;D 中,a <0,而y =log a x 无意义,也不对.(2)依题意可知定点A (-2,-1),f (-2)=3-2+b =-1,b =-109,故f (x )=3x -109,f (log 32)=33log 2-109=2-109=89.(3)由题干图可知函数y =log a x ,y =log b x 的底数a >1,b >1,函数y =log c x ,y =log d x 的底数0<c <1,0<d <1.过点(0,1)作平行于x 轴的直线,则直线与四条曲线交点的横坐标从左向右依次为c ,d ,a ,b ,显然b >a >1>d >c .答案:(1)C(2)89(3)b >a >1>d >c状元随笔(1)由函数y =x +a 的图象判断出a 的范围. (2)依据log a 1=0,a 0=1,求定点坐标.(3)沿直线y =1自左向右看,对数函数的底数由小变大. 方法归纳:解决对数函数图象的问题时要注意:(1)明确对数函数图象的分布区域.对数函数的图象在第一、四象限.当x 趋近于0时,函数图象会越来越靠近y 轴,但永远不会与y 轴相交.(2)建立分类讨论的思想.在画对数函数图象之前要先判断对数的底数a 的取值范围是a >1,还是0<a <1.(3)牢记特殊点.对数函数y =log a x (a >0,且a ≠1)的图象经过点:(1,0),(a ,1)和⎝ ⎛⎭⎪⎫1a ,-1. 跟踪训练3:(1)如图所示,曲线是对数函数y =log a x (a >0,且a ≠1)的图象,已知a 取3,43,35,110,则相应于C 1,C 2,C 3,C 4的a 值依次为( )A .3,43,35,110B .3,43,110,35C .43,3,35,110D .43,3,110,35(2)函数y =log a |x |+1(0<a <1)的图象大致为( )解析:(1)方法一:作直线y =1与四条曲线交于四点,由y =log a x =1,得x =a (即交点的横坐标等于底数),所以横坐标小的底数小,所以C 1,C 2,C 3,C 4对应的a 值分别为3,43,35,110,故选A .方法二:由对数函数的图象在第一象限内符合底大图右的规律,所以底数a 由大到小依次为C 1,C 2,C 3,C 4,即3,43,35,110.故选A .增函数底数a >1, 减函数底数0<a <1.(2)函数为偶函数,在(0,+∞)上为减函数,(-∞,0)上为增函数,故可排除选项B ,C ,又x =±1时y =1,故选A .先去绝对值,再利用单调性判断. 答案:(1)A (2)A 三、学业达标(一)选择题1.下列函数是对数函数的是( ) A .y =2+log 3xB .y =log a (2a )(a >0,且a ≠1)C .y =log a x 2(a >0,且a ≠1)D .y =ln x解析:判断一个函数是否为对数函数,其关键是看其是否具有“y =log a x ”的形式,A ,B ,C 全错,D 正确.答案:D2.若某对数函数的图象过点(4,2),则该对数函数的解析式为( ) A .y =log 2xB .y =2log 4xC .y =log 2x 或y =2log 4xD .不确定解析:由对数函数的概念可设该函数的解析式为y =log a x (a >0,且a ≠1,x >0),则2=log a 4即a 2=4得a =2.故所求解析式为y =log 2x .答案:A3.设函数y =4-x 2的定义域为A ,函数y =ln (1-x )的定义域为B ,则A ∩B =( ) A .(1,2) B .(1,2] C .(-2,1) D .[-2,1)解析:由题意可知A ={x |-2≤x ≤2},B ={x |x <1},故A ∩B ={x |-2≤x <1}. 答案:D4.已知a >0,且a ≠1,函数y =a x 与y =log a (-x )的图象只能是下图中的( )解析:由函数y =log a (-x )有意义,知x <0,所以对数函数的图象应在y 轴左侧,可排除A ,C .又当a >1时,y =a x 为增函数,所以图象B 适合.答案:B (二)填空题5.若f (x )=log a x +(a 2-4a -5)是对数函数,则a =________. 解析:由对数函数的定义可知 ⎩⎨⎧a 2-4a -5=0a >0a ≠1,∴a =5.答案:56.已知函数f (x )=log 3x ,则f ⎝ ⎛⎭⎪⎫95+f (15)=________.解析:f ⎝ ⎛⎭⎪⎫95+f (15)=log 395+log 315=log 327=3.答案:37.函数f(x)=log a(2x-3)(a>0且a≠1)的图象恒过定点P,则P点的坐标是________.解析:令2x-3=1,解得x=2,且f(2)=log a1=0恒成立,所以函数f(x)的图象恒过定点P(2,0).答案:(2,0)(三)解答题8.求下列函数的定义域:(1)y=log3(1-x);(2)y=1log2x;(3)y=log711-3x.解析:(1)由1-x>0,得x<1,∴函数y=log3(1-x)的定义域为(-∞,1).(2)由log2x≠0,得x>0且x≠1.∴函数y=1log2x的定义域为{x|x>0且x≠1}.(3)由11-3x>0,得x<1 3.∴函数y=log711-3x的定义域为⎝⎛⎭⎪⎫-∞,13.9.已知f(x)=log3x.(1)作出这个函数的图象;(2)若f(a)<f(2),利用图象求a的取值范围.解析:(1)作出函数y=log3x的图象如图所示(2)令f(x)=f(2),即log3x=log32,解得x=2.由图象知,当0<a<2时,恒有f(a)<f(2).∴所求a的取值范围为0<a<2.尖子生题库:10.已知函数y=log2x的图象,如何得到y=log2(x+1)的图象?y=log2(x+1)的定义域与值域是多少?与x 轴的交点是什么?解析:y =log 2x ――――――→左移1个单位y =log 2(x +1),如图.定义域为(-1,+∞),值域为R ,与x 轴的交点是(0,0).【第二学时】一、素养提升题型一:比较大小(教材P 133例3) 例1:比较下列各题中两个值的大小: (1)log 23.4,log 28.5; (2)log 0.31.8,log 0.32.7;(3)log a 5.1,log a 5.9(a >0,且a ≠1).解析:(1)log 23.4和log 28.5可看作函数y =log 2x 的两个函数值.因为底数2>1,对数函数y =log 2x 是增函数,且3.4<8.5,所以log 23.4<log 28.5.(2)log 0.31.8和log 0.32.7可看作函数y =log 0.3x 的两个函数值.因为底数0.3<1,对数函数y =log 0.3x 是减函数,且1.8<2.7,所以log 0.31.8>log 0.32.7.(3)log a 5.1和log a 5.9可看作函数y =log a x 的两个函数值.对数函数的单调性取决于底数a 是大于1还是小于1,因此需要对底数a 进行讨论.当a >1时,因为函数y =log a x 是增函数,且5.1<5.9,所以log a 5.1<log a 5.9; 当0<a <1时,因为函数y =log a x 是减函数,且5.1<5.9,所以log a 5.1>log a 5.9. 构造对数函数,利用函数单调性比较大小. 教材反思比较对数值大小时常用的三种方法跟踪训练1:(1)设a =log 2π,b =log 12π,c =π-2,则( )A .a >b >cB.b>a>cC.a>c>bD.c>b>a(2)比较下列各组值的大小:①log230.5,log230.6.②log1.51.6,log1.51.4.③log0.57,log0.67.④log3π,log20.8.解析:(1)a=log2π>1,b=log12π<0,c=π-2∈(0,1),所以a>c>b.(2)①因为函数y=log23x是减函数,且0.5<0.6,所以log230.5>log230.6.②因为函数y=log1.5x是增函数,且1.6>1.4,所以log1.51.6>log1.51.4.③因为0>log70.6>log70.5,所以1log70.6<1log70.5,即log0.67<log0.57.④因为log3π>log31=0,log20.8<log21=0,所以log3π>log20.8.答案:(1)C(2)①log230.5>log230.6.②log1.51.6>log1.51.4.③log0.67<log0.57.④log3π>log20.8.状元随笔(1)选择中间量0和1,比较大小.(2)①②③利用对数函数的单调性比较大小.④用中间量0比较大小.题型二:解对数不等式例2:(1)已知log0.72x<log0.7(x-1),则x的取值范围为________;(2)已知log a(x-1)≥log a(3-x)(a>0,且a≠1),求x的取值范围.解析:(1)∵函数y=log0.7x在(0,+∞)上为减函数,∴由log 0.72x <log 0.7(x -1)得⎩⎨⎧2x >0,x -1>0,2x >x -1,解得x >1,即x 的取值范围是(1,+∞). (2)log a (x -1)≥log a (3-x ),当a >1时,有⎩⎨⎧x -1>0,3-x >0,x -1≥3-x ,解得2≤x <3.当0<a <1时,有⎩⎨⎧x -1>0,3-x >0,x -1≤3-x ,解得1<x ≤2.综上可得,当a >1时,不等式log a (x -1)≥log a (3-x )中x 的取值范围为[2,3);当0<a <1时,不等式log a (x -1)≥log a (3-x )(a >0且a ≠1)中x 的取值范围是(1,2].答案:(1)(1,+∞) (2)答案见解析状元随笔(1)利用函数y =log 0.7x 的单调性求解. (2)分a >1和0<a <1两种情况讨论,解不等式. 方法归纳:两类对数不等式的解法:(1)形如log a f (x )<log a g (x )的不等式. ①当0<a <1时,可转化为f (x )>g (x )>0; ②当a >1时,可转化为0<f (x )<g (x ).(2)形如log a f (x )<b 的不等式可变形为log a f (x )<b =log a a b . ①当0<a <1时,可转化为f (x )>a b ; ②当a >1时,可转化为0<f (x )<a b .跟踪训练2:(1)满足不等式log 3x <1的x 的取值集合为________; (2)根据下列各式,确定实数a 的取值范围: ①log 1.5(2a )>log 1.5(a -1); ②log 0.5(a +1)>log 0.5(3-a ).解析:(1)因为log 3x <1=log 33, 所以x 满足的条件为⎩⎨⎧x >0,log 3x <log 33,即0<x <3.所以x 的取值集合为{x |0<x <3}. (2)①函数y =log 1.5x 在(0,+∞)上是增函数.因为log 1.5(2a )>log 1.5(a -1),所以⎩⎨⎧2a >a -1,a -1>0,解得a >1,即实数a 的取值范围是a >1.②函数y =log 0.5x 在(0,+∞)上是减函数,因为log .0.5(a +1)>log 0.5(3-a ),所以⎩⎨⎧a +1>0,3-a >0,a +1<3-a ,解得-1<a <1.即实数a 的取值范围是-1<a <1.答案:(1){x |0<x <3}(2)①(1,+∞);②(-1,1) 状元随笔(1)log 33=1. (2)由对数函数的单调性求解. 题型三:对数函数性质的综合应用例3:已知函数f (x )=log a (1+x )+log a (3-x )(a >0且a ≠1). (1)求函数f (x )的定义域;(2)若函数f (x )的最小值为-2,求实数a 的值. 解析:(1)由题意得⎩⎨⎧1+x >0,3-x >0,解得-1<x <3,所以函数f (x )的定义域为(-1,3). (2)因为f (x )=log a [(1+x )(3-x )] =log a (-x 2+2x +3) =log a [-(x -1)2+4],若0<a <1,则当x =1时,f (x )有最小值log a 4, 所以log a 4=-2,a -2=4,又0<a <1,所以a =12.若a >1,则当x =1时,f (x )有最大值log a 4,f (x )无最小值.综上可知,a =12.真数大于0.分0<a<1,a>1两类讨论.方法归纳:1.解答y=log a f(x)型或y=f(log a x)型函数需注意的问题①要注意变量的取值范围.例如,f(x)=log2x,g(x)=x2+x,则f(g(x))=log2(x2+x)中需要g(x)>0;g(f(x))=(log2x)2+log2x中需要x>0.②判断y=log a f(x)型或y=f(log a x)型函数的奇偶性,首先要注意函数中变量的范围,再利用奇偶性定义判断.2.形如y=log a f(x)的函数的单调性判断首先要确保f(x)>0,当a>1时,y=log a f(x)的单调性在f(x)>0的前提下与y=f(x)的单调性一致.当0<a<1时,y=log a f(x)的单调性在f(x)>0的前提下与y=f(x)的单调性相反.跟踪训练3已知函数f(x)=log2(1+x2).求证:(1)函数f(x)是偶函数;(2)函数f(x)在区间(0,+∞)上是增函数.证明:(1)函数f(x)的定义域是R,f(-x)=log2[1+(-x)2]=log2(1+x2)=f(x),所以函数f(x)是偶函数.(2)设0<x1<x2,则f(x1)-f(x2)=log2(1+x21)-log2(1+x22)=log21+x21 1+x22,由于0<x1<x2,则0<x21<x22,则0<1+x21<1+x22,所以0<1+x211+x22<1.又函数y=log2x在(0,+∞)上是增函数,所以log21+x211+x22<0.所以f(x1)<f(x2).所以函数f(x)在区间(0,+∞)上是增函数.(1)函数是偶函数,f(-x)=f(x).(2)用定义法证明函数是增函数.题型四:几类函数模型的增长差异例4:(1)下列函数中,增长速度最快的是()A.y=2018xB.y=x2018C.y=log2018xD.y=2018x则关于x呈指数型函数变化的变量是________.解析:(1)比较幂函数、指数函数与对数函数、一次函数可知,指数函数增长速度最快.(2)以爆炸式增长的变量呈指数函数变化.从表格中可以看出,四个变量y1,y2,y3,y4均是从2开始变化,且都是越来越大,但是增长速度不同,其中变量y2的增长速度最快,画出它们的图象(图略),可知变量y2关于x呈指数型函数变化.答案:(1)A(2)y2状元随笔(1)由题意,指数函数增长速度最快.(2)观察变量y1,y2,y3,y4的变化情况→找出增长速度最快的变量→该变量关于x呈指数型函数变化跟踪训练4:分析指数函数y=2x与对数函数y=log2x在区间[1,+∞)上的增长情况.解析:指数函数y=2x,当x由x1=1增加到x2=3时,x2-x1=2,y2-y1=23-21=6;对数函数y=log2x,当x由x1=1增加到x2=3时,x2-x1=2,而y2-y1=log23-log21≈1.5850.由此可知,在区间[1,+∞)上,指数函数y=2x随着x的增长函数值的增长速度快,而对数函数y=log2x的增长速度缓慢.状元随笔在同一平面直角坐标系内作出函数y =2x 和y =log 2x 的图象,从图象上可观察出函数的增长变化情况.如图:二、学业达标(一)选择题1.设a =log 0.50.9,b =log 1.10.9,c =1.10.9,则a ,b ,c 的大小关系为( ) A .a <b <c B .b <a <c C .b <c <a D .a <c <b解析:因为0=log 0.51<a =log 0.50.9<log 0.50.5=1, b =log 1.10.9<log 1.11=0,c =1.10.9>1.10=1, 所以b <a <c ,故选B . 答案:B2.y 1=2x ,y 2=x 2,y 3=log 2x ,当2<x <4时,有( ) A .y 1>y 2>y 3 B .y 2>y 1>y 3 C .y 1>y 3>y 2 D .y 2>y 3>y 1解析:在同一平面直角坐标系内画出这三个函数的图象(图略),在区间(2,4)内,从上到下图象依次对应的函数为y 2=x 2,y 1=2x ,y 3=log 2x ,故y 2>y 1>y 3.答案:B3.若log a 34<1(a >0,且a ≠1),则实数a 的取值范围是( )A .⎝ ⎛⎭⎪⎫0,34B .⎝ ⎛⎭⎪⎫0,34∪(1,+∞)C .(1,+∞)D .(0,1)解析:当a >1时,log a 34<0<1,成立. 当0<a <1时,y =log a x 为减函数.由log a 34<1=log a a ,得0<a <34.综上所述,0<a <34或a >1. 答案:B4.函数y =log 0.4(-x 2+3x +4)的值域是( ) A .(0,2] B .[-2,+∞) C .(-∞,-2] D .[2,+∞)解析:-x 2+3x +4=-⎝ ⎛⎭⎪⎫x -322+254≤254,又-x 2+3x +4>0,则0<-x 2+3x +4≤254,函数y =log 0.4x 为(0,+∞)上的减函数,则y =log 0.4(-x 2+3x +4)≥log 0.4254=-2,函数的值域为[-2,+∞).答案:B (二)填空题5.函数f (x )=log a x (a >0,且a ≠1)在[2,3]上的最大值为1,则a =________. 解析:当a >1时,f (x )的最大值是f (3)=1, 则log a 3=1,∴a =3>1.∴a =3符合题意. 当0<a <1时,f (x )的最大值是f (2)=1.则log a 2=1,∴a =2>1.∴a =2不合题意,综上知a =3. 答案:36.已知函数f (x )=log 2a -x1+x 为奇函数,则实数a 的值为________.解析:由奇函数得f (x )=-f (-x ), log 2a -x 1+x =-log 2a +x 1-x,a -x 1+x =1-x a +x ,a 2=1, 因为a ≠-1, 所以a =1. 答案:17.如果函数f (x )=(3-a )x 与g (x )=log a x 的增减性相同,则实数a 的取值范围是________.解析:若f (x ),g (x )均为增函数,则⎩⎨⎧3-a >1,a >1,则1<a <2;若f (x ),g (x )均为减函数,则⎩⎨⎧0<3-a <1,0<a <1,无解.答案:(1,2) (三)解答题8.比较下列各组对数值的大小: (1)log 151.6与log 152.9;(2)log 21.7与log 23.5; (3)log 123与log 153;(4)log 130.3与log 20.8.解析:(1)∵y =log 15x 在(0,+∞)上单调递减,1.6<2.9,∴log 151.6>log 152.9.(2)∵y =log 2x 在(0,+∞)上单调递增,而1.7<3.5, ∴log 21.7<log 23.5.(3)借助y =log 12x 及y =log 15x 的图象,如图所示.在(1,+∞)上,前者在后者的下方, ∴log 123<log 153.(4)由对数函数性质知,log 130.3>0,log 20.8<0,∴log 130.3>log 20.8.9.已知log a (2a +3)<log a 3a ,求a 的取值范围.解析:(1)当a >1时,原不等式等价于⎩⎨⎧ a >1,2a +3<3a ,2a +3>0,解得a >3.(2)当0<a <1时,原不等式等价于⎩⎨⎧0<a <1,2a +3>3a ,3a >0,解得0<a <1.综上所述,a 的范围是(0,1)∪(3,+∞). 尖子生题库:10.已知a >0且a ≠1,f (log a x )=a a 2-1⎝ ⎛⎭⎪⎫x -1x .(1)求f (x );(2)判断f (x )的单调性和奇偶性;(3)对于f (x ),当x ∈(-1,1)时,有f (1-m )+f (1-2m )<0,求m 的取值范围. 解析:(1)令t =log a x (t ∈R ),则x =a t ,且f (t )=a a 2-1⎝⎛⎭⎪⎫a t -1a t ,所以f (x )=aa 2-1(a x -a -x )(x ∈R );(2)因为f (-x )=a a 2-1(a -x -a x ) =-f (x ), 且x ∈R ,所以f (x )为奇函数.当a >1时,a x -a -x 为增函数,并且注意到a a 2-1>0, 所以这时f (x )为增函数;当0<a <1时,类似可证f (x )为增函数.所以f (x )在R 上为增函数;(3)因为f (1-m )+f (1-2m )<0,且f (x )为奇函数,所以f (1-m )<f (2m -1).因为f (x )在(-1,1)上为增函数,所以⎩⎨⎧ -1<1-m <1,-1<2m -1<1,1-m <2m -1.解之,得23<m <1. 即m 的取值范围是⎝ ⎛⎭⎪⎫23,1.小课堂:如何培养自主学习能力?自主学习是与传统的接受学习相对应的一种现代化学习方式。
高三数学一轮复习学案:对数与对数函数一、考试要求: 1)理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数。
(2)理解对数函数的概念,了解对数函数的单调性。
(3)知道指数函数x a y =与对数函数)1,0(log ≠>=a a x y a 互为反函数二、知识梳理:1.对数的概念:如果)1,0(≠>=a a N a b ,那么幂指数b 叫做以a 为底数的对数,记作 _____________,其中a 叫做底数,N 叫做____________.2.积、商、幂、方根的对数 (N M ,都是正数,,0>a 且)0,1≠≠n a(1)=⨯)(log N M a __________(2)=MN alog ___________(3)=n a M log ________ 3.对数的换底公式及对数的恒等式(供选用) (1)=N a a log _____(对数恒等式)(2)=n a a log ______ 3)a N N b b a log log log =(换底公式) (4)a b b a log 1log =(5)n a a N N n log log =1、设c b a ,,均为正数,且a a 21log 2=,b b 21log 21=⎪⎭⎫ ⎝⎛,c c2log 21=⎪⎭⎫ ⎝⎛.则( ) A.c b a << B. a b c << C. b a c << D. c a b <<2、设1a >,函数()log a f x x =在区间[,2]a a 上的最大值与最小值之差为12,则a = A .2 C ..43、已知函数2sin1()log (65)f x x x =-+在(,)a +∞上是减函数,则实数a 的取值范围( )A. (5,+∞)B. (3,+∞)C. (-∞,3)D. [5,)+∞4、已知函数)1(),2lg()(≥-=x b x f x 的值域是[),0+∞则( )A.1≤bB.1<bC.1≥bD.1=b5、55ln ,33ln ,22ln ===c b a 则( ) A. c b a << B.a b c << C.b a c << D.c a b <<6、(08重庆)已知1249a =(a>0) ,则23log a = . 7、已知函数)3(x f y =的定义域是][2,1,则函数)(log 2x f y =的定义域是8、函数)43(log )(231--=x x x f 的单调增区间是_________9、已知函数]1)1()1lg[()(22+++-=x a x a x f (1)若)(x f 得定义域为),(+∞-∞,求实数a 的取值范围; (2)若)(x f 的值域为),(+∞-∞,求实数a 的取值范围。
第04讲 对数与对数函数(含对数型糖水不等式的应用)(8类核心考点精讲精练)1. 5年真题考点分布2. 命题规律及备考策略【命题规律】本节内容是新高考卷的命题常考内容,设题多为函数性质或函数模型,难度中等,分值为5-6分【备考策略】1.理解对数的概念和运算性质,熟练指对互化,能用换底公式能将一般对数转化成自然对数或常用对数2.了解对数函数的概念,能画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点3.熟练掌握对数函数x y a log =0(>a 且)1≠a 与指数函数x a y =0(>a 且)1≠a 的图象关系【命题预测】本节内容通常会考查指对幂的大小比较、对数的运算性质、对数的函数模型等,需要重点备考复习1.对数的运算(1)对数的定义如果,那么把叫做以为底,的对数,记作N x a log =,其中叫做对数的底数,叫做真数(2)对数的分类一般对数:底数为,,记为N a log 常用对数:底数为10,记为,即:xx lg log 10=自然对数:底数为e (e ≈2.71828…),记为,即:x x e ln log =(3)对数的性质与运算法则①两个基本对数:①01log =a ,②1log =a a ②对数恒等式:①N a N a =log ,②N a Na =log 。
③换底公式:aba b a b b c c a ln ln lg lg log log log ===;推广1:对数的倒数式ab b a log 1log =1log log =⋅⇒a b b a 推广2:d d c b a c b a c b a c b a log log log log 1log log log =⇒=。
④积的对数:()N M MN a a a log log log +=;(01)xa N a a =>≠且x a N a N a 0,1a a >≠且lg N ln N⑤商的对数:N M NMa a alog log log -=;⑥幂的对数:❶b m b a ma log log =,❷b nb a a n log 1log =,❸b n mb a ma n log log =,❹mna ab b nm log log =2.对数函数(1)对数函数的定义及一般形式形如:()0,10log >≠>=x a a x y a 且的函数叫做对数函数(2)对数函数的图象和性质图象定义域:()∞+,0值域:R当1=x 时,0=y 即过定点()0,1当时,;当时,当时,;当时,性质在()∞+,0上为增函数(5)在()∞+,0上为减函数3.对数型糖水不等式(1) 设 n N +Î, 且 1n >, 则有 12log log (1)n n n n ++<+ (2) 设 1,0a b m >>>, 则有 log log ()a a m b b m +<+(3) 上式的倒数形式:设 1,0a b m >>>, 则有 log log ()b b ma a m +>+1.(2024·重庆·三模)已知2log 5,85ba ==,则ab =.1a >01a <<01x <<(,0)y Î-∞1x >(0,)y Î+∞1x >(,0)y Î-∞01x <<(0,)y Î+∞2.(2024·青海·模拟预测)若3log 5a =,56b =,则3log 2ab -=( )A .1B .-1C .2D .-23.(2024·四川·模拟预测)若实数m ,n ,t 满足57m n t ==且112m n+=,则t =( )A.B .12CD1.(2024·河南郑州·三模)已知log 4log 4a b b a +=,则22a b 的值为.2.(2024·全国·高考真题)已知1a >且8115log log 42a a -=-,则=a .3.(2024·辽宁丹东·一模)若23a=,35b =,54c =,则4log abc =( )A .2-B .12CD .11.(2024·河南·三模)函数()f x = )A .(,0]-∞B .(,1)-∞C .[0,1)D .[0,)+∞1.(2023·广东珠海·模拟预测)函数()lg(21)f x x =-的定义域是( )A .1,2æö-∞ç÷èøB .1,2æö+∞ç÷èøC .1,2æù-∞çúèûD .1,2éö+∞÷êëø2.(2024·青海海南·二模)函数()2lg 10()x f x x-=的定义域为( )A.(B.(,)-∞+∞U C.[D.(È1.(2024高三·全国·专题练习)已知函数① y =log ax ;② y =log bx ;③ y =log cx ;④ y =log dx 的大致图象如图所示,则下列不等关系正确的是( )A .a +c <b +aB .a +d <b +cC .b +c <a +dD .b +d <a +c2.(2024·广东深圳·二模)已知0a >,且1a ≠,则函数1log a y x a æö=+ç÷èø的图象一定经过( )A .一、二象限B .一、三象限C .二、四象限D .三、四象限3.(2024·陕西渭南·二模)已知直线240mx ny +-=(0m >,0n >)过函数()log 12a y x =-+(0a >,且1a ≠)的定点T ,则26m n+的最小值为 .1.(2024高三·全国·专题练习)在同一平面直角坐标系中,函数y =1x a,y =log a (x +12)(a >0,且a ≠1)的图象可能是( )A .B .C .D .2.(2024·全国·模拟预测)若函数()log 21(0a y x a =-+>,且1)a ≠的图象所过定点恰好在椭圆221(0,0)x y m n m n+=>>上,则m n +的最小值为 .1.(辽宁·高考真题)函数212log (56)y x x =-+的单调减区间为( )A .52,æö+∞ç÷èøB .(3)+∞,C .52æö-∞ç÷èø,D .()2-∞,2.(2024·江苏南通·模拟预测)已知函数()ln(2)f x ax =+在区间(1,2)上单调递减,则实数a 的取值范围是( )A .a<0B .10a -£<C .10a -<<D .1a ³-3.(2024·全国·高考真题)已知函数22,0()e ln(1),0x x ax a x f x x x ì---<=í++³î在R 上单调递增,则a 的取值范围是( )A .(,0]-∞B .[1,0]-C .[1,1]-D .[0,)+∞4.(2024·北京·高考真题)已知()11,x y ,()22,x y 是函数2x y =的图象上两个不同的点,则( )A .12122log 22y y x x ++<B .12122log 22y y x x ++>C .12212log 2y y x x +<+D .12212log 2y y x x +>+1.(23-24高三下·青海西宁·开学考试)已知函数()()2lg 1f x x ax =++在区间(),2-∞-上单调递减,则a 的取值范围为 .2.(2022高三·全国·专题练习)函数()()215log 232f x x x =-++的单调递减区间为 .3.(23-24高三上·甘肃白银·阶段练习)已知()()312,1log ,1a a x a x f x x x ì-+£=í>î是R 上的单调递减函数,则实数a 的取值范围为.1.(山东·高考真题)函数2()log 31()xf x =+的值域为( )A .(0,)+∞B .[0,)+∞C .(1,)+∞D .[1,)+∞2.(22-23高三上·河北·阶段练习)已知函数()()2lg 65f x ax x =-+的值域为R ,那么a 的取值范围是 .3.(23-24高一下·上海闵行·阶段练习)函数()[]212log 2,2,6y x x x =+-Î的最大值为 .1.(2024高三·全国·专题练习)函数()[]ln ,1,e f x x x x =+Î的值域为.2.(2023高一·全国·课后作业)函数()212log 617y x x =-+的值域是 .3.(2024高三·全国·专题练习)已知函数()()2log 14f x x x =££,则函数()()()221g x f x f x éù=++ëû的值域为 .1.(2024高三·全国·专题练习)已知函数)2()log f x x =-是奇函数,则=a.2.(23-24高一上·安徽阜阳·期末)若函数()()(e e ln 1x x m n f x x -=-++(m ,n 为常数)在[]1,3上有最大值7,则函数()f x 在[]3,1--上( )A .有最小值5-B .有最大值5C .有最大值6D .有最小值7-3.(2024·江苏泰州·模拟预测)已知函数()21log 1f x a b x æö=-+ç÷+èø,若函数()f x 的图象关于点()1,0对称,则log a b =( )A .-3B .-2C .12-D .13-1.(22-23高二下·江西上饶·阶段练习)已知函数())3ln3f x x x =--+,[2023,2023]x Î-的最大值为M ,最小值为m ,则M m += .2.(2024·宁夏银川·二模)若()1ln 1f x a b x++-=是奇函数,则b = .1.(2024·天津·高考真题)若0.30.34.24.2 4.2log 0.2a b c -===,,,则a b c ,,的大小关系为( )A .a b c >>B .b a c >>C .c a b>>D .b c a>>2.(2022·天津·高考真题)已知0.72a =,0.713b æö=ç÷èø,21log 3c =,则( )A .a c b >>B .b c a >>C .a b c >>D .c a b>>3.(2022·全国·高考真题)设0.110.1e ,ln 0.99a b c ===-,则( )A .a b c <<B .c b a <<C .c<a<bD .a c b<<4.(2021·全国·高考真题)设2ln1.01a =,ln1.02b =,1c =.则( )A .a b c<<B .b<c<aC .b a c<<D .c<a<b1.(2021·天津·高考真题)设0.3212log 0.3,log 0.4,0.4a b c ===,则a ,b ,c 的大小关系为( )A .a b c <<B .c<a<bC .b<c<aD .a c b<<2.(2021·全国·高考真题)已知5log 2a =,8log 3b =,12c =,则下列判断正确的是( )A .c b a<<B .b a c<<C .a c b <<D .a b c<<3.(2024·全国·模拟预测)若log 4a =,14log 7b =,12log 6c =,则( )A .a b c >>B .b c a >>C .c b a>>D .a c b>>4.(23-24高三上·河北保定·阶段练习)设3log 4a =,0.8log 0.7b =,511.02c =,则a ,b ,c 的大小关系为( )A .a c b <<B .a b c <<C .b a c<<D .c<a<b5.(2024·山西·二模)设202310121011a æö=ç÷èø,202510131012b æö=ç÷èø,则下列关系正确的是( )A .2e a b <<B .2e b a <<C .2e a b <<D .2e b a <<1.(2022·全国·统考高考真题)已知910,1011,89m m m a b ==-=-,则( )A .0a b>>B .0a b >>C .0b a >>D .0b a>>1. 比较大小: 7log 4 与 9log 6?2.(2024·重庆·模拟预测)设2024log 2023a =,2023log 2022b =,0.2024log 0.2023c =,则( )A .c<a<b B .b<c<a C .b a c<<D .a b c<<一、单选题1.(2024·河北衡水·三模)已知集合{}()11,2,3,4,51lg 12A B x x ìü==-£-£íýîþ,,则A B =I ( )A .11510x x ìü££íýîþB .{2,3,4}C .{2,3}D .11310x x ìü££íýîþ2.(2024·贵州贵阳·三模)已知()()40.34444,log ,log log a b a c a ===,则( )A .a b c>>B .a c b>>C .b c a>>D .c a b>>3.(2024·天津滨海新·三模)已知2log 0.42a =,0.4log 2b =,031log 0.4c =.,则( )A .a b c>>B .b a c>>C .c a b>>D .a c b>>4.(2024·江苏宿迁·三模)已知函数()f x 为R 上的奇函数,且当0x >时,22()log 13f x x =-,则(f =( )A .59B .59-C .49D .49-5.(2024·河北沧州·模拟预测)直线4x =与函数()()12log (1),log a f x x a g x x =>=分别交于,A B 两点,且3AB =,则函数()()()h x f x g x =+的解析式为( )A .()2log h x x =-B .()4log h x x =-C .()2log h x x=D .()4log h x x=6.(2024·江苏盐城·模拟预测)函数cos y x =与lg y x =的图象的交点个数是( )A .2B .3C .4D .67.(2024·四川成都·模拟预测)已知定义在R 上的奇函数()f x 满足(3)(1)f x f x +=-,且当(2,0)x Î-时,2()log (3)f x x =+,则(2021)(2024)f f -=( )A .1B .1-C .21log 3-D .21log 3--二、填空题8.(2024·湖北·模拟预测)若函数()()()2ln e R x f x a x x =--Î为偶函数,则=a.9.(2024·吉林·模拟预测)若函数()ln(1)f x ax =+在(1,2)上单调递减,则实数a 的取值范围为.10.(2024·四川成都·三模)函数()ln 2m x f x x -=+的图象过原点,且()()e e 2x x g x f x m l l --=++,若()6g a =,则()g a -=.一、单选题1.(2024·黑龙江·模拟预测)设函数()ln ||f x x a =-在区间(2,3)上单调递减,则a 的取值范围是( )A .(,3]-∞B .(,2]-∞C .[2,)+∞D .[3,)+∞2.(2024·山东菏泽·模拟预测)已知函数()()()2e 1ln 2013mx f x m x+=->-是定义在区间(),a b 上的奇函数,则实数b 的取值范围是( )A .(]0,9B .(]0,3C .20,3æùçúèûD .10,3æùçúèû3.(2024·河北·三模)已知(),,1,a b c Î+∞,8ln ln10a a =,7ln ln11b b =,6ln ln12cc =,则下列大小关系正确的是( )A .c b a>>B .a b c>>C .b c a>>D .c a b>>4.(2024·广西贵港·模拟预测)已知函数41()log (41)2xf x x =+-,若(1)(21)-£+f a f a 成立,则实数a 的取值范围为( )A .(,2]-∞-B .(,2][0,)-∞-È+∞C .4[2,]3-D .4(,2][,)3-∞-+∞U 5.(2024·湖北黄冈·模拟预测)已知7ln 5a =,2cos 5b =,25c =,则,,a b c 的大小关系为( )A .a b c >>B .b c a >>C .c b a >>D .c a b>>6.(2024·陕西安康·模拟预测)已知函数()13,4443log (4)1,4a x x f x x x ì-£ïï-=íï->ïî是R 上的单调函数,则实数a 的取值范围是( )A .()0,1B.(C.(D .()1,37.(2024·河北衡水·模拟预测)设0,1a a >≠,若函数())23log 1a x a f x a x a æö-=+ç÷-èø是偶函数,则=a ( )A .12B .32C .2D .38.(2024·湖北黄冈·二模)已知a b c d ,,,分别满足下列关系:1715161731615,log 16,log ,tan 162a b c d ====,则a b c d ,,,的大小关系为( )A .a b c d<<<B .c a b d <<<C .a c b d <<<D .a d b c<<<二、多选题9.(2024·山东菏泽·模拟预测)已知函数()0,01ln ,1x f x x x <<ì=í³î,若0a b >>,且1³ab ,则下列关系式一定成立的为( )A .()()b f a bf a =B .()()()f ab f a f b =+C .()()a f f a f b b æö³-ç÷èøD .()()()ln2f a b f a f b +<++三、填空题10.(2024·陕西西安·模拟预测)函数1log 2x a y x a -=++(0a >且1a ≠)的图象恒过定点(),k b ,若m n b k +=-且0m >,0n >,则91m n +的最小值为 .1.(2024·全国·高考真题)已知1a >且8115log log 42a a -=-,则=a .2.(2024·全国·高考真题)设函数()()ln()f x x a xb =++,若()0f x ³,则22a b +的最小值为( )A .18B .14C .12D .13.(2023·北京·高考真题)已知函数2()4log x f x x =+,则12f æö=ç÷èø.4.(2023·全国·高考真题)(多选)噪声污染问题越来越受到重视.用声压级来度量声音的强弱,定义声压级020lgp p L p =´,其中常数()000p p >是听觉下限阈值,p 是实际声压.下表为不同声源的声压级:声源与声源的距离/m 声压级/dB 燃油汽车1060~90混合动力汽车105060:电动汽车1040已知在距离燃油汽车、混合动力汽车、电动汽车10m 处测得实际声压分别为123,,p p p ,则( ).A .12p p ³B .2310p p >C .30100p p =D .12100p p £5.(2022·天津·高考真题)化简()()48392log 3log 3log 2log 2++的值为( )A .1B .2C .4D .66.(2022·浙江·高考真题)已知825,log 3a b ==,则34a b -=( )A .25B .5C .259D .537.(2022·全国·高考真题)若()1ln 1f x a b x ++-=是奇函数,则=a ,b = .8.(2021·天津·高考真题)若2510a b ==,则11a b+=( )A .1-B .lg 7C .1D .7log 109.(2021·全国·高考真题)青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L 和小数记录表的数据V 满足5lg LV =+.已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据为( ) 1.259»)A .1.5B .1.2C .0.8D .0.610.(2020·全国·高考真题)已知55<84,134<85.设a=log53,b=log85,c=log138,则()A.a<b<c B.b<a<c C.b<c<a D.c<a<b。
2.2 换底公式[情境导入]计算器上,只有常用对数键“log ”和自然对数键“ln ”,要计算log a b 必须将它转换成常用对数或自然对数.[问题] 你知道如何转换吗?[新知初探]知识点 换底公式一般地,若a >0,b >0,c >0,且a ≠1,c ≠1,则log a b = .这个结论称为对数的换底公式.[点一点] 换底公式的推论[想一想]1.对数的换底公式用常用对数、自然对数表示是什么形式?2.你能用换底公式和对数的运算性质推导出结论log N n M m =mnlog N M 吗?[做一做]1.log 6432的值为( ) A .12B .2C .56D .652.若log 23=a ,则log 49=( ) A .a B .a C .2aD .a 23.若log 34·log 48·log 8m =log 416,则m =________.——研教材·典例精析——题型一 对数换底公式的应用 [例1] 计算:(1)log 29·log 34; (2)log 52×log 79log 5 13×log 734.[通性通法]利用换底公式求值的思想与注意点[跟踪训练]1.计算(log 32+log 23)2-log 32log 23-log 23log 32的值为( )A .log 26B .log 36C .2D .12.若log 2x ·log 34·log 59=8,则x =( ) A .8 B .25 C .16D .4题型二 用已知对数式表示求值问题[例2] 已知log 189=a ,18b =5,求log 3645.(用a ,b 表示)[母题探究]1.(变设问)若本例条件不变,如何求log 1845(用a ,b 表示)?2.(变条件)若将本例条件“log 189=a ,18b =5”改为“log 94=a ,9b =5”,则又如何求解呢?[通性通法]求解与对数有关的各种求值问题应注意如下三点 (1)利用对数的定义可以将对数式转化为指数式; (2)两边同时取对数是将指数式化成对数式的常用方法;(3)对数的换底公式在解题中起着重要的作用,能够将不同底的问题转化为同底问题,从而使我们能够利用对数的运算性质解题.[跟踪训练]设a =log 36,b =log 520,则log 215=( ) A.a +b -3(a -1)(b -1) B.a +b -2(a -1)(b -1) C.a +2b -3(a -1)(b -1)D.2a +b -3(a -1)(b -1)题型三 有附加条件的对数式求值问题[例3] (1)已知a ,b ,c 是不等于1的正数,且a x =b y =c z ,1x +1y +1z =0,则abc 的值为________;(2)已知5x =2y =(10)z ,且x ,y ,z ≠0,则z x +zy的值为________.[通性通法]与对数有关的带有附加条件的代数式求值问题,需要对已知条件和所求式子进行化简转化,原则是化为同底的对数,以便利用对数的运算性质.要整体把握对数式的结构特征,灵活运用指数式与对数式的互化.[跟踪训练]已知实数a ,b ,c ,d 满足5a =4,4b =3,3c =2,2d =5,则(abcd )2 022=________.[随堂检测]1.式子log 32·log 227的值为( ) A .2 B .3 C .13D .-32.在1log b a ,lg alg b ,log b a ,log a n b n (a ,b 均为不等于1的正数)中,与log a b 一定相等的有( ) A .4个 B .3个 C .2个D .1个3.计算:1+lg 2·lg 5-lg 2·lg 50-log 35·log 259·lg 5=( ) A .1 B .0 C .2D .44.若实数a ,b ,c 满足25a =404b =2 020c =2 019,则下列式子正确的是( ) A .1a +2b =2cB .2a +2b =1cC .1a +1b =2cD .2a +1b =2c5.方程log 2x +1log (x +1)2=1的解是________.参考答案——读教材·知识梳理——[新知初探]知识点 换底公式 log c blog c a[想一想]1.提示:log a b =lg b lg a ,log a b =ln bln a.2.提示:log N nM m=lg M m lg N n =m lg M n lg N =m n ·lg M lg N =mn log NM .[做一做]1.【答案】C【解析】log 6432=lg 32lg 64=lg 25lg 26=5lg 26lg 2=56.2.【答案】B【解析】log 49=lg 9lg 4=2lg 32lg 2=log 23=a .故选B.3.【答案】9【解析】利用换底公式,得lg 4lg 3·lg 8lg 4·lg mlg 8=2, ∴lg m =2lg 3=lg 9,于是m =9.——研教材·典例精析——题型一 对数换底公式的应用 [例1] 解:(1)由换底公式可得, log 29·log 34=lg 9lg 2·lg 4lg 3=2lg 3lg 2·2lg 2lg 3=4.(2)原式=log 52log 513×log 79log 734=log 132×log 349=lg 2lg 13×lg 9lg 413=12lg 2-lg 3×2lg 323lg 2=-32. [跟踪训练]1.【答案】C【解析】原式=(log 32)2+2log 32×log 23+(log 23)2-(log 32)2-(log 23)2=2log 32×log 23 =2×lg 2lg 3×lg 3lg 2=2.2.【答案】B【解析】∵log 2x ·log 34×log 59=lg x lg 2·lg 4lg 3·lg 9lg 5=lg x lg 2×2lg 2lg 3×2lg 3lg 5=8,∴lg x =2lg 5=lg 25,∴x =25. 题型二 用已知对数式表示求值问题 [例2] 解:因为18b =5,所以b =log 185. 所以log 3645=log 1845log 1836=log 18(5×9)log 18(2×18)=log 185+log 189log 182+log 1818=a +b 1+log 182 =a +b 1+log 18189=a +b 2-log 189=a +b 2-a. [母题探究]1.解:因为18b =5,所以log 185=b ,所以log 1845=log 189+log 185=a +b . 2.解:因为9b =5,所以log 95=b . 所以log 3645=log 945log 936=log 9(5×9)log 9(4×9)=log 95+log 99log 94+log 99=b +1a +1. [跟踪训练]【答案】D【解析】∵a =log 36=log 26log 23=1+log 23log 23,∴log 23=1a -1.∵b =log 520=log 220log 25=2+log 25log 25,∴log 25=2b -1.∴log 215=log 23+log 25=1a -1+2b -1=2a +b -3(a -1)(b -1).题型三 有附加条件的对数式求值问题 [例3] 【答案】(1)1 (2)2【解析】(1)法一:设a x =b y =c z =t ,则x =log a t ,y =log b t ,z =log c t ,∴1x +1y +1z =1log a t +1log b t +1log c t =log t a +log t b +log t c =log t (abc )=0,∴abc =t 0=1. 法二:∵a ,b ,c 是不等于1的正数,且a x =b y =c z ,∴令a x =b y =c z =t >0,∴x =lg t lg a ,y =lg t lg b ,z =lg t lg c, ∴1x +1y +1z =lg a lg t +lg b lg t +lg c lg t =lg a +lg b +lg clg t . ∵1x +1y +1z=0,且lg t ≠0, ∴lg a +lg b +lg c =lg(abc )=0,∴abc =1.(2)令5x =2y =(10)z =k ,则x =log 5k ,y =log 2k ,12z =lg k ,z =2lg k ,∴z x +z y =2lg k log 5k +2lg k log 2k=2lg k (log k 5+log k 2)=2lg k ·log k 10=2·log 10k ·log k 10=2. [跟踪训练]【答案】1【解析】将5a =4,4b =3,3c =2,2d =5转化为对数式, 得a =log 54=ln 4ln 5,b =ln 3ln 4,c =ln 2ln 3,d =ln 5ln 2,所以(abcd )2 022=⎝⎛⎭⎫ln 4ln 5×ln 3ln 4×ln 2ln 3×ln 5ln 22 022=12 022=1.[随堂检测]1.【答案】B【解析】log 32·log 227=lg 2lg 3·lg 27lg 2=lg 27lg 3=log 327=3,故选B.2.【答案】C【解析】1log b a =log a b ,lg a lg b =log b a ,log b a =log b a ,log a n b n =log a b ,故选C.3.【答案】B【解析】原式=1+lg 2·lg 5-lg 2(1+lg 5)-lg 5 lg 3·2lg 32lg 5·lg 5=1+lg 2·lg 5-lg 2-lg 2·lg 5-lg 5=1-(lg 2+lg 5)=1-lg 10=1-1=0. 4.【答案】A【解析】由已知,得52a =404b =2 020c =2 019,得2a =log 52 019,b =log 4042 019, c =log 2 0202 019,所以12a =log 2 0195,1b =log 2 019404,1c =log 2 0192 020,而5×404=2 020,所以12a +1b =1c ,即1a +2b =2c ,故选A.5.【答案】1【解析】原方程可变为log 2x +log 2(x +1)=1,即log 2[x (x +1)]=1, ∴x (x +1)=2,解得x =1或x =-2.又⎩⎪⎨⎪⎧x >0,x +1>0,x +1≠1.即x >0,∴x =1.。
高一数学同步训练 第1页(共1页)对数和对数函数知识梳理1.对数及其运算性质2.对数函数的图像和性质例题1.使对数log a (-2a +1)有意义的a 的取值范围为2.求值: ⑴8.1log 7log37log 235log 5555-+-⑵421938432log)2log 2)(log 3log3(log -++⑶245lg8lg344932lg21+-⑷4log]18log 2log )2log 1[(66626÷+-3.已知518,9log18==ba ,试用b a ,表示_____5log 36=4.解方程⑴()()13lg 264lg 2=---+x x x ⑵04lg 32lg 3=+--x x5.若log a53<1,则a 的取值范围是 .6.比较log 621、log 32、log 2530、log 56的大小.7.函数2)1ln()(x e x f x-+=的奇偶性为8.偶函数||log)(b x x f a-=在)0,(-∞上单调递增,则)2(__)1(++b f a f9.若0log2<-x x a在⎪⎭⎫⎝⎛21,0上恒成立,则a 的取值范围是10.若函数log 2(kx 2+4kx +3)的定义域为R ,则k 的取值范围是 巩固练习1.给出下列式子①5log 512=12;②πlog π3-1=13;③2log 2(-3)=-3;④xlog x 5=5,其中不正确的是( )C2.已知log 3(log 4(log 5a))=log 4(log 3(log 5b))=0,求ab 的值.53.求方程9x -6·3x -7=0的解. x =log 374.如果lgx =lga +3lgb -5lgc ,那么( )CA .x =a +3b -cB .cab x 53=C .53cab x =D .x =a +b 3-c 35.下列函数图象正确的是( )A B C D 6.下列关系式中,成立的是( )AA .10log514log3103>⎪⎭⎫⎝⎛>B . 4log5110log 331>⎪⎭⎫⎝⎛>C . 03135110log 4log ⎪⎭⎫⎝⎛>>D .0331514log10log ⎪⎭⎫⎝⎛>>7.函数)2(log 221x y -=的定义域是 ,值域是 . (][)2,112 --, [)+∞,0;8.如果31log2log)1()1(22++++<a a a a ,则a 的取值范围是(-1, 0)9.函数y=)124(log221-+x x 的单调递增区间是 . )2,(--∞10.设x ,y ,z ∈R +,且3x =4y =6z .(1)求证:yx z 2111=-; (2)比较3x ,4y ,6z 的大小. 3x <4y <6z .11.设函数)1lg()(2++=x x x f .(1)确定函数f (x )的定义域;R (2)判断函数f (x )的奇偶性;奇函数(3)证明函数f (x )在其定义域上是单调增函数;。
4.2.2 对数运算法则【课程标准】理解对数的概念和运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数.新知初探·自主学习——突出基础性教材要点知识点一对数的运算性质若a>0,且a≠1,M>0,N>0,那么:(1)log a(MN)=____________,=____________,(2)log a MN(3)log a M n=____________(n∈R).状元随笔对数的这三条运算性质,都要注意只有当式子中所有的对数都有意义时,等式才成立 . 例如,log2[(-3)·(-5)]=log2(-3)+log2(-5)是错误的.知识点二对数换底公式log a b=____________(a>0,a≠1,c>0,c≠1,b>0).特别地:log a b·log b a=________(a>0,a≠1,b>0,b≠1).状元随笔对数换底公式常见的两种变形=log b a ,此公式表示真数与底数互换,所得的对数值与(1)log a b·log b a=1,即1log a b原对数值互为倒数 .log N M,此公式表示底数变为原来的n次方,真数变为原来的m次方,所(2)log N n M m=mn得的对数值等于原来对数值的mn 倍.基础自测1.下列等式成立的是( ) A .log 2(8-4)=log 28-log 24 B .log 28log 24=log 284C .log 28=3log 22D .log 2(8+4)=log 28+log 24 2.log 49log 43的值为( )A .12B .2C .32D .923.2log 510+log 50.25=( ) A .0 B .1C .2D .44.已知ln2=a ,ln3=b ,那么log 32用含a ,b 的代数式表示为________.课堂探究·素养提升——强化创新性题型1 用已知对数表示其他对数[经典例题] 例1 用lg x ,lg y ,lg z 表示下列各式: (1)lg (xyz ); (2)lg xy 2z;(3)lg xy 3z; (4)lg√xy 2z. 方法归纳用已知对数的值表示所求对数的值,要注意以下几点: (1)增强目标意识,合理地把所求向已知条件靠拢,巧妙代换; (2)巧用换底公式,灵活“换底”是解决这种类型问题的关键; (3)注意一些派生公式的使用.跟踪训练1 如果lg2=m ,lg3=n ,则lg 12lg 15等于( ) A .2m+n 1+m+n B .m+2n1+m+n C .2m+n1−m+nD .m+2n1−m+n题型2 对数运算性质的应用[经典例题] 逆用对数的运算法则合并求值.例2 (1)计算lg2+lg5+2log 510-log 520的值为( ) A .21 B .20 C .2 D .1(2)求值:log 2√748+log 212-12log 242.方法归纳(1)对于同底的对数的化简,常用方法是:①“收”,将同底的两对数的和(差)收成积(商)的对数; ②“拆”,将积(商)的对数拆成对数的和(差).(2)对数式的化简、求值一般是正用或逆用公式,要养成正用、逆用、变形应用公式的习惯,lg2+lg5=1在计算对数值时会经常用到,同时注意各部分变形要化到最简形式.跟踪训练2 (1)计算:lg 52+2lg2-(12)−1=________. 利用对数运算性质化简求值. (2)求下列各式的值. ①log 53+log 513;②(lg5)2+lg2·lg50;③lg25+23lg8+lg5·lg20+(lg2)2.题型3 对数换底公式的应用[经典例题]例3 (1)已知2x=3y=a ,1x+1y=2,则a 的值为( )A .36B .6C .2√6D .√6(2)计算:log 89·log 2732.(3)已知log 189=a ,18b=5,用a ,b 表示log 3645.状元随笔(1)利用换底公式化简.(2)利用对数运算性质化简求值.方法归纳(1)换底公式中的底可由条件决定,也可换为常用对数的底,一般来讲,对数的底越小越便于化简,如a n为底的换为a为底.(2)换底公式的派生公式:log a b=log a c·log c b;log a n b m=mnlog a b.跟踪训练3 (1)式子log916·log881的值为( )A.18 B.118C.83D.38(2)已知log62=p,log65=q,则lg5=________;(用p,q表示)(3)①已知log147=a,14b=5,用a,b表示log3528;②设3x=4y=36,求2x +1y的值.状元随笔(1)方法一对数式化为指数式,再利用对数运算性质求值.方法二先求出a、b,再利用换底公式化简求值.(2)利用换底公式化简求值.4.2.2 对数运算法则新知初探·自主学习知识点一(1)log a M+log a N(2)log a M-log a N(3)n log a M知识点二log c b log c a1[基础自测]1.解析:由对数的运算性质易知C 正确. 答案:C2.解析:原式=log 39=2. 答案:B3.解析:原式=log 5102+log 5 =log 5(102×0.25)=log 525=2. 答案:C4.解析:log 32=ln 2ln 3=ab . 答案:ab 课堂探究·素养提升例1 【解析】 (1)lg (xyz )=lg x +lg y +lg z . (2)lg xy 2z=lg (xy 2)-lg z =lg x +2lg y -lg z .(3)lg 3√z=lg (xy 3)-lg √z =lg x +3lg y -12lg z . (4)lg√x y 2z =lg √x -lg (y 2z )=12lg x -2lg y -lg z . 跟踪训练1 解析:因为lg2=m ,lg3=n , 所以lg 12lg 15=2lg 2+lg 3lg 3+lg 5=2m+nn+1−lg 2=2m+nn+1−m . 答案:C例2 【解析】 (1)lg2+lg5+2log 510-log 520 =1+log 510020=1+1=2.(2)原式=12(log 27-log 248)+log 23+2log 22-12(log 22+log 23+log 27)=12log 27-12log 23-12log 216+12log 23+2-12log 27-12=-12.【答案】 (1)C (2)见解析跟踪训练2 解析:(1)lg 52+2lg2-(12)−1=lg5-lg2+2lg2-2=(lg5+lg2)-2=1-2=-1.(2)①log 53+log 513=log 5(3×13)=log 51=0. ②(lg5)2+lg2·lg50 =(lg5)2+(1+lg5)lg2 =(lg5)2+lg2+lg2·lg5 =lg5(lg5+lg2)+lg2 =lg5+lg2=lg10=1.③原式=lg25+lg 823+lg 102·lg (10×2)+(lg2)2=lg25+lg4+(lg10-lg2)(lg10+lg2)+(lg2)2=lg100+(lg10)2-(lg2)2+(lg2)2=2+1=3. 答案:(1)-1 (2)见解析例3 【解析】 (1)因为2x =3y=a , 所以x =log 2a ,y =log 3a , 所以1x+1y=1log 2a+1log 3a=log a 2+log a 3=log a 6=2,所以a 2=6,解得a =±√6. 又a >0,所以a =√6. (2)log 89·log 2732=lg 9lg 8·lg 32lg 27=lg 32lg 23·lg 25lg 33=2lg 33lg 2·5lg 23lg 3=109.(3)方法一 因为log 189=a ,所以9=18a. 又5=18b,所以log 3645=log 2×18(5×9)=log 2×1818a +b=(a +b )·log 2×1818.又因为log 2×1818=1log 18(18×2)=11+log 182=11+log 18189=11+1−log 189=12−a ,所以原式=a+b2−a. 方法二 ∵18b=5,∴log 185=b .∴log 3645=log 1845log 1836=log 18(5×9)log 18(4×9)=log185+log 1892log182+log 189=a+b2log 18189+log 189=a+b2−2log189+log 189=a+b2−a. 【答案】 (1)D (2)(3)见解析跟踪训练3 解析:(1)原式=log 3224log 2334=2log 32·43log 23=83.(2)lg5=log 65log 610=qlog62+log 65=qp+q. (3)①∵log 147=a ,14b=5,∴b =log 145. ∴log 3528=log 1428log 1435=log 141427log14(5×7)=log 14142−log 147log 145+log 147=2−aa+b .②∵3x=36,4y=36, ∴x =log 336,y =log 436, ∴1x =1log336=1log 3636log 363=log 363, 1y =1log436=1log 3636log 364=log 364, ∴2x+1y=2log 363+log 364=log 36(9×4)=1.答案:(1)C (2)qp+q (3)见解析。
学案8 对数与对数函数导学目标: 1.理解对数的概念及其运算性质,知道用换底公式能将一般对数转化为自然对数或常用对数,了解对数在简化运算中的作用.2.理解对数函数的概念,理解对数函数的单调性与函数图象通过的特殊点,知道指数函数y =a x与对数函数y =log a x 互为反函数(a>0,a ≠1),体会对数函数是一类重要的函数模型.自主梳理1.对数的定义如果________________,那么数x 叫做以a 为底N 的对数,记作__________,其中____叫做对数的底数,______叫做真数.2.对数的性质与运算法则 (1)对数的性质(a>0且a ≠1)①Na a log =____; ②1log a =____;③N a a log =____;④a a log =____.(2)对数的重要公式①换底公式:log b N =________________(a ,b 均大于零且不等于1); ②b a log =ab log 1,推广d c b c b a log log log ∙∙=________.(3)对数的运算法则如果a>0且a ≠1,M>0,N>0,那么①log a (MN)=___________________________;②log a MN=______________________;③log a M n =__________(n ∈R );④na M m log =n mlog a M .34.反函数指数函数y =a x 与对数函数____________互为反函数,它们的图象关于直线______对称. 自我检测 1.(2010·四川)2log 510+log 50.25的值为 ( ) A .0 B .1 C .2 D .42.(2010·辽宁)设2a =5b =m ,且1a +1b=2,则m 的值为 ( )A.10 B .10 C .20 D .1003.(2009·辽宁)已知函数f (x )满足:当x ≥4时,f (x )=⎝⎛⎭⎫12x;当x <4时,f (x )=f (x +1).则f (2+log 23)的值为 ( )A.124B.112C.18D.384.(2010·安庆模拟)定义在R 上的偶函数f (x )在[0,+∞)上递增,f (13)=0,则满足)(log 81x f >0的x 的取值范围是( ) A .(0,+∞)B .(0,12)∪(2,+∞)C .(0,18)∪(12,2)D .(0,12)5.(2011·台州期末)已知0<a <b <1<c ,m =log a c ,n =log b c ,则m 与n 的大小关系是______.探究点一 对数式的化简与求值 例1 计算:(1))32(log 32--;(2)12lg 3249-43lg 8+lg 245; (3)已知2lg x -y2=lg x +lg y ,求yx )223(log -.变式迁移1 计算:(1)log 2748+log 212-12log 242-1;(2)(lg 2)2+lg 2·lg 50+lg 25.探究点二 含对数式的大小比较 例2 (1)比较下列各组数的大小.①log 323与log 565;②log 1.10.7与log 1.20.7.(2)已知log 12b <log 12a <log 12c ,比较2b,2a,2c 的大小关系.变式迁移2 (1)(2009·全国Ⅱ)设a =log 3π,b =log 23,c =log 32,则 ( )A .a >b >cB .a >c >bC .b >a >cD .b >c >a(2)设a ,b ,c 均为正数,且2a =a 21log ,(12)b =b 21log ,(12)c =log 2c ,则( )A .a <b <cB .c <b <a0C .c <a <bD .b <a <c探究点三 对数函数的图象与性质例3 已知f (x )=log a x (a >0且a ≠1),如果对于任意的x ∈[13,2]都有|f (x )|≤1成立,试求a 的取值范围.变式迁移3 (2010·全国Ⅰ)已知函数f (x )=|lg x |,若0<a <b ,且f (a )=f (b ),则a +2b 的取值范围是 ( )A .(22,+∞)B .[22,+∞)C .(3,+∞)D .[3,+∞)分类讨论思想的应用 例 (12分)已知函数f (x )=log a (1-a x )(a >0,a ≠1). (1)解关于x 的不等式:log a (1-a x )>f (1);(2)设A (x 1,y 1),B (x 2,y 2)(x 1≠x 2)是f (x )图象上的两点,求证:直线AB 的斜率小于0. 【答题模板】(1)解 ∵f (x )=log a (1-a x ),∴f (1)=log a (1-a ).∴1-a >0.∴0<a <1. ∴不等式可化为log a (1-a x )>log a (1-a ).∴⎩⎪⎨⎪⎧ 1-a x >0,1-a x<1-a .,即⎩⎪⎨⎪⎧a x<1,a x >a .∴0<x <1. ∴不等式的解集为(0,1).[4分](2)证明 设x 1<x 2,则f (x 2)-f (x 1)=)1(log 2x a a --)1(log 1x a a -=1211log x x a aa --. ∵1-a x >0,∴a x <1.∴a >1时,f (x )的定义域为(-∞,0);[6分] 0<a <1时,f (x )的定义域为(0,+∞).当0<a <1时,∵x 2>x 1>0,∴2x a <1xa .∴1211x x a a -->1.∴1211log x x a a a --<0. ∴f (x 2)<f (x 1),即y 2<y 1.同理可证,当a >1时,也有y 2<y 1.[10分]综上:y 2<y 1,即y 2-y 1<0.∴k AB =y 2-y 1x 2-x 1<0.∴直线AB 的斜率小于0.[12分] 【突破思维障碍】解决含参数的对数问题,不可忽视对底数a 的分类讨论,即a >1或0<a <1,其次要看定义域,如果将函数变换,务必保证等价性.1.求解与对数函数有关的复合函数的单调性的步骤: (1)确定定义域;(2)弄清函数是由哪些基本初等函数复合而成的,将复合函数分解成基本初等函数y =f (u ),u =g (x );(3)分别确定这两个函数的单调区间;(4)若这两个函数同增或同减,则y =f (g (x ))为增函数,若一增一减,则y =f (g (x ))为减函数,即“同增异减”.2.用对数函数的性质比较大小 (1)同底数的两个对数值的大小比较 例如,比较log a f (x )与log a g (x )的大小, 其中a >0且a ≠1.①若a >1,则log a f (x )>log a g (x )⇔f (x )>g (x )>0. ②若0<a <1,则log a f (x )>log a g (x )⇔0<f (x )<g (x ). (2)同真数的对数值大小关系如图:图象在x 轴上方的部分自左向右底逐渐增大,即0<c <d <1<a <b . 3.常见对数方程式或对数不等式的解法(1)形如log a f (x )=log a g (x )(a >0且a ≠1)等价于f (x )=g (x ),但要注意验根.对于log a f (x )>log a g (x )等价于0<a <1时,⎪⎩⎪⎨⎧<>>);()(,0)(,0)(x g x f x g x f a >1时,⎪⎩⎪⎨⎧>>>).()(,0)(,0)(x g x f x g x f(2)形如F (log a x )=0、F (log a x )>0或F (log a x )<0,一般采用换元法求解.(满分:75分)一、选择题(每小题5分,共25分)1.(2010·北京市丰台区高三一调)设M ={y |y =(12)x ,x ∈[0,+∞)},N ={y |y =log 2x ,x∈(0,1]},则集合M ∪N 等于 ( )A .(-∞,0)∪[1,+∞)B .[0,+∞)C .(-∞,1]D .(-∞,0)∪(0,1)2.(2010·全国Ⅰ)设a =log 32,b =ln 2,c =5-12,则 ( )A .a <b <cB .b <c <aC .c <a <bD .c <b <a3.(2010·天津)若函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,log 12(-x ),x <0,若f (a )>f (-a ),则实数a 的取值范围是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1) 4.(2011·济南模拟)设函数f (x )定义在实数集上,f (2-x )=f (x ),且当x ≥1时,f (x )=ln x ,则有 ( )A .f (13)<f (2)<f (12)B .f (12)<f (2)<f (13)C .f (12)<f (13)<f (2)D .f (2)<f (12)<f (13)5.(2011·青岛模拟)已知函数f (x )=a x +log a x (a >0,a ≠1)在[1,2]上的最大值与最小值之和为log a 2+6,则a 的值为 ( )A.1B.1 C .2 D .46.2lg 5+23lg 8+lg 5·lg 20+lg 22=________.7.(2011·湖南师大附中检测)已知函数f (x )=lg ax +a -2x在区间[1,2]上是增函数,则实数a 的取值范围是____________.8.已知f (3x )=4x log 23+233,则f (2)+f (4)+f (8)+…+f (28)=________. 三、解答题(共38分)9.(12分)已知f (x )=2+log 3x ,x ∈[1,9],求y =[f (x )]2+f (x 2)的最大值及y 取最大值时x 的值.10.(12分)(2011·北京东城1月检测)已知函数f (x )=log a (x +1)-log a (1-x ),a >0且a ≠1.(1)求f (x )的定义域;(2)判断f (x )的奇偶性并予以证明;(3)若a >1时,求使f (x )>0的x 的解集.11.(14分)(2011·郑州模拟)已知函数f (x )=lg(a x -b x )(a >1>b >0). (1)求y =f (x )的定义域;(2)在函数y =f (x )的图象上是否存在不同的两点,使得过这两点的直线平行于x 轴; (3)当a ,b 满足什么条件时,f (x )在(1,+∞)上恒取正值.答案 自主梳理1.a x =N(a >0,且a ≠1) x =log a N a N 2.(1)①N ②0 ③N ④1 (2)①log a Nlog a b②log a d (3)①log a M +log a N ②log a M -log a N ③nlog a M 3.(1)(0,+∞) (2)R (3)(1,0) 1 0 (4)y >0 y <0 (5)y <0 y >0 (6)增 (7)减 4.y =log a x y =x自我检测 1.C 2.A 3.A [因为3<2+log 23<4,故f (2+log 23)=f (2+log 23+1)=f (3+log 23).又3+log 23>4,故f (3+log 23)=⎝⎛⎭⎫123+log23=⎝⎛⎭⎫123·13=124.] 4.B [由题意可得:f (x )=f (-x )=f (|x |),f (|log 18x |)>f (13),f (x )在[0,+∞)上递增,于是|log18x |>13,解得x 的取值范围是(0,12)∪(2,+∞).] 5.m >n解析 ∵m <0,n <0,∵mn=log a c ·log c b =log a b <log a a =1,∴m >n .课堂活动区例1 解题导引 在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后再运用对数运算法则化简合并,在运算中要注意化同底和指数与对数互化.解 (1)方法一 利用对数定义求值:设)32(log )32(-+=x ,则(2+3)x =2-3=12+3=(2+3)-1,∴x =-1.方法二 利用对数的运算性质求解:)32(log )32(-+=)32(1log )32(++=1)32()32(log -++=-1.(2)原式=12(lg 32-lg 49)-43lg 812+12lg 245=12(5lg 2-2lg 7)-43×32lg 2+12(2lg 7+lg 5) =52lg 2-lg 7-2lg 2+lg 7+12lg 5 =12lg 2+12lg 5 =12lg (2×5)=12lg 10=12. (3)由已知得lg(x -y 2)2=lg xy ,∴(x -y 2)2=xy ,即x 2-6xy +y 2=0.∴(x y )2-6(x y )+1=0.∴xy =3±2 2. ∵⎩⎪⎨⎪⎧x -y >0,x >0,y >0,∴x y >1,∴xy=3+22,∴log (3-22)xy =log (3-22)(3+22) =log (3-22)13-22=-1.变式迁移1 解 (1)原式=log 2748+log 212-log 242-log 22=log 27×1248×42×2=log 2122=log 22-32=-32.(2)原式=lg 2·(lg 2+lg 50)+lg 25=21g 2+lg 25=lg 100=2.例2 解题导引 比较对数式的大小或证明等式问题是对数中常见题型,解决此类问题的方法很多,①当底数相同时,可直接利用对数函数的单调性比较;②若底数不同,真数相同,可转化为同底(利用换底公式)或利用对数函数图象,数形结合解得;③若不同底,不同真数,则可利用中间量进行比较.解 (1)①∵log 323<log 31=0,而log 565>log 51=0,∴log 323<log 565.②方法一 ∵0<0.7<1,1.1<1.2, ∴0>log 0.71.1>log 0.71.2.∴1log 0.71.1<1log 0.71.2, 由换底公式可得log 1.10.7<log 1.20.7.方法二 作出y =log 1.1x 与y =log 1.2x 的图象,如图所示,两图象与x =0.7相交可知log 1.10.7<log 1.20.7.(2)∵y =log 12x 为减函数,且log 12b <log 12a <log 12c ,∴b >a >c .而y =2x是增函数,∴2b >2a >2c .变式迁移2 (1)A [a =log 3π>1,b =12log 23,则12<b <1,c =12log 32<12,∴a >b >c .](2)A [∵a ,b ,c 均为正,∴log 12a =2a >1,log 12b =(12)b ∈(0,1),log 2c =(12)c ∈(0,1).∴0<a <12,12<b <1,1<c <2.故a <b <c .]例3 解题导引 本题属于函数恒成立问题,即对于x ∈[13,2]时,|f (x )|恒小于等于1,恒成立问题一般有两种思路:一是利用图象转化为最值问题;二是利用单调性转化为最值问题.由于本题底数a 为参数,需对a 分类讨论.解 ∵f (x )=log a x ,则y =|f (x )|的图象如右图.由图示,可使x ∈[13,2]时恒有|f (x )|≤1,只需|f (13)|≤1,即-1≤log a 13≤1,即log a a -1≤log a 13≤log a a ,亦当a >1时,得a -1≤13≤a ,即a ≥3;当0<a <1时,得a -1≥13≥a ,得0<a ≤13.综上所述,a 的取值范围是(0,13]∪[3,+∞).变式迁移3 C[画出函数f (x )=|lg x |的图象如图所示.∵0<a <b ,f (a )=f (b ),∴0<a <1,b >1,∴lg a <0,lg b >0.由f (a )=f (b ),∴-lg a =lg b ,ab =1.∴b =1a ,∴a +2b =a +2a,又0<a <1,函数t =a +2a在(0,1)上是减函数,∴a +2a >1+21=3,即a +2b >3.]课后练习区1.C [∵x ≥0,∴y =(12)x ∈(0,1],∴M =(0,1].当0<x ≤1时,y =log 2x ∈(-∞,0],即N =(-∞,0]. ∴M ∪N =(-∞,1].]2.C [∵1a =log 23>1,1b=log 2e>1,log 23>log 2e.∴1a >1b>1,∴0<a <b <1. ∵a =log 32>log 33=12,∴a >12.b =ln 2>ln e =12,∴b >12.c =5-12=15<12,∴c <a <b .]3.C [①当a >0时,f (a )=log 2a ,f (-a )=a 21log ,f (a )>f (-a ),即log 2a >a 21log =log 21a,∴a >1a,解得a >1.②当a <0时,f (a )=)(log 21a -,f (-a )=log 2(-a ),f (a )>f (-a ),即)(log 21a ->log 2(-a )=a-1log 21, ∴-a <1-a,解得-1<a <0,由①②得-1<a <0或a >1.]4.C [由f (2-x )=f (x )知f (x )的图象关于直线x =2-x +x2=1对称,又当x ≥1时,f (x )=ln x ,所以离对称轴x =1距离大的x 的函数值大,∵|2-1|>|13-1|>|12-1|,∴f (12)<f (13)<f (2).]5.C [当x >0时,函数a x ,log a x 的单调性相同,因此函数f (x )=a x +log a x 是(0,+∞)上的单调函数,f (x )在[1,2]上的最大值与最小值之和为f (1)+f (2)=a 2+a +log a 2,由题意得a 2+a +log a 2=6+log a 2.即a 2+a -6=0,解得a =2或a =-3(舍去).]6.3 7.(1,2)解析 因为f (x )=lg ⎝⎛⎭⎫a +a -2x 在区间[1,2]上是增函数,所以g (x )=a +a -2x 在区间[1,2]上是增函数,且g (1)>0,于是a -2<0,且2a -2>0,即1<a <2.8.2 008解析 令3x =t ,f (t )=4log 2t +233,∴f (2)+f (4)+f (8)+…+f (28)=4×(1+2+…+8)+8×233=4×36+1 864=2 008. 9.解 ∵f (x )=2+log 3x ,∴y =[f (x )]2+f (x 2)=(2+log 3x )2+2+log 3x 2=log 23x +6log 3x +6=(log 3x +3)2-3.……(4分)∵函数f (x )的定义域为[1,9],∴要使函数y =[f (x )]2+f (x 2)有意义,必须⎩⎪⎨⎪⎧1≤x 2≤9,1≤x ≤9,∴1≤x ≤3,∴0≤log 3x ≤1,(8分)∴6≤(log 3x +3)2-3≤13.当log 3x =1,即x =3时,y max =13.∴当x =3时,函数y =[f (x )]2+f (x 2)取最大值13.………………………………………(12分)10.解 (1)f (x )=log a (x +1)-log a (1-x ),则⎩⎪⎨⎪⎧x +1>0,1-x >0,解得-1<x <1.故所求函数f (x )的定义域为{x |-1<x <1}.………………………………………………(4分) (2)由(1)知f (x )的定义域为{x |-1<x <1}, 且f (-x )=log a (-x +1)-log a (1+x ) =-[log a (x +1)-log a (1-x )]=-f (x ),故f (x )为奇函数.………………………………………………………………(8分)(3)因为当a >1时,f (x )在定义域{x |-1<x <1}内是增函数,所以f (x )>0⇔x +11-x>1.解得0<x <1.所以使f (x )>0的x 的解集是{x |0<x <1}.…………………………………(12分)11.解 (1)由a x -b x >0,得(a b )x >1,且a >1>b >0,得ab>1,所以x >0,即f (x )的定义域为(0,+∞).…………………………………………………………………………………………(4分)(2)任取x 1>x 2>0,a >1>b >0,则1xa >2xa >0,21x x b b<,所以11x x b a ->22x x b a ->0,即)lg(11xxb a ->)lg(22xxb a -.故f (x 1)>f (x 2). 所以f (x )在(0,+∞)上为增函数.………………………………………………………(8分) 假设函数y =f (x )的图象上存在不同的两点A (x 1,y 1)、B (x 2,y 2),使直线平行于x 轴,则x 1≠x 2,y 1=y 2,这与f (x )是增函数矛盾.故函数y =f (x )的图象上不存在不同的两点使过两点的直线平行于x 轴.…………(10分) (3)因为f (x )是增函数,所以当x ∈(1,+∞)时,f (x )>f (1).这样只需f (1)=lg(a -b )≥0,即当a ≥b +1时,f (x )在(1,+∞)上恒取正值.……………………………………………(14分)。