八年级上册数学《全等三角形》角平分线的性质 知识点整理
- 格式:doc
- 大小:54.00 KB
- 文档页数:2
第7讲 全等三角形的综合、角平分线⑴平移全等型⑵ 对称全等型⑶ 旋转全等型⑴、角平分线上的点到角的两边的距离相等; ⑵、到角的两边距离相等的点在角的平分线上. 它们具有互逆性.角平分线是天然的、涉及对称的模型,一般情况下,有下列三种作辅助线的方式: 1. 由角平分线上的一点向角的两边作垂线,2. 过角平分线上的一点作角平分线的垂线,从而形成等腰三角形, 3. OA OB ,这种对称的图形应用得也较为普遍,ABOPPOBAABOP角平分线的作法(尺规作图)①以点O为圆心,任意长为半径画弧,交OA、OB于C、D两点;②分别以C、D为圆心,大于CD长为半径画弧,两弧交于点P;③过点P作射线OP,射线OP即为所求.考点1、三角形全等综合1、如图,要测量河两岸相对的两点A、B间的距离,先在过B点的AB的垂线L 上取两点C、D,使CD=BC,再在过D点的垂线上取点E,使A、C、E在一条直线上,ED=AB这时,测ED的长就得AB得长,判定△ACB≌△ECD的理由是()A. SASB. ASAC. SSS D .AAS2、如图,小强利用全等三角形的知识测量池塘两端M、N的距离,如果△PQO≌△NMO,则只需测出其长度的线段是( B )A.PO B.PQ C.MO D.MQ(1)(2)3、如图,工人师傅要在墙壁的O处用钻打孔,要使孔口从墙壁对面的点B处打开,墙壁厚是35cm,点B与点O的垂直距离AB长是20cm,在点O处作一直线平行于地面,在直线上截取OC=35cm,过C作OC的垂线,在垂线上截取CD=20cm,连接OD,然后,沿着D0的方向打孔,结果钻头正好从点B处打出.这是什么道理?4、1805年,法军在拿破仑的率领下与德军在莱茵河畔激战.德军在莱茵河北岸Q处,如图所示,因不知河宽,法军大炮很难瞄准敌营.聪明的拿破仑站在南岸的点O处,调整好自己的帽子,使视线恰好擦着帽舌边缘看到对面德国军营Q 处,然后他一步一步后退,一直退到自己的视线恰好落在他刚刚站立的点0处,让士兵丈量他所站立位置B与0点的距离,并下令按照这个距离炮轰德军.试问:法军能命中目标吗?请说明理由.用帽舌边缘视线法还可以怎样测量,也能测出河岸两边的距离吗?5、某校七年级学生到野外活动,为测量一池塘两端A,B的距离,甲、乙、丙三位同学分别设计出如下几种方案:甲:如图①,先在平地取一个可直接到达A,B的点C,再连接AC,BC,并分别延长AC至D,BC至E,使DC=AC,EC=BC,最后测出DE的长即为A,B的距离.乙:如图②,先过点B作AB的垂线BF,再在BF上取C,D两点,使BC=CD,接着过点D作BD的垂线DE,交AC的延长线于点E,则测出DE的长即为A,B的距离.丙:如图③,过点B作BD⊥AB,再由点D观测,在AB的延长线上取一点C,使∠BDC=∠BDA,这时只要测出BC的长即为A,B的距离.(1)以上三位同学所设计的方案,可行的有______;(2)请你选择一可行的方案,说说它可行的理由.1、已知: 如图,AB=AE,BC=ED, ∠B= ∠E,AF ⊥CD,F 为垂足, 求证:CF=DF.2、已知:如图,AB=CD,BC=DA,AE=CF.求证:BF=DE.3、如图,AB=AD,BC=DE,且BA⊥AC,DA⊥AE,你能证明AM=AN吗?1、如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC. 求证:(1)EC=BF;(2)EC⊥BF.2、已知:如图,△ABC中,AD⊥BC于D,E是AD上一点,BE的延长线交AC于F,若BD=AD,DE=DC。
第7讲角平分线的处理方法板块一角平分线的性质条件:OC 平分∠AOB. PD⊥OA 于点D,PE⊥OB 于点E.结论:PD=PE.典例精讲题型一知两垂【例1】如图,AD 是△ABC 的角平分线,DE⊥AB,垂足为E,DF⊥AC,垂足为F,BD=CD.求证:BE=CF.题型二作一垂【例2】如图,在四边形 ABCD 中,∠B=∠C=90°,E 为 BC 上一点,且 AE 平分∠BAD,D E 平分∠ADC.求证:BE=CE.题型三作两垂【例3】如图,在四边形 ABCD 中,∠ABC=90°,BD 平分∠ABC,AD=CD.求证:AD⊥CD.实战演练如图,在四边形ABCD中,∠BAC=∠BDC=36°,∠ADB=72°.求证:AB=AC.类型判定旁心图隐角平分线图形条件PD⊥OA,PE⊥OB,PD=PE.OP 平分∠AOB,AP 平分∠BAD,PD⊥OA,PE⊥OB,PF⊥AB.OP 平分∠AOB,∠OAP+∠BAP=180°.结论OC 平分∠AOB.PB平分∠ABE.①PA 平分∠BAD;②PB平分∠ABE.典例精讲题型一直接用判定【例1】如图,在△ABC 中,AC=BC,E 为△ABC 外一点,且∠CAE=∠CBE.求证:CE 平分△ABE 的外角.题型二旁心【例2】如图,在△ABC中,AP 平分∠BAC,BP 平分∠CBD.(1)求证:CP 平分∠BCE;(2)设∠BAC=α,则∠BPC= (用含α的式子表示).实战演练题型三隐角平分线如图,在四边形 AEDC 中,∠EAC+∠EAD=180°,且 CE 平分∠ACD.若∠EAD=α,求∠DEC 的度数.板块三角平分线与面积法类型1 内心向三边作垂类型2 面积比与边长比条件:I 是△ABC 三条角平分线的交点.方法:过点 I 分别向三边作垂线段.结论:①ID=IE=IF;②S△IBC+S△IAC+S△IAB=S△ABC;③ID=2S△ABC÷(AB+BC+AC).条件:AD 是△ABC的角平分线.方法:过点 D 分别作DE⊥AB,DF⊥AC.结论:①DE=DF;②S△ABD:S△ACD=AB:AC=BD:CD.典例精讲题型一面积法求线段长【例1】如图,在△ABC 中,∠ABC=90°,I 为△ABC 各内角平分线的交点,过点I 作AC 的垂线,垂足为H.若BC=3,AB=4,AC=5,求IH 的长.题型二面积法证线段比【例2】如图,AD 是△ABC 的角平分线.求证:BDCD =ABAC.题型三构全等转化面积【例3】如图,△ABC的角平分线BD,CE 交于点P,∠A=60°,△ABC的面积为 16,四边形AEPD 的面积为5,求△BPC 的面积.实战演练1.如图,在△ABC 中,∠C=90°,O是∠CAB,∠ABC 平分线的交点,且E BC=8cm,AC=6cm6 cm,AB=10cm,求S△AOB.2.如图,在△ABC中,.S ABC=21,∠BAC的角平分线AD 交 BC 于点D,E 为AD 的中点.连接BE,的值.F 为BE 上一点,且 BF=2EF.若S△DEF=2,求ABAC3.如图,在△ABC中,AB=3,AC=4,BC=5,∠BAC=90°,AD平分∠BAC.BAC.求 DC 的长.4.如图,在△ABC中,∠BAC=90°,AB=AC,BD 是△ABC的角平分线,若BD=8,求△BDC1的面积.类型梯形图互补图内心图图形典 例 精 讲题型一 直角梯形遇角平分线【例】如图,在四边形ABCD 中,∠A=∠B=90°,E 为AB 上一点,ED 平分∠ADC,EC 平分∠BCD.(1)求证:DE⊥CE; (2)求证:AE=BE; (3)求证:AD+BC=CD;(4)若AB=12,CD=13,求 S△CDE.实 战 演 练题型二 对角互补遇角平分线1.如图,在四边形ABCD 中,∠ABC+∠D=180°,AC 平分∠BAD,求证:CB=CD.D题型三 内心作垂构对称型全等2.如图,在△ABC 中,AB>AC,AK,BK,CK 分别平分∠BAC,∠ABC,∠ACB,KD⊥BC 于点D.求证:AB-AC=BD-CD.。
沪科版八年级上册数学全等三角形复习[知识要点] 一、全等三角形 一般三角形直角三角形判定 边角边(SAS )、角边角(ASA ) 角角边(AAS )、边边边(SSS ) 具备一般三角形的判定方法 斜边和一条直角边对应相等(HL ) 性质对应边相等,对应角相等对应中线相等,对应高相等,对应角平分线相等② 全等三角形面积相等. 2.证题的思路:⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧)找任意一边()找两角的夹边(已知两角)找夹已知边的另一角()找已知边的对角()找已知角的另一边(边为角的邻边)任意角(若边为角的对边,则找已知一边一角)找第三边()找直角()找夹角(已知两边AAS ASA ASA AAS SAS AAS SSS HL SAS 性质1、全等三角形的对应角相等、对应边相等。
2、全等三角形的对应边上的高对应相等。
3、全等三角形的对应角平分线相等。
4、全等三角形的对应中线相等。
5、全等三角形面积相等。
6、全等三角形周长相等。
(以上可以简称:全等三角形的对应元素相等) 7、三边对应相等的两个三角形全等。
(SSS)8、两边和它们的夹角对应相等的两个三角形全等。
(SAS) 9、两角和它们的夹边对应相等的两个三角形全等。
(ASA)10、两个角和其中一个角的对边对应相等的两个三角形全等。
(AAS)11、斜边和一条直角边对应相等的两个直角三角形全等。
(HL)运用1、性质中三角形全等是条件,结论是对应角、对应边相等。
而全等的判定却刚好相反。
2、利用性质和判定,学会准确地找出两个全等三角形中的对应边与对应角是关键。
在写两个三角形全等时,一定把对应的顶点,角、边的顺序写一致,为找对应边,角提供方便。
3,当图中出现两个以上等边三角形时,应首先考虑用SAS 找全等三角形。
4、用在实际中,一般我们用全等三角形测等距离。
以及等角,用于工业和军事。
有一定帮助。
5、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等 判定:到一个角的两边距离相等的点在这个角平分线上做题技巧一般来说考试中线段和角相等需要证明全等。
三角形三条中线的交于一点,这一点叫做“三角形的重心〞。
三角形的中线可以将三角形分为面积相等的两个小三角形。
3. 三角形的角平分线∠A的平分线与对边BC交于点D,那么线段AD叫做三角形的角平分线。
∠1=∠2=∠BAC.要区分三角形的“角平分线〞与“角的平分线〞,其区别是:三角形的角平分线是条线段;角的平分线是条射线。
三角形三条角平分线的交于一点,这一点叫做“三角形的内心〞。
要求会的题型:①三角形中两条高和其所对的底边中的三个长度,求其中未知的高或者底边的长度“等积法〞,将三角形的面积用两种方式表达,求出未知量。
三角形的稳定性1. 三角形具有稳定性2. 四边形及多边形不具有稳定性三角形的内角1. 三角形的内角和定理三角形的内角和为180°,与三角形的形状无关。
2. 直角三角形两个锐角的关系直角三角形的两个锐角互余〔相加为90°〕。
有两个角互余的三角形是直角三角形。
三角形的外角1. 三角形外角的意义三角形的一边与另一边的延长线组成的角叫做三角形的外角。
2. 三角形外角的性质三角形的一个外角等于与它不相邻的两个内角之和。
三角形的一个外角大于与它不相邻的任何一个内角。
多边形1. 多边形的概念在平面中,由一些线段首尾顺次相接组成的图形叫做多边形,多边形中相邻两边组成的角叫做它的内角。
多边形的边与它邻边的延长线组成的角叫做外角。
连接多边形不相邻的两个顶点的线段叫做多边形的对角线。
一个n边形从一个顶点出发的对角线的条数为〔n-3〕条,其所有的对角线条数为.3. 正多边形各角相等,各边相等的多边形叫做正多边形。
〔两个条件缺一不可,除了三角形以外,因为假设三角形的三内角相等,那么必有三边相等,反过来也成立〕要求会的题型:①告诉多边形的边数,求多边形过一个顶点的对角线条数或求多边形全部对角线的条数n边形从一个顶点出发的对角线的条数为〔n-3〕条,其所有的对角线条数为.将边数带入公式即可。
多边形的内角和1. n边形的内角和定理n边形的内角和为2. n边形的外角和定理多边形的外角和等于360°,与多边形的形状和边数无关。
板块 考试要求A 级要求B 级要求C 级要求全等三角形的性质及判定 会识别全等三角形掌握全等三角形的概念、判定和性质,会用全等三角形的性质和判定解决简单问题会运用全等三角形的性质和判定解决有关问题全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等.寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边. (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角. (3)有公共边的,公共边常是对应边. (4)有公共角的,公共角常是对应角. (5)有对顶角的,对顶角常是对应角.(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).要想正确地表示两个三角形全等,找出对应的元素是关键. 全等三角形的判定方法:(1) 边角边定理(SAS ):两边和它们的夹角对应相等的两个三角形全等. (2) 角边角定理(ASA ):两角和它们的夹边对应相等的两个三角形全等. (3) 边边边定理(SSS ):三边对应相等的两个三角形全等.(4) 角角边定理(AAS ):两个角和其中一个角的对边对应相等的两个三角形全等. (5) 斜边、直角边定理(HL ):斜边和一条直角边对应相等的两个直角三角形全等.全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线.奥数赛点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础.重、难点知识点睛中考要求第十讲 全等三角形中的角平分线与角平分线相关的问题角平分线的两个性质:⑴角平分线上的点到角的两边的距离相等; ⑵到角的两边距离相等的点在角的平分线上. 它们具有互逆性.角平分线是天然的、涉及对称的模型,一般情况下,有下列三种作辅助线的方式: 1. 由角平分线上的一点向角的两边作垂线,2. 过角平分线上的一点作角平分线的垂线,从而形成等腰三角形, 3. OA OB =,这种对称的图形应用得也较为普遍,AB OPPOB A A B OP【例1】 如图,已知ABC ∆的周长是21,OB ,OC 分别平分ABC ∠和ACB ∠,OD BC ⊥于D ,且3OD =,求ABC ∆的面积.【解析】 ∵O 点为ABC △中角平分线的交点, ∴O 点到三边距离相等.∴ABC OAB OBC OAC S S S S =++△△△△1()331.52AB BC AC =⨯++⨯=【例2】 在ABC ∆中,D 为BC 边上的点,已知BAD CAD ∠=∠,BD CD =,求证:AB AC =.ADOCB重点:本节的重点是全等三角形的概念和性质以及判定,全等三角形的性质是以后证明三角形问题的基础,也是学好全章的关键。
角平分线的性质
有疑问的题目请发在“51加速度学习网”上,让我们来为你解答
51加速度学习网整理一、本节学习指导
角平分线的性质有助于我们解决三角形全等相关题型。
其实不仅仅是角平分线,还有三角形的中位线、高、中心都是解决三角形题目有效的途径。
本节有配套免费学习视频。
二、知识要点
1、角平分线的定义:从一个角的顶点出发把一个角分成两个相等的角的射线叫做角的平分线。
如右图:OC平分∠AOB
∵OC平分∠AOB
∴∠AOC=∠BOC
2、角的平分线的性质:角平分线上的点到角的两边的距离相等。
【重点】
如上图:
∵OC平分∠AOB(或∠1=∠2),PE⊥OA,PD⊥OB
∴PD=PE,此时我们知道△OPE≌△OPD(直角三角形斜边是OP即公共边,直角边斜边)
3、角的平分线的判定:角的内部到角的两边距离相等的点在角的平分线上。
如上图:
∵PE⊥OA,PD⊥OB,PD=PE
∴OC平分∠AOB(或∠1=∠2)
4、线段的中点的定义:把一条线段分成两条相等的线段的点叫做线段的中点。
如右图:
∵C是AB的中点
∴AC=BC
5、垂直的定义:两条直线相交所成的四个角中有一个是直角,这两条直线互相垂直。
如右图:【重点】
∵AB⊥CD
∴∠AOC=∠AOD=∠BOC =∠BOD=90°
或∵∠AOC=90°
∴AB⊥CD
注意:要判断两条直线垂直,只要知道这两条相交直线所形成的四个角中的
一个角是直角就可以了。
反过来,两条直线互相垂直,它们的四个交角都是直角。
6、全等三角形的性质:全等三角形的对应边相等;全等三角形的对应角相等。
∵△ABC≌△A'B'C'
∴AB=A'B',BC=B'C',AC=A'C'; ∠A=∠A', ∠B=∠B', ∠C=∠C'
三、经验之谈:
本节的重点第2点,角平分线的性质,这条性质在以后的几何题型中用的非常多,本章的三角形全等也不例外,如果我们碰到题目中出现角平分线,我们要会利用它的性质。
告诉大家一个秘密:在几何题型中,99%的题目给出的条件都是要用到的,除非此题属于难题范围,故意给些误导性条件。
有疑问的题目请发在“51加速度学习网”上,让我们来为你解答
51加速度学习网整理。