第14章控制系统的频域分析与校正PPT课件
- 格式:ppt
- 大小:1.35 MB
- 文档页数:85
控制系统频域分析控制系统频域分析是对控制系统的频率特性进行研究和评估的方法。
它通过在频域上分析信号的幅值和相位响应,帮助我们了解系统的稳定性、性能以及对不同频率输入的响应。
一、引言控制系统在现代工程中起着至关重要的作用。
通过对系统的频域特性进行分析,我们可以更好地理解和优化控制系统的性能。
二、频域分析的基本概念1. 频率响应控制系统的频率响应描述了系统对不同频率输入信号的响应能力。
通过频率响应,我们可以了解系统在不同频率下的增益和相位特性。
2. 幅频特性幅频特性是指系统输出信号的幅度与输入信号的频率之间的关系。
通常用幅度曲线图来表示,可以帮助分析系统的放大或衰减程度。
3. 相频特性相频特性描述了系统输出信号的相位与输入信号的频率之间的关系。
相位曲线图可以帮助评估系统的相位延迟或提前程度。
三、常见的频域分析方法1. 频率响应函数频率响应函数是一个复数函数,可以描述系统的幅频和相频特性。
常见的频率响应函数包括传递函数和振荡函数等。
2. Bode图Bode图是一种常用的频域分析工具,可以将系统的幅频和相频特性直观地表示出来。
它以频率为横轴,幅度或相位为纵轴,通过线性坐标或对数坐标来绘制。
3. Nyquist图Nyquist图是一种使用复平面来表示频率响应的图形。
它可以帮助我们判断系统的稳定性,并评估系统的相位边界和幅度边界。
四、频域分析的应用频域分析在控制系统设计和优化中有着广泛的应用。
以下是几个常见的应用领域:1. 系统稳定性分析通过频域分析,我们可以判断系统是否稳定,以及如何设计控制器来维持或改善系统的稳定性。
2. 性能评估频域分析可以帮助我们评估系统的性能,比如响应时间、超调量等。
通过调整系统的频率响应,我们可以提高系统的性能。
3. 滤波器设计频域分析在滤波器设计中起着重要的作用。
通过分析系统的频率响应,我们可以设计出满足特定要求的滤波器。
4. 控制系统建模频域分析可以帮助我们建立控制系统的数学模型,从而更好地理解和优化系统的性能。
第五章 控制系统的频域分析一、频域特性的概念线性定常系统在正弦输入信号的作用下,其输出的稳态分量是与输入信号相同频率的正弦函数。
输出稳态分量与输入正弦信号的复数比称为频率特性。
用数学式表示为:)()()(ωωωj X j Y j G = 系统的频率特性)(ωj G 是系统传递函数)(s G 的特殊形式,它们之间的关系是ωωj s s G j G ==)()(二、频率特性的表示方法直角坐标式: )()()(ωωωjI R j G += ,见图1.5-1式中:称之为实频特性-)(ωR称之为虚频特性-)(ωI极坐标式: )()()(ωφωωj e A j G = 式中:称之为幅频特性-=)()(ωωj G A称之为相频特性-∠=)()(ωωφj G 直角坐标和级坐标表示方法之间的关系是)()()()()()()(sin )()()(cos )()(122ωωωφωωωωφωωωφωωR I tg I R A A I A R -=+=== 图形如图1.5-1所示。
I 图1.5-1三、幅相频率特性曲线(又称乃氏图,乃氏曲线)以角频率ω为参变量,对某一频率ω,有相应的幅频特性)(ωA 和相频特性)(ωφ与之对应,当ω从∞→0变化时,频率特性构成的向量在复平面上描绘出的曲线称为幅相频率特性曲线。
又称为乃氏图、乃氏曲线。
四、对数频率特性(又称频率特性的对数坐标图,伯德图)对数频率特性图(伯德图)有两张图,一张为对数幅频特性曲线图,另一张是对数相频特性曲线图。
前者以频率ω为横坐标,并采用对数分度,将)(lg 20ωj G 的函数值作为纵坐标,并以分贝(dB )为单位均匀分度。
后者的横坐标也以频率ω为横坐标(也用对数分度),纵坐标则为相角)(ωφ,单位为度)(︒,均匀分度。
两张图合起来称为伯德图。
五、奈奎斯特稳定性判据(又称奈氏判据)1. 对于开环稳定的系统,闭环系统稳定的充分必要条件是开环系统的奈氏曲线)()(ωωj H j G 不包围()0,1j -点。