物质结构讲义
- 格式:doc
- 大小:715.00 KB
- 文档页数:8
解密05 物质结构元素周期律【考纲导向】1.掌握元素周期律的实质。
了解元素周期表(长式)的结构(周期、族)及其应用。
2.以第3周期为例,掌握同一周期内元素性质的递变规律与原子结构的关系。
3.以ⅠA族和ⅠA族为例,掌握同一主族内元素性质递变规律与原子结构的关系。
4.了解金属、非金属在元素周期表中的位置及其性质的递变规律。
5.了解元素周期表在科学研究、地质探矿等领域的广泛应用,从多角度、多层面了解元素及其化合物性质的分类与整合。
【命题分析】从近几高考试题看,元素周期律与元素周期表是中学化学的重要理论基础,是无机化学的核心知识,在近几年高考中出现频率达100%。
题型相对稳定,多为选择题。
高考中该类型题主要是通过重大科技成果(化学科学的新发展、新发明等)尤其是放射性元素、放射性同位素、农业、医疗、考古等方面的应用为题材,来考查粒子的个微粒的相互关系;元素“位”“构”“性”三者关系的题型会继续以元素及其化合物知识为载体,用物质结构理论,解释现象、定性推断、归纳总结相结合。
可集判断、实验、计算于一体,题型稳定。
要想在高考中化学取得高分,就必须掌握元素同期表命题特点和解题方法。
通过编排元素周期表考查的抽象思维能力和逻辑思维能力;通过对元素原子结构、位置间的关系的推导,培养学生的分析和推理能力。
核心考点一原子结构与核外电子排布1.原子结构(1)原子的构成A ZX ⎩⎪⎪⎨⎪⎪⎧原子核⎩⎨⎧质子:Z 个⎩⎪⎨⎪⎧ 每个质子带一个单位正电荷相对质量约为1中子:A -Z 个⎩⎪⎨⎪⎧ 中子不带电相对质量约为1核外电子:Z 个⎩⎪⎨⎪⎧围绕原子核做高速运动每个电子带一个单位负电荷相对质量为一个质子中子的11 836(2)核素(原子)的表示及其数量关系 ①表示:表示质子数为Z 、质量数为A 、中子数为A-Z的核素原子。
(3)阴、阳离子中的数量关系 ①质量数=质子数+中子数。
②阴离子::核外电子数=Z +n 。
阳离子::核外电子数=Z -n 。
全面剖析大π键【方法与规律】1、大π键的定义在多原子分子中,如有相互平行的p轨道,它们连贯地“肩并肩”地重叠在一起构成一个整体,p电子在多个原子间运动形成π型化学键,这种不局限在两个原子之间的π键称为离域π键或共轭大π键2、大π键的形成条件(1)所有参与形成离域π键的原子在同一平面上,因此中心原子采取sp2杂化或sp杂化(2)参与形成离域π键的原子都必须提供一个或两个相互平行的p轨道(3)形成离域π键的p轨道上的电子总数小于p轨道数的2倍3、大π键表示方法:nmπ,m为原子个数,n为共用电子个数,m≤2n如:43π指平行于p轨道的数目有3个(一般粒子有几个原子,就是几个p轨道),平行p轨道里的电子数为44、m和n的计算方法(1)ABn型的分子或离子【方法一】①m为原子个数:一般粒子有几个原子,就是几个p轨道,如:SO2有3个原子形成π键,则m=3②n值的计算a.分析出参与形成离域π键的每个原子形成几个σ键b.形成σ键后,若只有一个成单电子,则该电子参与形成大π键,若没有成单电子,则最多有一对孤对电子参与形成大π键物质分析方法大π键SO2S、O原子的电子式分别为:、,中心原子S采取sp2杂化,形成2个σ键,还有4个电子即2对孤对电子,S原子最多提供1对孤对电子形成大π键,O原子形成1个σ键后,还有5个电子,有1个单电子,则两个O原子的单电子参与形成大π键,故n=2+2×1=4,因此SO2大π键为43π43πO3O原子的电子式分别为:,中心原子O采取sp2杂化,形成2个σ键,还有4个电子即2对孤对电子,中心O原子最多提供1对孤对电子形成大π键,配位O原子形成1个σ键后,还有5个电子,有1个单电子,则两个O原子的单电子参与形成大π键,故n=2+2×1=4,因此O3大π键为43π43πNO2-N、O原子的电子式分别为:、,中心原子N采取sp2杂化,形成2个σ键,还有3个电子则有1个单电子,中心N原子最多提供1个单电子形成大π键,配位O原子形成1个σ键后,还有5个电子,有1个单电子,则两个O原子的单电子参与形成大π键,由于带一个单位的负电荷,也要参与形成大π键,故n=1+1+2×1=4,因此NO2-大π键为43π43π规律①若微粒互为等电子体,则大π键是相同的;②若为离子,n的数值遵循“阴加阳减”CO2C、O原子的电子式分别为:、,中心原子C采取sp杂化,形成2个σ键,还有2个电子即1对孤对电子,中心C原子最多提供1对孤对电子形成大π键,O原子形成1个σ键后,还有5个电子,有1个单电子,则两个O原子的单电子参与形成大π键,由于带一个单位的负电荷,也要参与形成大π键,故n=2+2×1=4,因此CO2大π键为43π43π同理SCN—、NO2+、N3—互为等电子体,则大π键是相同的,大π键为43π物质分析方法大π键CO32—C、O原子的电子式分别为:、,中心原子C采取sp2杂化,形成3个σ键,还有1个单电子,中心C原子最多提供1个单电子形成大π键,O原子形成1个σ键后,还有5个电子,有1个单电子,则3个O原子的单电子参与形成大π键,由于带2个单位的负电荷,也要参与形成大π键,故n=1+2+3×1=6,因此CO32—大π键为64π64π同理NO3—、SO3互为等电子体,则大π键是相同的,大π键为64π【方法二】①m为原子个数:一般粒子有几个原子,就是几个p轨道,如:SO2有3个原子形成π键,则m=3②n值的计算(3个部位加起来的总和)a.中心原子=中心原子价电子数-形成σ键所提供的电子总数-孤电子数b.成键原子=成单电子数总和c.外界:阴阳离子,遵循“阴加阳减”物质分析方法大π键SO2①S的杂化:sp2②形成大π键的p轨道电子总数a.中心S原子=中心原子价电子数-形成σ键所提供的电子总数-孤电子数=6-2×1-2=2b.成键原子=2×1=2c.外界:0n=2+2=4,因此SO2大π键为43π43πNO2+①N的杂化:sp②形成大π键的p轨道电子总数a.中心N原子=中心原子价电子数-形成σ键所提供的电子总数-孤电子数=5-2×1-0=3b.成键原子=2×1=2c.外界:-1n=3+2-1=4,因此NO2+大π键为43π43πSO3①S的杂化:sp2②形成大π键的p轨道电子总数a.中心S原子=中心原子价电子数-形成σ键所提供的电子总数-孤电子数=6-3×1-0=3b.成键原子=3×1=3c.外界:0n=3+3=6,因此SO3大π键为64π64πNO3—①N的杂化:sp2②形成大π键的p轨道电子总数a.中心N原子=中心原子价电子数-形成σ键所提供的电子总数-孤电子数=5-3×1-0=264πb .成键原子=3×1=3 c.外界:1n=2+3+1=6,因此NO3—大π键为64π【方法三】①m为原子个数:一般粒子有几个原子,就是几个p轨道,如:SO2有3个原子形成π键,则m=3②n值的计算a.先计算微粒的总价电子数(a)b.计算原子之间的σ键,一对σ键存在2个电子(b)c.中心原子的孤对电子数(c)d.外围原子的价层电子中的孤对电子数,如:O原子为2s、2p中各有1对,共4个电子(d)③n=a-b-c-d物质分析方法大π键SO2总价电子数a=6+6×2=18σ键电子数b=2×2=4中心原子的孤对电子数c=2外围原子的价层电子中的孤对电子数d=2×4=8n=a-b-c-d=18-4-2-8=4,因此SO2大π键为43π43πNO2+总价电子数a=5+6×2-1=16σ键电子数b=2×2=4中心原子的孤对电子数c=0外围原子的价层电子中的孤对电子数d=2×4=8n=a-b-c-d=16-4-0-8=4,因此NO2+大π键为43π43πSO3总价电子数a=6+6×3=24σ键电子数b=3×2=6中心原子的孤对电子数c=0外围原子的价层电子中的孤对电子数d=3×4=12n=a-b-c-d=24-6-0-12=6,因此SO2大π键为64π64πNO3—总价电子数a=5+6×3+1=24σ键电子数b=3×2=6中心原子的孤对电子数c=0外围原子的价层电子中的孤对电子数d=3×4=12n=a-b-c-d=24-6-0-12=6,因此NO3—大π键为64π64π(2)多个中心原子(AmBn)型的分子或离子——用方法一①m为原子个数:一般粒子有几个原子,就是几个p轨道,如:SO2有3个原子形成π键,则m=3②n值的计算a.分析出参与形成离域π键的每个原子形成几个σ键b.形成σ键后,若只有一个成单电子,则该电子参与形成大π键,若没有成单电子,则最多有一对孤对电子参与形成大π键物质分析方法大π键C原子的电子式为:,每个C原子采取sp2杂化,形成3个σ键,每C原子有1个成单电子,该单电子参与形成大π键,因此其大π键为66π66πC、N原子的电子式为:、,C原子都采取sp2杂化,形成3个σ键,每C原子有1个成单电子,该单电子参与形成大π键,N原子形成2个σ键,还有3个电子,有一个成单电子参与形成大π键,所以n=5×1+1=6,因此其大π键为66π66π物质分析方法大π键C、N原子的电子式为:、,C原子都采取sp2杂化,形成3个σ键,每C原子有1个成单电子,该单电子参与形成大π键,N原子形成3个σ键,还有1对孤对电子,这对孤对电子一定参与形成大π键,所以n=4×1+2=6,因此其大π键为65π65πC、N原子的电子式为:、,C原子都采取sp2杂化,形成3个σ键,每C原子有1个成单电子,该单电子参与形成大π键,1号N原子形成3个σ键,还有1对孤对电子,这对孤对电子一定参与形成大π键,2号N原子形成2个σ键,还有3个电子,则有一个成单电子参与形成大π键,所以n=3×1+2+1=6,因此其大π键为65π65πC、O原子的电子式为:、,C原子都采取sp2杂化,形成3个σ键,每C原子有1个成单电子,该单电子参与形成大π键,O原子形成2个σ键,还有4个电子即2对孤对电子,O原子最多提供1对孤对电子形成大π键,所以n=4×1+2=6,因此其大π键为65π65πC、S原子的电子式为:、,C原子都采取sp2杂化,形成3个σ键,每C原子有1个成单电子,该单电子参与形成大π键,S原子形成2个σ键,还有4个电子即2对孤对电子,S原子最多提供1对孤对电子形成大π键,所以n=4×1+2=6,因此其大π键为65π65πC、Se原子的电子式为:、,C原子都采取sp2杂化,形成3个σ键,每C原子有1个成单电子,该单电子参与形成大π键,Se原子形成2个σ键,还有4个电子即2对孤对电子,Se原子最多提供1对孤对电子形成大π键,所以n=4×1+2=6,因此其大π键为65π65πC原子的电子式为:,C原子都采取sp2杂化,形成3个σ键,每C原子有1个成单电子,该单电子参与形成大π键,所以n=4×1=4,因此其大π键为44π44π。
第三单元物质构成的奥秘课题2原子的结构原子和原子核的结构示意图a、原子是由居于原子中心的带正电的和带负电的两部分组成。
b、在原子中:一个质子带一个单位,一个电子带一个单位,中子。
C、在原子中,电子的质量很小,只有质子和中子质量的1 / 1836,故原子的质量主要集中在d、每一个原子只有一个原子核,的多少决定了原子的种类,所以同一类的原子中,其核内的一定相同。
e、原子中,核电荷数==问题:1、原子对外不显电性的原因是什么?2、为什么原子的质量主要集中在原子核上总结:1)原子的构成情况:核外电子(在核外作高速的无规则的运动)广原子 Y 「质子' 原子核士1(居于原子中央)昌工I中子注意:构成原子的粒子有三种:质子、中子、电子。
但并不是所有的原子都是由这三种粒子构成的。
如有一种氢原子中只有质子和电子,没有中子。
b、电性关系不带电的微粒:中子、原子(分子);带负电荷的微粒:电子;带正电荷的微粒:原子核、质子c、电量关系:核电荷数=质子数(原因是中子不带电);质子数=电子数(原因是原子不带电)所以在原子中:核电荷数二质子数=电子数注意:在原子中,原子核所带的正电荷数(核电荷数)就是质子所带的电荷数(中子不带电),而每个质子带1个单位正电荷,因此,核电荷数二质子数,由于原子核内质于数与核外电子数相等,所以在原子中核电荷数=质子数=核外电子数。
2)原子的性质:a.都很小;b.原子之间存在;c.原子总在不断。
1.原子核外电子的排布原子结构示意图:钠原子的原子结构示意图、事(+11)2 8 1—>Y 777I ----- >在化学反应中,金属原子易电子,非金属原子易电子;稀有气体原子电子。
决定了原子的化学性质。
离子形成:原子失去电子后,变成带正电荷的,得到电子后,变成带负电荷的离子是构成物质的一种基本微粒,例如食盐是由离子构成的。
注意:原子得失电子后,核外电子数一定改变,而质子数不变。
观察1---18号元素的原子结构示意图,探究元素周期表编排的规律。
第四节 物质结构、元素周期表、元素周期律物质结构一、原子的构成1.原子的构成⑴原子核:带正电,几乎集中了原子的全部质量,体积只占原子体积的千亿分之一。
⑵质子:带一个单位正电荷,单位质子和中子的质量基本相同,约为单位电子质量的1836倍。
质子数决定了元素的种类。
⑶中子:不带电。
中子数与质子数一起决定了同位素的种类。
⑷电子:带一个单位负电荷。
电子的排布决定了元素在周期表中的位置。
决定元素原子化学性质的电子又称价电子(主族元素的价电子即是其最外层电子)。
多数元素原子的化学性质仅由其最外层电子数(价电子数)决定。
2.微粒间数目关系质子数(Z )= 核电荷数 = 原子数序原子序数:按质子数由小大到的顺序给元素排序,所得序号为元素的原子序数。
质量数(A )= 质子数(Z )+ 中子数(N ) 中性原子:质子数 = 核外电子数阳 离 子:质子数 = 核外电子数 + 所带电荷数 阴 离 子:质子数 = 核外电子数 - 所带电荷数 3.原子表达式及其含义A 表示X 原子的质量数;Z 表示元素X 的质子数; d 表示微粒中X 原子的个数;c± 表示微粒所带的电荷数; ±b 表示微粒中X 元素的化合价。
二、原子及原子团1.原子:是化学变化中的最小微粒。
在化学反应中,核外电子数可变,但原子核不变。
2.原子团:两个或两个以上原子结成的集团,作为一个整体参加化学反应。
它可以是中性的基(如—CH 3),也可以是带正电的阳离子(如NH + 4)或带负电的阴离子(如NO - 3)。
三、“三素”的比较1.元素:具有相同的核电荷数(即质子数)的同类原子的总称判断不同微粒是否属于同一元素的要点是:单原子核+质子数相同,而不管微粒是处于何种状态(游离态或化合态)原子(A Z X)原子核核外电子(Z 个) 质子(Z 个) 中子(A-Z)个——决定元素种类——决定同位素种类——最外层电子数决定元素的化学性质X AZc ±d±b或价态(各种可能的负价、0价、各种可能的正价)。
高中化学物质结构讲解教案主题:物质结构目标:通过本节课的学习,学生能够掌握物质结构的概念,了解常见物质的结构类型,并能够进行简单的结构分析。
一、引入:(5分钟)讲师通过展示一些常见物质的结构模型或图片,引导学生思考物质是如何组成的,让其明白结构对物质性质的影响。
二、概念讲解:(15分钟)1.物质结构的概念:物质结构是指物质内部原子或分子的排列方式,决定了物质的性质。
常见的物质结构类型包括晶体结构、分子结构、离子结构等。
2.晶体结构:晶体是由原子或分子周期性排列而成的固体。
晶体结构可以分为简单晶体结构和复杂晶体结构,如面心立方结构、体心立方结构等。
3.分子结构:分子是由原子通过共价键连接而成的物质。
分子结构的示范以水分子为例进行讲解,让学生了解分子的构成和排列方式。
4.离子结构:离子是由带正电荷或负电荷的原子或分子组成的物质。
通过氯化钠晶体的结构示范让学生认识离子结构的特点。
三、案例分析:(15分钟)让学生观察一些实际物质的结构模型或图片,并根据所学知识进行结构分析,了解不同结构类型对物质性质的影响。
四、练习及讨论:(15分钟)1.让学生参与简单的结构分析练习,如识别晶体、分子和离子结构在实际物质中的应用。
2.组织学生分组讨论不同结构类型的物质在化学反应中的表现和性质,引导他们进行深入思考和讨论。
五、总结与拓展:(5分钟)通过总结本节课的知识点,强调物质结构对物质性质的重要性,激发学生对物质结构研究的兴趣。
鼓励学生主动拓展相关知识,加深对物质结构的理解。
六、作业布置:(5分钟)布置作业内容,如复习本节课所学知识点或找寻更多关于物质结构的资料,以便下节课进一步深入学习。
七、课堂反馈:(5分钟)收集学生对本节课的反馈意见和建议,及时调整教学方法和内容,为下次课的教学提供参考。
物质结构一、核外电子的运动状态1.电子层(1)电离能:从气态原子(或气态阳离子)中去掉电子,把它变成气态阳离子(或更高价气态阳离子),需要克服核电荷的引力而消耗的能量。
符号:I单位:电子伏特(是一个电子在真空中通过1伏特电位差所获得的动能,它是一种描述微观粒子运动的能量单位。
1电子伏特=1.6022×10-19 J)注:从元素的气态原子去掉一个电子成为+1价气态阳离子所需要消耗的能量,称为第一电离能(I1);依次类推。
可得:①I1< I2< I3< I4< I5②分析Li,原子核外有3电子。
I3比I2增大不到一倍,但I2比I1却增大了十几倍。
说明这3电子分两组,两组能量有差异。
I1比I2、I3小得多,说明有一个电子能量较高,在离核较远的区域运动,容易被去掉。
另两个电子能量较低,在离核较近的区域运动。
③结论:电子是分层排布的。
2.电子亚层和电子云的形状①能量关系:电子层由里→外,能量由低→高。
同一电子层中,电子的能量还有差别,电子云的形状也不相同。
②电子亚层:K层――一个亚层,s亚层L层――二个亚层,s亚层、p亚层M层--三个亚层,s亚层、p亚层、d亚层N层--四个亚层,s亚层、p亚层、d亚层、f亚层③电子亚层形状:s亚层――球形p亚层――纺锤形(其他不介绍)④电子亚层能量:在同一电子层中能量s < p < d < f问题:比较下列轨道能量:1s、3p、2s、3d、4s、2p(1s <2s <2p <3p <3d <4s)3.电子云的伸展方向(1)电子云具有确定的形状和一定的伸展方向。
s电子云:球形对称,在空间各方向上伸展的程度相同。
z2pd电子云:五种伸展方向;f电子云:七种伸展方向。
(2)轨道:在一定电子层上,具有一定的形状和伸展方向的电子云所占据的空间称为一个轨道。
则s、p、d、f四个亚层分别有1、3、5、7个轨道。
《从微观结构看物质的多样性》讲义在我们生活的这个世界中,物质呈现出了令人惊叹的多样性。
从我们呼吸的空气到脚下的大地,从璀璨的宝石到日常的食品,各种各样的物质无处不在。
那么,是什么导致了物质如此丰富多样的性质和形态呢?答案就藏在它们的微观结构之中。
首先,让我们来了解一下物质的基本构成单位——原子。
原子是化学变化中的最小粒子,不同的原子具有不同的质子数,这决定了它们的元素种类。
比如氢原子只有一个质子,而氧原子则有 8 个质子。
原子之间通过化学键相互结合形成分子。
分子的结构和组成决定了物质的性质。
以水分子(H₂O)为例,它由两个氢原子和一个氧原子通过共价键结合而成。
由于氧原子对电子的吸引力比氢原子强,使得水分子呈现出极性,这也就导致了水具有许多独特的性质,如良好的溶解性和较高的比热。
同种元素的原子可以通过不同的方式结合,形成同素异形体。
最常见的例子就是碳元素。
金刚石中的碳原子通过牢固的共价键形成了立体网状结构,这使得金刚石具有极高的硬度和稳定性;而石墨中的碳原子则以层状结构排列,层与层之间的结合力较弱,因此石墨质地柔软,具有良好的导电性。
晶体和非晶体也是物质多样性的重要体现。
晶体具有规则的几何外形和固定的熔点,这是因为其内部的原子、分子或离子在空间上有规则地排列。
例如氯化钠晶体(食盐),钠离子和氯离子按照一定的规律交替排列,形成了立方体的结构。
这种规则的排列使得晶体在物理性质上表现出各向异性,即在不同方向上具有不同的物理性质,如导电性、导热性等。
而非晶体则没有固定的熔点和规则的几何外形,其内部粒子的排列是无序的。
常见的非晶体有玻璃、橡胶等。
在物质的微观结构中,粒子的堆积方式也会影响物质的性质。
金属晶体中,金属原子通常以紧密堆积的方式排列,这使得金属具有良好的延展性和导电性。
离子晶体则是由正负离子通过静电作用结合在一起,由于离子键较强,离子晶体一般具有较高的熔点和硬度。
物质的微观结构还与物质的状态密切相关。
《物质结构与性质》(选考)复习讲义2 成键规律及其对物质性质的影响一、成键规律概述二、金属键的形成及其对物质性质的影响 (一)定义(二)金属键的强弱1、从微粒间作用力角度看:,q 是金属原子的价电子数,r 是金属原子半径。
(1)金属原子的价电子数目越多,金属键越强价电子数目:主族元素是最外层电子数,过渡元素一般是(n-1)d a ns b (2)金属原子半径越小,金属键越强2、从能量角度看:原子气化热越大,金属键越强(三)对金属单质物理性质的影响 主要考查熔沸点大小及说明原因。
例:(2017国I )K 和Cr 属于同一周期,且核外最外层电子构型相同,比较金属K 和金属Cr 的熔点、沸点高低并说明原因。
解析:金属K 的熔点、沸点都比金属Cr 低,原因是K 的原子半径较大且价电子数较少,原子气化热较小。
三、离子键的形成及其对物质性质的影响(一)定义:正负离子之间的静电力叫做离子键。
(二)离子键的强弱1、从微粒间作用力角度看:本质是静电引力(库仑力),用表示,其中q +、q -为离子所带电荷,R 为离子核间的距离。
(1)阴、阳离子的电荷数乘积越大,离子键越强 (2)阴阳离子的半径和越小,离子键越强2、从能量角度看:晶格能(U )越大,离子键越强22f rq k=2-f r q q k⋅=+(1)什么是晶格能?定义1:相互远离的气态正、负离子结合成1mol离子晶体时所释放的能量,相当于下式反应的内能改变:m M x+(g)+x X m-(g)→M m X x(s) ΔH=-U定义2:1mol离子晶体解离成自由气态正、负离子时所吸收的能量,相当于下式反应的内能改变:M m X x(s)→m M x+(g)+x X m-(g) ΔH=U注意:①为什么强调气态离子?(因为气态离子可视为相互远离,它们之间无相互作用力)②晶格能U取正值,只有大小(数值),因此反应焓变ΔH取绝对数值即为晶格能。
(2)如何求晶格能?利用热化学循环(玻恩-哈伯循环)计算晶格能练习:画出计算Li2O晶格能(U)的玻恩—哈伯循环图,并列出计算关系式。
物质结构讲义一.原子结构与性质1.以下能级符号不正确的是A.3s B.3p C.3d D.3f2.5.“各能级最多容纳的电子数,是该能级原子轨道数的二倍”,支撑这一结论的理论是A.构造原理B.泡利不相容原理C.洪特规则D.能量最低原理3.基态铜原子的价电子排布式为A.3d94s2B.3d104s1C.3d104s0D.3d54s14.以下电子排布式表示基态原子电子排布的是A.1s22s22p63s13p3 B.1s22s22p63s23p63d104s1 4p1C.1s22s22p63s23p63d24s1 D.1s22s22p63s23p63d104s2 4p15.10.电负性的大小也可以作为判断金属性和非金属性强弱的尺度。
下列关于电负性的变化规律正确的是A.周期表从左到右,元素的电负性逐渐变大B.周期表从上到下,元素的电负性逐渐变大C.电负性越大,则金属性越强D.电负性越小,则非金属性越强二.分子结构与性质6.氮及其化合物在生活、生产和科技等方面有重要的应用。
请回答下列问题:(1)氮元素基态原子的价电子排布式为;(2)在氮气分子中,氮原子之间存在着个σ键和————个π键;(3)氮、氧、氟是同周期相邻的三种元素,比较:①氮原子的第一电离能(填“大于”、“小于”或“等于”)氧原子的第一电离能;②N2分子中氮氮键的键长(填“大于”、“小于”或“等于”)F2分子中氟氟键的键长;(4)氮元素的氢化物——NH3是一种易液化的气体,该气体易液化的原因是;(5)配合物[Cu(NH3)4]Cl2中含有4个配位键,若用2个N2H4代替其中的2个NH3,得到的配合物[Cu(NH3)2(N2H4)2]Cl2中含有配位键的个数为。
11.(1)2s22p3 (1分)(2)1 2 (2分)(3)①大于②小于(2分)(4)氨分子之间容易形成氢键,使其沸点升高而容易液化(1分) 4(2分)7.下列物质中既有离子键又有共价键和配位键的是A.KF B.H2SO4C.[Ag(NH3)2]OH D.NH38.根据杂化轨道理论的观点,判断下列有关说法错误的是A.苯分子中每个碳原子的原子轨道都发生sp2杂化,键角为120°B.乙烯分子中碳原子的sp2杂化轨道可形成1个σ键和1个π键C.甲烷分子中碳原子的轨道发生sp3杂化,C-H之间形成4个σ键D.乙炔为直线形分子,其分子中碳原子轨道杂化方式与苯不同。
9.正硼酸(H3BO3)是一种片层状结构白色晶体,层内的H3BO3分子通过氢键相连(如下图)。
下列有关说法正确的是A.正硼酸晶体属于原子晶体B.H3BO3分子的稳定性与氢键有关C.分子中硼原子最外层为8e-稳定结构D.含1molH3BO3的晶体中有3mol氢键三.晶体结构10.有四种晶体,其离子排列方式下图所示,其中化学式不属AB型的是C11.钡在氧气中燃烧时的得到一种钡的氧化物晶体,起结构如下图所示,有关说法正确的是A.该晶体属于离子晶体B.晶体的化学式为Ba2O2C.该晶体晶胞结构与CsCl相似D.与每个Ba2+距离相等且最近的Ba2+共有12个12.某离子晶体中晶体结构最小的重复单元如图:A为阴离子,在正方体内,B为阳离子,分别在顶点和面心,则该晶体的化学式为A.BA2B.B2AC.B7A4D.B4A713.萤石(CaF2)晶体属于立方晶系,萤石中每个Ca2+被8个F-所包围,则每个F-周围最近距离的Ca2+数目为A.2 B.4 C.6 D.814.2001年,日本科学家发现了便于应用、可把阻抗降为零的由硼和镁两种元素组成的超导材料。
这是27年来首次更新了金属超导体的记录,是目前金属化合物超导体的最高温度。
该化合物也因此被美国《科学》杂志评为2001年十大科技突破之一。
图为该化合物的晶体结构单元示意图:镁原子间形成正六棱柱,且棱柱的上下底面还各有1个镁原子,6个硼原子位于棱柱内。
则该化合物的化学式可表示为A.MgB B.MgB2C.Mg2B D.Mg3B215.科学家发现的钇钡铜氧化合物在90K具有超导性,若该化合物晶体的晶胞结构如图所示,则该化合物的化学式可能是A.YBa2Cu3O4B.YBa2Cu2O5C.YBa2Cu3O5D.YBaCu4O4综合题16.A、B、C、D分别代表四种不同的短周期元素。
A元素的原子最外层电子排布为ns1,B元素的原子价电子排布为ns2np2,C元素的最外层电子数是其电子层数的3倍,D元素原子的M 电子层的P亚层中有1个电子。
(1)C原子的电子排布式为,若A元素的原子最外层电子排布为1s1,则按原子轨道的重迭方式,A与C形成的化合物中的共价键属于键。
,该分子的立体(2)当n=2时,B与A构成的分子为BA结构为_________,B与C形成的晶体属于晶体。
当n=3时,B与C形成的晶体中微粒间的作用力是(3)若D元素与Fe形成某种晶体,该晶体的晶胞如右图所示。
则,晶体的化学式__________________(用元素符号表示);若晶胞的边长为a nm,则合金的密度为________g/cm3。
9.(1)1s22s22p4(2分) σ(2)正四面体形分子共价键或极性共价键(3)Fe2Al;5.56×10 23/a3N A17.有A、B、C、D、E五种短周期元素,它们的原子序数依次增大。
已知:A和C、B和D分别位于同主族,且B、D质子数之和是A、C质子数之和的2倍;E在同周期元素中原子半径最小。
(1)A2B和A2D的沸点较高者是(填化学式),其原因是;(2)B形成的双原子分子里,从轨道重叠的角度来看共价键的类型有;(3)E原子的电子排布式为:;10.(1)H2O,分子间形成了氢键(2)σ键π键(3)1s22s22p63s23p63d104s24p518.有A、B、C、D四种元素,其中A元素和U元素的原子都有1个未成对电子,A+比B-少一个电子层,B原子得一个电子填入3p轨道后,3p轨道已充满;C原子的p轨道中有3个未成对电子,其气态氢化物在水中的溶解度在同族元素所形成的氢化物中最大;D的最高化合价和最低化合价的代数和为4,其最高价氧化物中含D的质量分数为40%,且其核内质子数等于中子数。
R是由A、D两元素形成的离子化合物,其中A+与D2-离子数之比为2:1。
请回答下列问题:(1)A元素形成的晶体属于A2密堆积型式,则其晶体内晶胞类型应属于___ _(填写“六方”、“面心立方”或“体心立方”)。
(2)B—的电子排布式为___ _,在CB3分子中C元素原子的原子轨道发生的是___ _____杂化。
(3)C的氢化物的空间构型为__ _______,其氢化物在同族元素所形成的氢化物中沸点最高的原因是____ ______(4)B元素的电负性____ ___D元素的电负性(填“>”,“<”或“=”);用一个化学方程式说明B、D两元素形成的单质的氧化性强弱:_ ____。
(5)如图所示是R形成的晶体的晶胞,设晶胞的边长为acm。
试计算R 晶体的密度。
(阿伏加德罗常数用N A 表示)15.(1)体心立方 (2)ls 22s 22p 63s 23p 6,sp 3(3)三角锥形;氨分子间形成氢键,所以氨气比同族其它元素形成的氢化物沸点高 (4)>;H 2S +Cl 2=2HCl +S ↓ (5)33312-⋅cm g N a A19. 已知HCN 是一种极弱酸,其电离产生的CN -离子能与人体血红蛋白中心离子Fe 2+结合,因而有剧毒。
通常Fe 2+、Fe 3+均极易与CN -形成络离子:[Fe(CN)6]3-、[Fe(CN)6]4-,其中[Fe (CN )6]3-在中性条件下能发生水解,生成Fe(OH)3。
试回答下列问题:(1)写出HCN 分子的结构式_________________________________。
(2)[Fe(CN)6]3-在中性条件下水解可生成Fe(OH)3,同时还能生成的微粒有__ ___、__ ___。
(3)有一种蓝色晶体,其化学式可写作K a Fe(Ⅱ)b Fe(Ⅲ)c (CN)d (H 2O)e ,其中Fe(Ⅱ)、Fe(Ⅲ)分别代表Fe 2+、Fe 3+离子,晶体的理想结构特征是:(如图)①Fe 2+和Fe 3+分别占据每个立方体互不相邻的顶角上; (成②CN -离子以直线形排布在立方体的每条棱边....的中间,键方式为Fe 2+←C≡N→Fe 3+)③每个立方体的中心均被一个K +或者一个H 2O 分子占据。
综上所述,试判断:在该晶体的结构中,每个Fe 2+周围结合的C 原子围成的空间呈 形;此晶体组成中a ∶b ∶c ∶d ∶e =_______________________。
16.(1)H -C≡N (2)HCN 、CN-(3)正八面体 1∶1∶1∶6∶120.(1)据上表可推断,上述五种元素,处于周期表中同一族的是(填字母)。
A.X和Y B.Z和M C.M和N D.Y和M E.Y和N (2)电解它们熔融的最高价氧化物,阴极电极反应式正确的是(填字母)。
A.X2++2e-→X B.Y2++2e-→YC.Z3++3e-→Z D.M3++3e-→M E.N2++2e-→N (3)若X元素原子的最外层有2个P电子,则X的氢化物的化学键类型是,其空间构型是。
(4)M元素原子的最外层电子排布式是,Z元素的单质形成的晶体类型是。
14.(1)E (2)D(3)共价键、正四面体(4)ns2np1、金属晶体21.X、Y、Z、W为按原子序数由小到大排列的四种短周期元素,已知:①X元素原子价电子排布式为ns1,且原子半径是同族元素中最小的。
②Y元素是地壳中含量最多的元素;W元素的电负性略小于Y元素,在W原子的电子排布中,p轨道上只有1个未成对电子。
③Z元素的电离能数据见下表(kJ·mol-1):请回答:(1)X、Y、Z、W的名称分别为:、、、。
W的价电子排布为:。
(2)Z2Y中含有的化学键类型为,Z2Y2的晶体类型为。
(3)ZYX的电子式为,含有X与Y形成化合物的化学式为。
XWY属于(填“极性”或“非极性”)分子。
(4)X、W与原子序数比Y少1的元素M形成一种常见的盐。
该盐的名称为,化学式为,含有的化学键的类型为。
该盐溶液呈酸性的原因是(用离子方程式表示)。
17.(1)氢、氧、钠、氯;3s2sp5(2)离子键离子晶体(3)H2O和H2O2极性(4)氯化铵NH4Cl 离子键、极性共价键、配位键NH4++H23·H2O + H+22.把CoCl2溶于水后逐滴加氨水直到生成的Co(OH)2沉淀恰好溶解为止,得到[Co(NH3)6]2+。
此时,向溶液中通入空气,得到的产物中有一种其组成可用CoCl3·5NH3表示的配位化合物。