2014年上海市各区初三数学奉贤区二模卷及答案(已整理) (修复的)
- 格式:pdf
- 大小:557.71 KB
- 文档页数:9
2014年上海市初中毕业生统一学业考试模拟测试数学试卷参考答案 (2014.6)说明:1.解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照解答中评分标准相应评分;2.第一、二大题每题评分只有满分或零分;3.第三大题中各题右端所注分数,表示考生正确做到这一步可得到的分数; 4.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定后继部分的给分,但原.则上不超过后继部分应得分数的一半................. 一、填空题(本大题共6题,每题4分,满分24分)1. B ;2. A ;3. A ;4. B ;5. C ;6. C . 二、选择题(本大题共12题,每题4分,满分48分)7.⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛+23234x x ; 8.3->x ; 9.1-; 10.75; 11.︒1440; 12.1)2(22+-=x y ; 13.554或3148; 14.b a 6161+; 15.12; 16.213±; 17.如1-=k 等,不唯一; 18.()a 12±.三、解答题(本大题共7题,满分78分) 19.解:原式aba b a b a b b a +⋅-+-+=))((………………………………………………………(3分) ba -=1………………………………………………………………………(6分) 将2=a 、1=b 代入,上式12121+=-=……………………………(10分)20.解:1232322--=+-x x x x …………………………………………………………(2分) 0322=-+x x ……………………………………………………………………(3分) ()()0132=-+x x …………………………………………………………………(5分)解得:231-=x ,12=x …………………………………………………………(7分) 经检验,当1=x 时,方程无解,舍去……………………………………………(9分)故原方程的解为23-=x …………………………………………………………(10分) 21.解:(1)22……………………………………………………………………………(2分) (2) 过O 作AB OD ⊥、过C 作OB CE ⊥,D 、E 为垂足 由题意可知:︒=∠=∠45B A22)32(2222222=+⋅==∴AO OD ……………………………(3分))32,2(A 3232tan ==∠AOC ︒=∠︒=∠∴30,60COB AOC设x EB CE ==,则x EO 3=,x OB )13(+=4)13(=+∴x 解得)13(2-=x ………………………………………(4分) )13(42-==∴x OC426sin +==∠OC OD OCA ………………………………………………(5分) (3) 过A 、B 分别作x 轴的垂线,D 、E 为垂足;过O 作AB OF ⊥,F 为垂足 ︒=90AOB ︒=∠+∠∴90COB AOC 又︒=∠+∠90OAD AOC OAD COB ∠=∠∴易证BOE OAD ∆≅∆,m BE OD ==、n OE AD ==),(m n B -∴ ……………………………………………………………………(6分)因而可求得直线AB 解析式为n m nm x n m n m y -+-⎪⎭⎫ ⎝⎛-+=22…………………(7分) 令0=y 则n m n m x ++=22 即nm n m OC ++=22……………………………… (8分)又由(2)同理可得2222n m OF +⋅=)(2)()(2sin 2222n m n m n m OC OFOCA ++⋅+==∠∴……………………………(10分)22.证明:连接GE ;过A 作BC AH ⊥,H 为垂足 47103422=+⋅=+=BC AD S AH ABCD ,3=-=AD BC BH ……………………(2分)522=+=∴BH AH AB ……………………………………………………(3分) F 为AE 中点xyOABC DExyOABC DE FEF AF =∴易证EBF AGF ∆≅∆,BE AG =……………………………………………(4分) E 为BC 中点, AB BE ==∴5ABEG ∴为菱形,GBC ABG ∠=∠,︒=∠90BFE ……………………(6分) 又CE AG //且CE AG =AECG ∴为平行四边形,GC AE //……(7分) D BFE BGC ∠=︒=∠=∠∴90……(8分) GCB DGC ∠=∠CBG GCD ∠=∠∴…………(9分) GCD ABC ∠=∠∴2………(10分) 23.解:(1) 当100≤≤x 时,设函数解析式为)0(2≠++=a c bx ax y将点)20,0(、)39,5(、)48,10(代入⎪⎩⎪⎨⎧=+=+=28101001952520b a b a c 解得⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=2052451c b a20524512++-=∴x x y ……………………………………………………(1分) 当2010≤≤x 时,由于函数图像为平行于x 轴的线段,故函数解析式为48=y ………………………………………………………(2分)当20≥x 时,设函数解析式为)0(≠=k xky 将点)48,20(代入解得960=k xy 960=∴……………………………………………………………………(3分) 画图正确………………………………………………………………………(4分)(2) 将6=x 代入20524512++-=x x y ,解得5208=y ……………………(5分) 将25=x 代入x y 960=,解得5192=y ……………………………………(6分)51925208> 故第6分钟学生的听课注意力更集中………………………………………(8分)(3) 把36=y 代入20524512++-=x x y 解得41=x ,202=x (不符题意,舍去)……………………………………(9分)F ABCEGDH把36=y 代入x y 960= 解得380=x ……………………………………(10分) 243684380<=-∴…………………………………………………………(11分) 故老师无法经过适当的安排,从而能使学生在听这道题时的听课注意力指数都不 低于36.…………………………………………………………………………(12分)25.解:(1)ADEF的值保持不变,证明过程如下:………………………………………(1分) 【解法一】延长FO 、DB ,相交于点G BD AB = ,D A ∠=∠∴ 易证AFO RT ∆∽DFG RT ∆DGAODF AF =∴,G AOF ∠=∠……………………………………………(2分) 又BOG AOF ∠=∠,G BOG ∠=∠∴,5==BO BG ………………(3分)315105=+=+=∴BG DB AO DF AF 又由垂径定理可知EF AF =41=+=∴DF AF AF AD EF ,是定值…………………………………………(4分) 【解法二】连接OE 、BE OB OE AO ==AEO EAB ∠=∠∴、EBO OEB ∠=∠︒=∠+∠=∠∴90OEB AEO AEB …………………………………………(2分) 又BD AB =E ∴为AD 中点,ED AE =………………………………………………(3分) 由垂径定理可知EF AF =4142===∴EF EF AE EF AD EF ,是定值………………………………………(4分). OA BCF E DG. OABCFE D(2) 连接AC 、CE ,并过E 作CD EG ⊥,G 为垂足 由(1)同理可证︒=∠90ACD 又由(1)可知E 为AD 中点【注:若上述结论在(1)中未证明,则需在(2)中给予证明】ED AD CE ==∴21…………………………………………………………(5分) y CD DG 2121==∴…………………(6分) 易证AFO RT ∆∽DGE RT ∆AODEAF DG =∴………………(7分) 5221x x y=∴ 整理得254x y =……………(9分)(3) 若圆F 与圆D 相切,这里只存在外切的可能……………………………(10分) 若两圆外切,则DE DC =易证DCE ∆为等边三角形,︒=∠60DABD ∆∴也为等边三角形,10==BD AD ………………………………(11分)521===∴AD AE BC ……………………………………………………(12分) 故当50<<BC 时,圆F 与圆D 相交;…………………………………(13分) 当5=BC 时,圆F 与圆D 相切;当105<<BC 时,圆F 与圆D 相离.…………………………………(14分). OA BCF ED G。
2014年期中考试复习试卷1.下列函数中,属于二次函数的是( )A .32-=x y ;B .22)1(x x y -+=;C .x x y 722-=;D .22x y -=. 2.已知32=y x ,那么下列等式中不正确的是( ) A .y x 23=; B .23=x y ; C .3232=++y x ; D .25=+y y x .3.已知△ABC 中,D 、E 分别是边BC 、AC 上的点,下列各式中,不能判断DE ∥AB 的是( ) A .AE BD EC DC =; B .AE BD AC BC =; C .AC EC BC DC =; D .DE CEAB AC =. 4.对一个图形进行放缩时,下列说法中正确的是( )A .图形中线段的长度与角的大小都保持不变;B .图形中线段的长度与角的大小都会改变;C .图形中线段的长度可以改变、角的大小保持不变;D .图形中线段的长度保持不变、角的大小可以改变.5.把抛物线22y x =--平移后得到抛物线2y x =-,平移的方法可以是( ) A .沿y 轴向上平移2个单位; B .沿y 轴向下平移2个单位; C .沿x 轴向右平移2个单位; D .沿x 轴向左平移2个单位.6.如果二次函数c bx ax y ++=2的图像如图所示,那么下列判断中,不正确的是( )A .0>a ;B .0>b ;C .0>c ;D .0<++c b a . 二、填空题:(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置】7.AB 两地的实际距离是24千米,那么,在比例尺是1:800000的地图上量出AB 两地距离是 厘米; 8.如果将抛物线1)1(22-+=x y 沿x 轴向右平移2个单位,那么所得新的抛物线的表达式是 ; 9.已知二次函数2)2(+=x y ,它的图像在对称轴 (填“左侧”或“右侧”)的部分是下降的; 10.已知:在△ABC 中,点D 、E 分别在边AB 、AC 上,DE ∥BC ,AD =2DB ,BC =6,那么DE = ;11.己知抛物线y 21mx x =-+(m 为常数)的顶点是最低点,那么m ;12.把长度为10cm 的线段进行黄金分割,那么较长线段的长是 cm ;13.抛物线bx x y +=2的对称轴直线21-=x ,那么抛物线的解析式是 ; 14.抛物线1)1(22--=x y 与y 轴的交点坐标是 ;15.在△ABC 中,AB =AC ,如果中线BM 与高AD 相交于点P ,那么ADAP= ; 16.如图,光源P 在水平放置的横杆AB 的正上方,AB 在灯光下的影子CD水平状态.AB =4m ,CD =12m ,点P 到CD 的距离是3.9m ,那么AB 与CD 的距离是 m ;第16题图第6题图B17.已知抛物线c x x y +-=22经过点),1(1y A -和),2(2y B ,比较1y 与2y 的大小:1y 2y (选择“>”或“<”或“=”填入空格);18.边长为8的正方形ABCD 中,点P 在BC 边上,CP =2,点Q 为线段AP 上的动点,射线BQ 与矩形ABCD 的一边交于点R ,且AP =BR ,那么QRBQ= ; 三、解答题:(本大题共7题,满分78分)19.(本题满分10分,(1)小题满分5分,(2)小题满分5分)已知:如图AB//CD//EF ,AC 、BD 相交于点O ,E 在AC 上,F 在BD 上,且AE :EC =2:3,BD =10.(1)求BF 的长;(2)当AB =12,CD =8时,求EF 的长.20.(本题满分10分,每小题满分各5分)在平面直角坐标系xOy 中,抛物线n mx x y ++-=2经过点A (4,﹣1(1)求抛物线的表达式及对称轴;(2)该抛物线对称轴与抛物线交于点C ,连结BA 、BC ,求△ABC21.(本题满分10分,每小题满分各5分)已知,如图,点D 为△ABC 内一点, E 、F 、G 点分别为线段AB 、AC 、AD 上一点,且EG ∥BD ,GF ∥DC . (1)求证:EF ∥BC ;(2)当43=BE AE 时,求EFG BCD S S ∆∆的值22.(本题满分10分,(1)小题满分6分,(2)小题满分4分)我市某工艺品厂生产一款工艺品.已知这款工艺品的生产成本为每件60元.经市场调研发现:该款工艺品每天的销售量y (件)与售价x (元)之间存在着如下表所示的一次函数关系.OBA DC第19题图FE第20题图 第21题图(利润=(售价-成本价)×销售量)(1)求销售量y (件)与售价x (元)之间的函数关系式;已知:矩形ABCD 中,AB =9,AD =6,点E 在对角线AC 上,且满足AE =2EC ,点F 在线段CD 上,联结FE 并延长,交线段AB 于点M ,交直线BC 于点N .(1)当CF =2时,求线段BN 的长;(2)若设CF =x ,△BNE 的面积为y ,求y 关于x 的函数解析式,并写出自变量的取值范围; (3)试判断△BME 能不能成为等腰三角形,若能,请求出x 的值,若不能,请说明理由.奉贤区初三调研考数学卷参考答案 2014.11一 、选择题:(本大题共6题,满分24分)1.C ; 2.D ; 3.D ; 4.C ; 5.A ; 6.B ;B C第25题图B C 备用图1 B C 备用图2二、填空题:(本大题共12题,满分48分)7.3; 8.1)1(22--=x y ; 9.左; 10.4; 11.m >0; 12.555-; 13.x x y +=2; 14.(0,1); 15.32; 16.2.6; 17.>; 18.1或1213; 19、(本题满分10分,每小题满分各5分)解:(1)∵AB //CD //EF ∴ 32==EC AE FD BF …………………………………………………(1分)设BF =2k ,FD =3k , …………………………………………………………………………(1分)∵ BD =2k +3k =10 ∴ k =2……………………………………………………………………(1分) ∴ BF =4,FD =6.………………………………………………………………………………(1分)(2)∵EF CD AB ////,AB =6,CD =4 ∴ODOFDC EF =,23812===DC AB OD BO ,……………(2分) ∴ BO =6,OD =4. ∴ OF =2 ……………………………………………………………(2分) ∴428=EF ∴EF =4………………………………………………………………………(1分) 20.(本题满分10分,每小题满分各5分)解:把A (4,﹣1),B (1,2)代入抛物线n mx x y ++-=2中, ⎩⎨⎧=++--=++-211416n m n m ………………………………………………………………………(1分)解得⎩⎨⎧-==14n m ……………………………………………………………………………………(2分)∴ 抛物线的表达式142-+-=x x y ……………………………………………………………(1分)()()32144422+--=--+--=x x x∴抛物线的对称轴是直线x =2………………………………………………………………………(1分) (2)由题意可知:C 是抛物线的顶点,坐标是(2,3)……………………………………………………(1分)∵A (4,﹣1),B (1,2).()()()()()()23221203124182114222222222=-+-==--+-==--+-=BC AC AB ∴222AB BC AC +=………………………………………(1分)∴△ABC 是直角三角形。
2014年九年级中考模拟考试数学试题参考答案及评分建议说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神酌情给分.一、选择题(本大题共有8小题,每小题3分,共24分)二、填空题(本大题共有10小题,每小题3分,共30分)9.1x ≠- 10.66.34410⨯ 11.2 12.20<<y 13.乙14.2m a - 15 16.245 17.3218.注:12题写y<2扣1分三、解答题(本大题共有10小题,共96分.解答时应写出文字说明、证明过程或演算步骤)19.(1)(1)原式= 23 —4 …………………………………………4分(2)移项配方得:2(2)5x -= ………………………………………2分解之得:1222x x ==………………………………4分20.原式=122122+--÷--x x x x x ……………………………………………………2分 =1+-x ……………………………………………………4分解不等式组得 12x -<≤, …………………………………………6分 符合不等式解集的整数是0,1,2. ……………………7分 当0x =时,原式2= ……………………………………………………8分21.解:(1)列表或画树状图正确(略) …………………………………………4分 ∴P (两次都是红色)=1/9 . …………………………………………………6分(2)两次都是白色或两次一红一白。
…………………………8分22.(1)5 8 图略 …………………………………………………3分(2)95(1分) 95 (2分) …………………………………………………6分(3)54 …………………8分23.证明:(1)∵ BC = CD ,∴ ∠CDB =∠CBD .∵ AD // BC ,∴ ∠ADB =∠CBD .∴ ∠ADB =∠CDB .……………1分又∵ AB ⊥AD ,BE ⊥CD ,∴ ∠BAD =∠BED = 90°. ………2分在△ABD 和△EBD 中,∵ ∠ADB =∠CDB ,∠BAD =∠BED ,BD = BD ,∴ △ABD ≌△EBD . ………………………………………………4分∴ AD = ED . ………………………………………………………5分(2)∵AF // CD ,∴ ∠AFD =∠EDF . ∴∠AFD =∠ADF ,即得 AF = AD .又∵ AD = ED ,∴ AF = DE . …………………………………7分于是,由 AF // DE ,AF = DE ,得四边形ADEF 是平行四边形. ……9分又∵ AD = ED ,∴ 四边形ADEF 是菱形. ………………………10分24.(1)在Rt △BOP 中 ,∠BOP =90°,∠BPO =45°,OP =100,∴OB=OP =100.…………………………………………………………………2分在Rt △AOP 中, ∠AOP =90°,∠APO =60°,tan AO OP APO ∴=⋅∠. AO ∴=. …………………………………4分∴1031)AB =(米). ………………………………………………6分(2)v 此车速度1)=250.7318.25≈⨯=(米/秒) . ………8分 18.25米/秒 =65.7千米/小时. ……………………………………9分65.770<, ∴此车没有超过限制速度. ………………………………………………10分25.(1)设乙队在2≤x ≤6的时段内y 与x 之间的函数关系式为y =kx +b , ……1分由图可知,函数图象过点(2,30)、(6,50),∴⎩⎨⎧=+=+506302b k b k 解得⎩⎨⎧==205b k ……………………………………………4分 ∴y =5x +20. ……………………………………………………………………5分(2)由图可知,甲队速度是:60÷6=10(米/时). ……………………………6分设甲队从开始到完工所铺设彩色道砖的长度为z 米,依题意,得6050.1012z z --= ……………………………………………………8分解得 z =110. ………………………………………………………9分答:甲队从开始到完工所铺设彩色道砖的长度为110米. …………10分26.(1)证明:连接AE ………………………………………………………1分∵AB 为⊙O 的直径,∴∠AEB =90°∴∠BAE +∠ABE =90° …………………2分∵AB =AC ,AE ⊥BC ∴AE 平分∠BAC ∴CBF BAC BAE ∠=∠=∠21 ………3分 ∴︒=∠+∠90ABE CBF ∴AB ⊥BF∴BF 为⊙O 的切线 ………………………………………………………5分(2)过点C 作CG ⊥BF , ………………………………………………………6分在Rt △ABF 中1022=+=BF AB AF∵AC =6 ∴CF =4 ………………7分∵CG ⊥BF ,AB ⊥BF ∴CG ∥AB∴△CFG ∽△AFB ………………8分 ∴ABCG BF GF AF CF == G∴512516==CG CF , ∴5245168=-=-=GF BF BG ………………………………9分 在Rt △BCG 中21tan ==∠BG CG CBF ………………………………………………10分27.(1)等腰三角形 …………………………………3分(2)因为抛物线y=-x2+bx (b >0)过原点,设抛物线顶点为B 点,抛物线与X 轴的另一交点为A 点,若“抛物线三角形”是等腰直角三角形,△OAB 中,∠OBA=90°,抛物线的对称轴是x=b/2,B 点坐标为(b/2,b/2)代入函数表达式,算出b=2 …………3分(3)存在,(略) …………4分(4)m=2 …………………………………2分28.解:(1)由题意可知 44m =,1m =.(1分)∴ 二次函数的解析式为24y x =-+.∴ 点A 的坐标为(- 2, 0). …………………………………3分(2)①∵ 点E (0,1),由题意可知, 241x -+=.解得 x = AA …………………………………5分②如图,连接EE ′.由题设知AA ′=n (0<n <2),则A ′O = 2 - n .在Rt △A ′BO 中,由A ′B 2 = A ′O 2 + BO 2,得A ′B 2 =(2–n )2 + 42 = n 2 - 4n + 20. …6分∵△A ′E ′O ′是△AEO 沿x 轴向右平移得到的,∴EE ′∥AA ′,且EE ′=AA ′.∴∠BEE ′=90°,EE ′=n .又BE =OB - OE =3.∴在Rt △BE ′E 中,BE ′2 = E ′E 2 + BE 2 = n 2 + 9, ……………………7分∴A ′B 2 + BE ′2 = 2n 2 - 4n + 29 = 2(n –1)2 + 27. ……………………8分当n = 1时,A ′B 2 + BE ′2可以取得最小值,此时点E ′的坐标是(1,1). ………9分③如图,过点A 作AB ′⊥x 轴,并使AB ′ = BE = 3.易证△AB ′A ′≌△EBE ′,∴B ′A ′ = BE ′,∴A ′B + BE ′ = A ′B + B ′A ′.………………10分当点B ,A ′,B ′在同一条直线上时,A ′B + B ′A ′最小,即此时A ′B +BE ′取得最小值.易证△AB ′A ′∽△OBA ′, ∴34AA AB A O OB ''==',∴AA ′=36277⨯=,∴EE ′=AA ′=67, …………………11分 ∴点E ′的坐标是(67,1). ……………………………………12分。
崇明县2014学年第二学期教学调研卷九年级数学参考答案及评分说明一、选择题(本大题共6题,每题4分,满分24分) 1.D ; 2.C ;3.A ; 4.B ; 5.D ; 6.C .二、填空题:(本大题共12题,每题4分,满分48分)7.(2)(2)x x x +- 8.1 9.2 10. 10 11. 2320y y -+= 12.2513. 540 14.22b a -15.216.[]68, 18. 35三、解答题:(本大题共7题,满分78分) 19.(本题满分10分) 先化简,再求值:2122121x x x x x x +-÷+--+,其中6302x tan =-. 解:原式=21(1)212x x x x x --+-+ ……………………………………………………2分 122x x x x -=-++ ………………………………………………………2分 12x =+ ………………………………………………………………2分∵6302x tan =-6223=⨯-= ………………………………………2分 ∴原式6=………………………………………………………………2分 20. (本题满分10分)解方程组:222230x y x xy y -=⎧⎨--=⎩ (1)…(2) 解:由(2)可得:(3)()0x y x y -+=∴30x y -=,0x y += ………………………………2分∴原方程组可化为:230x y x y -=⎧⎨-=⎩,2x y x y -=⎧⎨+=⎩ …………………………4分解得原方程组的解为1131x y =⎧⎨=⎩,2211x y =⎧⎨=-⎩ ………………………………4分21.(本题满分10分,第(1)小题5分、第(2)小题5分)(1)解:909oBAC AC ∠==∵, 93cos 5AC C AB BC ===∴ …………………………………………1分 15BC =∴ ………………………………………………………………2分 90oBAC ∠=∵,点E 是BC 的中点 11522AE BC ==∴ ……………………………………………………2分 (2)解:AD BC ⊥∵ 90oADC ADB ∠=∠=∴3cos 95CD CD C AC ===∴ 275CD =∴ …………………………………………………2分∵点E 是BC 的中点,BC=15 ∴CE=152 ∴DE=2110………………………………………1分 ∵90oADB ∠= ∴sin DAE ∠=2127101525DE AE =⨯= ……………………………2分 22. (本题满分10分,第(1)小题4分,第(2)小题6分)(1) 20;0.5 ……………………………………………………………各2分 (2)解:设小明出发x 小时的时候被妈妈追上.420(1)10203()3x x -+=⨯- ……………………………………3分解得:74x =……………………………………………………1分 ∴320(1)102010254x -+=⨯+= ……………………………1分答:当小明出发74小时的时候被妈妈追上,此时他们离家25千米.…1分23.(本题满分12分,每小题各6分)(1)证明:∵点D 、E 分别是BC 、AC 的中点∴DE//AB ,BC=2BD …………………………………………………1分 ∵AF//BC∴四边形ABDF 是平行四边形 ……………………………………………2分 ∵BC=2AB∴AB=BD …………………………………………………………………1分 ∴四边形ABDF 是菱形. …………………………………………………2分(2)证明:∵四边形ABDF 是菱形 ∴AF=DF∵点G 是AF 的中点 ∴FG=12AF ∵点E 是AC 的中点 ∴AE=CE ∵AF//BC ∴1EF AEDE CE== ∴EF=12DF , ∴FG=EF ……………………………………………………………1分 在△AFE 和△DFG 中AF DF F F EF GF =⎧⎪∠=∠⎨⎪=⎩∴△AFE ≌△DFG (S.A.S )∴∠FAE=∠FDG ………………………………………………………1分 ∵AF//BC ∴∠FAE=∠C∴∠FDG=∠C ………………………………………………………1分 又∵∠EHD=∠DHC (公共角)∴△HED ∽△HDC ……………………………………………………2分 ∴HE HDHD HC= ∴2DH HE HC = ………………………………………………………1分 24.(本题满分12分,每小题各6分)(1)解:∵抛物线2y ax bx c =++经过点(0,4)A -,点(2,0)B -,点(4,0)C∴44201640c a b c a b c =-⎧⎪-+=⎨⎪++=⎩……………………………………………………1分解得方程组的解为1214a b c ⎧=⎪⎪=-⎨⎪=-⎪⎩………………………………………………2分∴这个抛物线的解析式为:2142y x x =-- ………………………………1分 顶点为9(1,)2- ……………………………………………………………2分(2)如图:取OA 的中点,记为点N ∵OA=OC=4,∠AOC=90° ∴∠ACB=45°∵点N 是OA 的中点 ∴ON=2 又∵OB=2 ∴OB=ON 又∵∠BON=90° ∴∠ONB=45° ∴∠ACB=∠ONB ∵∠OMB+∠OAB=∠ACB ∠NBA+∠OAB=∠ONB∴∠OMB=∠NBA ………………………………………………………………2分 1° 当点M 在点N 的上方时,记为M 1 ∵∠BAN=∠M 1AB ,∠NBA=∠OM 1B , ∴△ABN ∽△AM 1B ∴1AN ABAB AM = 又∵AN=2,∴110AM = 又∵A (0,—4)∴1(0,6)M ………………………………………………………………………2分 2° 当点M 在点N 的下方时,记为M 2点M 1与点M 2关于x 轴对称,∴2(0,6)M - ……………………………………2分 综上所述,点M 的坐标为(0,6)或(0,6)-25.(本题满分14分,第(1)小题5分,第(2)小题5分,第(3)小题4分) (1)解:过点P 作PH ⊥AD ,垂足为点H∵∠ACB=90°,43tanB = ∴35sinA =∵PA x = ∴35PH x = ∵∠PHA=90° ∴222PH AH PA += ∴45AH x =……………………1分 ∵在⊙P 中,PH ⊥弦AD ∴45DH AH x ==, ∴85AD x = 又∵AC=8 ∴885CD x =- ………………………………………………1分∵∠PHA=∠BCA=90°,∴PH ∥BE ∴PH DHCE CD = ∴3455885x xy x=- ……………………………1分 ∴665y x =- (x 0<<5) (1)(2)∵PA=PD ,PH ⊥AD ∴∠1=∠2 ∵PH ∥BE∴∠1=∠B ,∠2=∠3 ∴PB=PE ∵Q 是BE 的中点∴PQ ⊥BE ………………………………………………………………………1分 ∴43PQ tanB =BQ = ∴35BQ cosB =BP = ∵PA x = ∴10PB x =- ∴365BQ x =-, 485P Q x =- 1°当⊙Q 和⊙P 外切时:PQ=AP+BQ∴438655x x x -=+- …………………………………………………………1分 53x = …………………………………………………………………1分2°当⊙Q 和⊙P 内切时,此时⊙P 的半径大于⊙Q 的半径,则PQ=AP —BQ ∴438(6)55x x x -=-- …………………………………………………………1分 321HQABP CED356x =……………………………………………………………………1分 ∴当⊙Q 和⊙P 相切时,⊙P 的半径为53或356.(3)当△PMC 是等腰三角形,存在以下几种情况:1°当MP=MC x =时 ,∵336(6)55QC x x =--= ∴45MQ x =若M 在线段PQ 上时,PM+MQ=PQ∴44855x x x +=- 4013x = ……………………………………………………………………1分若M 在线段PQ 的延长线上时,PM —MQ=PQ ∴44855x x x -=- 8x = …………………………………………………………………………1分 2°当CP=CM 时 ∵CP=CM ,CQ ⊥PM∴PQ=QM=1122PM x = ∴41852x x -=8013x = …………………………………………………………………………1分3°当PM=PC x =时∵AP x = ∴PA=PC 又∵PH ⊥AC ∴AH=CH ∵PH ∥BE∴1AP AHBP CH == ∴110xx=- 5x = …………………………………………………………………………1分 综上所述:当△PMC 是等腰三角形时,AP 的长为4013或8013或5或8.奉贤区初三调研考数学卷参考答案 201504一 、选择题:(本大题共8题,满分24分)1.B ; 2.D ; 3.A ; 4.C ; 5.B ; 6.D . 二、填空题:(本大题共12题,满分48分)7.b a 725-; 8.)3)(5(+-x x ; 9.1; 10.7104.9-⨯; 11.1->k ; 12.72; 13.减小; 14.9;15.32+; 16.50; 17.2或1; 18.20°.三.(本大题共7题,满分78分) 19. (本题满分10分)解:原式=1222223-+--+. (2)= 122+. ………………………………………………………………………2分 20. (本题满分10分)解:由①得:2x >- .………………………………………………………………………2分由②得:4x ≤ .………………………………………………………………………2分 所以,原不等式组的解集是24x -<≤.……………………………………………2分 数轴上正确表示解集. ………………………………………………………………2分所以,这个不等式组的最小整数解是-1.…………………………………………2分21. (本题满分10分)(1)过点A 作AH ⊥BC 于点H ………………………………………………………………1分 ∵ AB=AC ,BC =4 ∴BH =21BC =2 在△ABH 中,∠BHA=90°, ∴sin ∠BAH =31=AB BH …………………………………2分∵ DE 是AB 的垂直平分线 ∴∠BED=90° BE=3 ∴∠BED=∠BHA又∵∠B=∠B ∴∠BAH=∠D …………………………………………………1分∴sin ∠D= sin ∠BAH=13……………………………………………………………1分 即∠D 的正弦值为13(2)解:过点C 作CM ⊥DE 于点M ………………………………………………………1分在△BED 中,∠BED=90°, sin ∠D =13, BE=3 ∴BD =9sin =∠DBE∴CD=5………………………………………………2分在△MCD 中,∠CMD=90°, sin ∠D =31=CD CM ∴CM=35.…………………2分即点C 到DE 的距离为3522.(本题满分10分)解:设七年级人均捐款数为x 元,则八年级人均捐款数为)4(+x 元 .…………………1分 根据题意,得4%)201(1000251000++=-x x . ……………………………………4分 整理,得 0160122=-+x x . ……………………………………………1分解得 20,821-==x x .……………………………………………………2分经检验:20,821-==x x 是原方程的解,0202<-=x 不合题意,舍去.………… 1分 答:七年级人均捐款数为8元.……………………………………………………………1分 23.(本题满分12分,每小题满分各6分) 证明:(1)CA CE CD ⋅=2 ∴CACDCD CE =∵∠ECD =∠DCA ∴△ECD ∽△DCA ……………………………………………2分 ∴∠ADC =∠DEC ∵∠DEC =∠ABC ∴∠ABC =∠ADC …………………1分∵AB ∥CD ∴∠ABC+∠BCD=1800 ∠BAD+∠ADC =1800∴∠BAD =∠BCD ………………………………………………………………………2分 ∴四边形ABCD 是平行四边形 ………………………………………………………1分 (2)∵ EF ∥AB BF ∥AE ∴四边形ABFE 是平行四边形∴ AB ∥EF AB=EF …………………………………………………………………2分 ∵四边形ABCD 是平行四边形 ∴ AB ∥CD AB=CD ∴CD ∥EF CD=EF∴四边形EFCD 是平行四边形 ………………………………………………………2分 ∵CD ∥EF ∴∠FEC=∠ECD 又∵∠DCE=∠FCE ∴∠FEC=∠FCE ∴EF=FC∴平行四边形EFCD 是菱形 …………………………………………………………2分24.(本题满分12分,每小题4分)(1)∵ 抛物线x ax y +=2的对称轴为直线x =2.∴221=-a ∴41-=a .……………………………………………………………1分 ∴抛物线的表达式为:x x y +-=241.…………………………………………………1分∴顶点A 的坐标为(2,1). ……………………………………………………………2分 (2)设对称轴与x 轴的交点为E .①在直角三角形AOE 和直角三角形POE 中, AE OE OAE =∠tan ,OEPEEOP =∠tan ∵OA ⊥OP ∴EOP OAE ∠=∠ ∴OEPEAE OE =……………………………2分 ∵AE =1,OE=2 ∴PE=4 …………………………………………………………1分 ∴OP=524222=+ ……………………………………………………………1分②过点B 作AP 的垂线,垂足为F ………………………………………………………1分 设点B (a a a +-241,),则2-=a BF ,a a EF -=241 在直角三角形AOE 和直角三角形POB 中,OE AE OAE =∠cot ,OPBPOBP =∠cot ∵OBP OAE ∠=∠, ∴21==OP BP OE AE ∵PEO BFP ∠=∠,POE BPF ∠=∠ ∴△BPF ∽△POE , ∴OEPFPO BP PE BF == ∵OE=2, ∴PF=1,1412+-=a a PE ∴2114122=+--a a a解得101=a ,22=a (不合题意,舍去)…………………………………………2分 ∴点B 的坐标是(10,-15).……………………………………………………………1分 25.解:(1)作AH ⊥CD ,垂足为点H ……………………………………………………1分∵ CD=6 ∴321===CD DH CH …………………………………………………1分 ∵AD=5 ∴ AH=4 ………………………………………………………………1分 ∴28)(21=⋅+=AH AB CD S ABCD 梯形……………………………………………1分(2)作CP ⊥AB ,垂足为点P ∵⊙A 中,AH ⊥CD ,CD= x∴x CH 21=∴x CH AP 21==…………… ………………………………1分 ∴x BP 218-= ……………………………… ………………………………1分 222DH AD AH AHD Rt -=∆中,24125x -=∴2224125x AH CP -== …………………… ………………………………1分 在222BP CP BC BPC Rt +=∆中, 即222)218()4125(x x y -+-= 解得:()100889≤<-=x xy ………………………………………………2分(3)设AH 交MN 于点F ,联结AE∵ BC 的中点为M ,AD 的中点为N ∴MN ∥CD∵CE ∥AD ∴DC=NE=x ………………………………………………………………1分 ∵MN ∥CD ∴AD AN DH NF =∵ 2xDH = ∴4x NF = ∴43x EF =……1分 在直角三角形AEF 和直角三角形AFN 中222EF AE AF -= 222NF AN AF -= ∴2222)43(5)4()25(x x -=- ∴265=x …………………………………………………………………2分 即当CD 长为265时,CE//AD .黄浦区2015年九年级学业考试模拟考数学参考答案与评分标准一、选择题:(本大题共6题,每题4分,满分24分) 1. C ; 2. C ; 3.B ; 4. D ; 5. B ; 6. D . 二、填空题:(本大题共12题,每题4分,满分48分)7. 4a ; 8. 22(2)x -; 9. 21(1)(1)x x x ++-; 10. 3x =; 11. 2a <;12. 40%; 13.14 ; 14. 3; 15.16. 1123a b - ; 17. 15︒;18. .三、解答题:(本大题共7题,满分78分) 19. (本题满分10分) 原式=))1211+-+………………………………………………………(8分)=1. ………………………………………………………………………………(2分)20. (本题满分10分)解:由②得 1x y =+.③ ……………………………………………………(2分)将③代入①得22(1)22y y +-=-.………………………………………………………(1分)整理,得 2230y y --=.……………………………………………………………(2分)解得 11y =-,23y =. …………………………………………………………(2分)代入③得 10x =,24x =.………………………………………………………………(2分)所以,原方程的解是110,1;x y =⎧⎨=-⎩214,3.x y =⎧⎨=⎩…………………………………………………(1分)21. (本题满分10分,第(1)满分7分,(2)小题满分3分) 解:(1)设函数解析式为y kx b =+(0k ≠). ……………………………………………(2分)由0x =时,32y =, 得 320k b =⋅+.…………………………………………(1分)解得 32b = . ………………………………………………(1分)由100x =时,212y =,得 2121003k =+. ……………………………………(1分) 解得 95k =. ……………………………………………………(1分)∴y 关于x 的函数解析式是9325y x =+. ………………………………………………(1分)(2)将5x =-,代入9325y x =+,得9(5)325y =⋅-+. …………………………………(1分)解得 23y =. …………………………………………………………………(1分)∴这天的最低气温是23F . ……………………………………………………………(1分)22. (本题满分10分,第(1)、(2)小题满分各5分) 解:(1)设AB x =.∴ 4cot 3BC AB ACB x =⋅∠=. …………………………………………………………(1分)由题意得431(2)92x x +⋅=. …………………………………………………………(2分)解得1293, 2x x ==-(舍). …………………………………………………………(1分)所以AB 的长为3. ………………………………………………………………………(1分)(2)过点D 作DE ⊥AC ,垂足为E .…………………………………………………………(1分)在Rt △ABC 中,AB =3,BC =4,∴5AC ==. ……………………………………………………………(1分)∴ 3sin 5AB ACB AC∠==,4cos 5BC ACB AC∠==. ……………………………………(1分)∵AD //BC ,∴DAC ACB ∠=∠. 在Rt △AED 中,AD =2,s i n 56D E A DD A C =⋅∠=,cos 58AE AD DAC =⋅∠=.………………………………(1在Rt△CED中,665tan81755DEACDCE∠===-.………………………………………(1分)23. (本题满分12分,第(1)、(2)小题满分各6分)证明:(1)∵四边形ABCD是正方形,∴AD=CD. ……………………………………………………………………………(1分)∴DAE DCG∠=∠.……………………………………………………………………(1分)∵DE=DG,∴DEG DGE∠=∠.………………………………………………………(1分)∴AED CGD∠=∠.……………………………………………………………………(1分)在△AED与△CGD中,DAE DCG∠=∠,AED CGD∠=∠,AD=CD,∴△AED≌△CGD.……………………………………………………………………(1分)∴AE=CG. ……………………………………………………………………………(1分)(2) ∵四边形ABCD是正方形,∴AD//BC. ………………………………………………………………………………(1分)∴CG CFAG AD=. …………………………………………………………………………(1分)∵AE=CG.∴AC AE AC CG-=-,即CE=AG. ……………………………………………………………………………(1分)∵四边形ABCD是正方形,∴AD=BC. ……………………………………………………………………………(1分)∴CG CFCE BC=. …………………………………………………………………………(1分)∴BE//DF. ……………………………………………………………………………(1分)24. (本题满分12分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分5分)解:(1)∵反比例函数12yx=的图像经过横坐标为6的点P,∴点P的坐标为(6,2).………………………………………………………(1分)设直线AO的表达式为y kx=(0k≠).…………………………………………(1将点P (6,2)代入y kx =,解得13k =.∴所求反比例函数的解析式为13y x =.………………………………………………(1分)(2)∵AB //x 轴,∴点B 纵坐标为3,将3y =代入12y x=,解得 4x =. ∴点B 坐标为(4,3).…………………………………………………………………(1分)∵AB =BO ,∴4a -解得9a =. ……………………………………………………………………………(2分)∴点A 坐标为(9,3).…………………………………………………………………(1分)(3)不变.延长AB 交y 轴于点D ,延长AC 交x 轴于点E , ∴32ADO AEO S S a ∆∆==.……………………………………………………………………(1分)∵点C 坐标为(a ,12a).∴6CEO S ∆=,同理6BDO S ∆=,…………………………(1分) ∴ADO BDO AEO CEO S S S S ∆∆∆∆-=-,即ABO ACO S S ∆∆=.……………………………………(1分)∵△ABP 与△ABO 同高,∴ABP ABO S APS AO∆∆=.……………………………………………(1分)同理ACP ACO S AP S AO ∆∆=.∴1ABP ACPSS ∆∆=. 即当a 变化时,ABPACPS S ∆∆的值不变,且恒为1.……………………………………………(1分)25. (本题满分14分,第(1)小题满分3分,第(2)满分6分,(3)小题满分5分) 解:(1)∵Rt △ABC 中,90C ︒∠= ,∵CD 是斜边AB 上的高, 即90ADC ︒∠=,又∵90C ︒∠= ,∴BCD ACD A ACD ∠+∠=∠+∠.∴30BCD A ∠=∠= .…………………………………………………………………………(1分)在Rt △BDC中,cos 2cos30CD BC BCD =⋅∠=⋅ 1分)在Rt △ADC 中,cot 3AD CD A =⋅∠=. ………………………………………………(1分)(2)∵CF ⊥DE ,CD ⊥AB ,∴CDG EDF CFD EDF ∠+∠=∠+∠.即=CDG CFD ∠∠. ……………………………(1分)同理 ACD B ∠=∠.△CDE ∽△BFC .……………………………………………………………………………(1分) ∴CE CD BC BF =,即CE CDBC DF BD=+. 又∵在Rt △BDC 中,sin 1BD BC BCD =⋅∠=,∴2x =.…………………………………………………………………………………(1分)∴y =x ≤<.……………………………………………………………(2分)(3)∵EGF CGD ∠=∠,1°当FEG CDG ∠=∠时,EF //CD .∴FD AD CE AC =,即x x =.…………………………………………………………(1分)解得x =负值已舍).…………………………………………………………(1分) 2°当FEG DCG ∠=∠时,∵90CDF ∠= ,CF ⊥DE ,∴DCG EDF ∠=∠. 又∵FEG DCG ∠=∠,∴EDF FEG ∠=∠. ∴EF =FD .又∵CF ⊥DE ,∴GE =GD ,即CF 是DE 的垂直平分线.…………………………………(1分)∴CE =CD.………………………………………………………………………………(1分)综上所述CE(1分)2015年宝山嘉定联合模拟考试数学试卷参考答案与评分标准一、1.C ;2.D ;3.B ;4.B ;5.D ;6.A .二、7.41;8.x x 422+-;9.8-=x ;10.2≠x 的一切实数;11.x y 2-=;12.2-;13.15; 14.103;15.33-;16.34;17.3;18.53. 三、19.解:原式x x x x x x x x 1)2()2)(2()1()1(2++-+---=…………4分x x x x x 121+---=………………………2分 x2=…………………………………………2分把13-=x 代入x2得:原式132-=………………………………1分13+=………………………………1分20. ⎩⎨⎧=--=+.,0658222y xy x y x ②① 解:由②得:0))(6(=+-y x y x ……………………2分 即:06=-y x 或0=+y x …………………2分所以原方程组可化为两个二元一次方程组:⎩⎨⎧=+=-;82,06y x y x⎩⎨⎧=+=+;82,0y x y x ………………2分 分别解这两个方程组,得原方程组的解是⎩⎨⎧=-=8821x x ,⎩⎨⎧==1612x x …………4分.21.解:(1)过点A 作BC AH ⊥,垂足为点H在Rt △AHB 中,∵︒=∠45B∴︒=∠45BAH …………………………1分∴BH AH =………………………………1分∵222AB BH AH =+ ,216=AB∴16==BH AH …………………………1分 在Rt △AHC 中,HCAH C =∠tan ,∵2tan =∠C ∴8=HC ………………1分∴24=BC ………………1分 答:拐弯点B 与C 之间的距离为24米; (2)联结OC …………………………………1分 ∵BC AH ⊥,点A 是优弧CD 的中点∴AH 必经过圆心O …………………………1分 设圆O 的半径为r 米,则r OH -=16……1分在Rt △OHC 中,222OC HC OH =+∴222)16(8r r -+= ………………………1分∴10=r ………………………………………1分 答:圆O 的半径长为10米.A .O B C DH22.解:(1)设V 关于t 的函数解析式为:b kt V +=………………1分 由题意得:⎩⎨⎧=+=30010100b k b …………………………………1分解此方程组得:⎩⎨⎧==10020b k ……………………………………2分所以V 关于t 的函数解析式为:10020+=t V ……………1分 (2)设这个百分率为x …………………………………………1分 由题意得:726)1(6002=+x ………………………………2分解此方程得:%101.01==x ,1.22-=x (不符合题意舍去)……1分答这个百分率为%10.……………………………………………………1分23.证明:(1)∵△ABC 是等边三角形∴AC AB =,︒=∠=∠=∠60ACB BAC B ……1分 ∵△ADE 是等边三角形∴AE AD =,︒=∠60DAE ……………………1分 ∴DAE BAC ∠=∠∵=∠BAD DAC BAC ∠-∠ DAC DAE CAE ∠-∠=∠∴CAE BAD ∠=∠…………………………1分∴△ABD ≌△ACE ………………………1分 ∴ACE B ∠=∠ ……………………………1分∴︒=∠60ACE ……………………………1分 (2)∵BD BF =,︒=∠60B∴△BDF 是等边三角形∴FD BF BD ==…………………………1分 ∵△ABD ≌△ACE∴CE BD =∴CE FD BF ==…………………………1分 ∵︒=∠=∠=∠60ACE ACB B ∴︒=∠+∠180ECB B∴BF ∥CE ………………………………1分 ∴四边形ECBF 是平行四边形 …………1分 ∴DC ∥EF又DF 与CE 不平行∴四边形CDFE 是梯形……………………1分 又CE FD =∴四边形CDFE 是等腰梯形………………1分24.解:(1) ∵直线2+=x y 经过点),2(m A∴422=+=m ………………………………1分∴点A 的坐标为)4,2(A ……………………1分 ∵双曲线)0(≠=k xky 经过点)4,2(A ∴24k=…………………………………………1分 ∴8=k …………………………………………1分(2)由(1)得:双曲线的表达式为xy 8=∵双曲线xy 8=经过点)2,(n B ,∴n 82=,∴2=n∴点B 的坐标为)2,4(……………………………………1分 ∵直线BC 与直线2+=x y 平行∴可设直线BC 的表达式为:b x y +=∴b +=42,∴2-=b ,∴直线BC 的表达式为:2-=x y ∴点C 的坐标为)2,0(-……………………………………1分∴22=AB ,24=BC ,102=AC ,∴222AC BC AB =+ ∴︒=∠90ABC …………………………………………1分∴△ABC 的面积为821=⨯⨯BC AB ……………………1分 (3)根据题意设点E 的坐标为)2,(-x x ,这里的0>x∵直线2+=x y 与y 轴交于点D ∴点D 的坐标为)2,0(∴22=AD ,x CE 2= ∵AD ∥BC∴ACE DAC ∠=∠…………………………………………1分 当CAE ADC ∠=∠时,△ADC ∽△CAE∴CE ACAC AD = ∴x 210210222= ∴10=x∴点E 的坐标为)8,10( ……………………………………2分 当CEA ADC ∠=∠时,△ADC ∽△CEA ∴AC ACEC AD = ∴EC AD =又ACE DAC ∠=∠,CA AC = ∴△ADC ≌△CEA又已知△ADC 与△CEA 的相似比不为1∴这种情况不存在 …………………………………………1分 综上所述点E 的坐标为)8,10(25.解:(1)当点M 与点B 重合,由旋转得:2==BD BC ,ED AC =, EBD CBA ∠=∠,︒=∠=∠90C EDB ∵CB EM ⊥∴∠EBC ∴︒=∠=∠45EBD CBA …………1分∴︒=∠=∠45CBA CAB∴2==CB AC∴22=AB …………………………………1分 ∴2==DB DE∴222-=AD ……………………………1分 ∴12cot -==∠DEADBAE ………………1分 (2)设EM 与边AB 交点为G 由题意可知:︒=∠+∠9021,︒=∠+∠903CBA又32∠=∠,∴CBA ∠=∠1∵CBA EBD ∠=∠,∴EBD ∠=∠1,∵BDE EDG ∠=∠,∴△EDG ∽△BDE ∴EDDGBD ED =…………………………………………1分 ∵2==BD BC ,x ED AC == ∴x DG x =2,∴22x DG =…………………………1分 由题意可知:ABBCBG MB ABC ==∠cos 42+=x AB ,242xGB -=∴422422+=-x x y ……………………1分 ∴444222++-=x x x y ……………………1分 定义域为20<<x …………………………1分(3)当点M 在边BC 上时,由旋转可知:EB AB =,∴BAE AEB ∠=∠设︒=∠x CBA ,则︒=∠x ABE ,∵EBM BAE ∠=∠,分别延长EA 、BC 交于点H ∴︒=∠=∠=∠x EMB BAE AEB 2,∵︒=∠+∠+∠180AEB BAE ABE ∴36=x 易得:︒=∠=∠=∠36ABE ABH H ,︒=∠=∠=∠72AEB BAE HBE ∴BE AB AH ==,HE HB =,∵︒=∠90ACB ,∴2==BC HC∴4==HE HB ,∴△BAE ∽△HBE ,∴BEAEHB AB =,又AB BE = AB HA HE AE -=-=4,∴ABABAB -=44,∴522±-=AB (负值舍去)∴522+-=AB …………………………2分当点M 在边CB 的延长线上时,∵BAE AEB ∠=∠,EBM BAE ∠=∠∴EBM AEB ∠=∠∴AE ∥MC ∴CBA BAE ∠=∠ ∵EBA CBA ∠=∠∴EBA CBA EBM ∠=∠=∠∴︒=∠60CBA ,∵AB BCCBA =∠cos ,2=BC∴4=AB …………………………2分 综上所述:522+-=AB 或4.(M )2014学年金山第二学期期末质量检测 初三数学试卷参考答案2015.4一、选择题:(每小题4分,共24分) 1.A 2.A 3.C4.D 5.C 6.B二、填空题:(每小题4分,共48分)7.0; 8.1; 9.)1)(1(-+x x x ; 10.7≥x ;11.xy 2=; 12.2-=x ; 13.3=x ; 14.53;15.041≠m m 且 ; 16.→→-a b 2132; 17.)1,4(),5,0(-; 18.53三、解答题:19.原式=〔(2)1()1(1---+x x x x x )〕22)1(-+⨯x x x (4分) = 222)1(1---x x x x 22)1(-+⨯x x x (2分) =22)1(1--x x (3分)=11-+x x (1分) 20.由(2)得:22,22-=-=-y x y x (2分)⎩⎨⎧=-=+-2201y x y x ⎩⎨⎧-=-=+-2201y x y x (2分) ⎩⎨⎧-=-=3411y x ⎩⎨⎧==122y x (4分) ∴⎩⎨⎧-=-=3411y x⎩⎨⎧==1022y x (2分) 21.设1小时后甲船在C 处乙船在D 处,联接CD 正北交于点E (1分)由题意得,50=AP ,60=BP , 30=∠APE ,45=∠BPE ,CD PE ⊥ (3分)10=AC 40=-=PC AP PC (1分)在PCD Rt ∆中 32030cos =⨯=PC PE (1分) 在PED Rt ∆中 62045cos ==PEPD (1分) 62060-=-=PD PB BD )(乙62060162060-=-=V 海里/时 (2分) 答乙船的速度是)(62060-海里/时 (1分)22.(1)略 (4分)(2) 162度 (2分) (3)C (2分) (4)11000人 (2分)23.(1)∵︒=∠90ACB ∴︒=∠=∠90ACB ACD (1分) ∵BC AC = CD CE = (2分)∴ACD BCE ∆≅∆ (1分)(2)∵ACD BCE ∆≅∆ ∴EBC DAC ∠=∠ (1分)∵CEB AEF ∠=∠ ∴︒=∠=∠90BCE AFE ︒=∠90BFG (1分)∵CG //BF ∴︒=∠=∠90AFE CGF (1分) ∵DCG HCE ∠=∠ ∴︒=∠=∠90ACD GCH (1分) ∴四边形FHCG 是矩形 (1分)∵︒=∠=∠90CHE CGD DCG HCE ∠=∠ CD CE = (1分)∴CEH CDG ∆≅∆ ∴CH CG = (1分) ∴四边形FHCG 是正方形 (1分)24. (1)⎩⎨⎧-+=--=841608240b a b a⎩⎨⎧-==21b a (2分) 822--=x x y (1分)9)1(8222--=--=x x x y )9,1(-P (1分)(2) 设对称轴直线1=x 与x 轴交于点D ,过A 作BP AH ⊥垂足为H∵)0,2(-A ,)0,4(B , )9,1(-P∴6=AB 9=PD 103==BP AP (2分) ∵AH PB PD AB ⨯=⨯2121 ∴1059=AH (1分) 在APH Rt ∆中 ∴53AP AH APB sin ==∠ (1分) (3)∵MCN ACO ∠=∠∴MNC ∆与AOC ∆相似时 ①︒=∠=∠90AOC MNCOC NC AO MN = 25=MN ∴)2,25(-M (2分)②︒=∠=∠90AOC NMC 设MN 与x 轴交于点E∵2==OA ON ︒=∠=∠90AOC EON ACO NEO ∠=∠ ∴AOC ENO ∆≅∆ 8==OC OE ∴)0,8(-E∵)0,2(-A ,)0,4(B∴直线MN 的解析式是:241y +=x 直线AB 的解析式是:84y --=x∴)1724,1740(-M (2分) 25.(1)过A 作BC 的高AH 垂足为H∵10==AC AB ∴CH BH = (1分)在ABH Rt ∆中 34tan =∠B 设a AH 4= a BH 3=222AB BH AH =+ 2)4(a 2)3(a +=210 2=a (1分)∴8=AH 6=BH ∴12=BC (1分)(2) 联结DE ,过O 作BC OJ ⊥垂足为J ,延长JO 交DE 于I∵D 、E 分别是边AB 、AC 的中点∴DE //BC ∴DOE ∆∽MON ∆ ∴JOIOMN DE = (1分) ∵8=AH ∴4=IJ∴624+=x IO (1分) 124621=⨯⨯=∆ADE S 672624621+=+⨯⨯=∆x x S DEO (1分)∴61441267212++=++=x x x y )120( x (2分) (3)联结DE ,过O 作BC OJ ⊥垂足为J ,延长JO 交DE 于I ,过E 作BC EF ⊥垂足为F∵421==AH EF 5=EC ∴3=FC ∴8=MF ①当ON OM =时 ∵IJ //EF ∴MFMJEF OJ = ∵4=EF 8=MF 21=MJ x ∴x OJ 41=∵DE //BC ∴DOE ∆∽MON ∆ ∴MNDEOJ OI = ∴ 10=x 10=MN (2分) ②当MN OM =时 ∵DE //BC ∴OMEOMN DE = ∴EO DE = 在EFM Rt ∆中 5422=+=MF EF ME654-=-=OE ME OM ∴654-=MN (2分)③当ON MN =时 6==DE DO在ABN ∆中,B ∠是一个锐角 5=BD x DN +=6BD DN ∴BND ∠一定是锐角 (1分)过D 作BC DG ⊥垂足为G 4=DG 3=BG 在DGN Rt ∆中 222DN GN DG =+222)6()2(4x x +=-+ 1-=x 不合题意 (1分)综上所述 10=MN 或 654-=MN静安区质量调研九年级数学试卷参考答案及评分标准2015.4.23一、选择题:(本大题共6题,每题4分,满分24分)1.C ; 2.C ; 3.D ; 4.D ; 5.A ; 6.B .二.填空题:(本大题共12题,满分48分)7.22; 8.2)3(y x -; 9.1; 10.2>x ; 11.2; 12.32; 13.︒45; 14.5:3; 15.4143-; 16.(3,5); 17.10; 18.3≥r .(第18题答3>r , 得2分)三、(本大题共7题, 第19~22题每题10分, 第23、24题每题12分, 第25题14分, 满分78分)19.解:原式=)1()1)(1(1)1(1+⎥⎦⎤⎢⎣⎡-+--x x x x x x …………………………………………(3分) =11)1()1)(1(1-=+⋅+-x x x x x x .……………………………………(2+1分)当1333021-=-=x 时,原式=23)23)(23(23231--=+-+=-.…(2+2分)20.解:由①得 3477+<-x x ,103<x ,310<x .…………………………………(3分) 由②得 1264+≥+x x ,52-≥x ,25-≥x .…………………………………(3分)不等式组的解集为:31025<≤-x .……………………………………………(2分)它的整数解为–2,–1,0,1,2,3.………………………………………(1分)21.解:(1)设反比例函数的解析式为xky =.…………………………………………(1分) ∵横坐标为3的点A 在直线2-=x y 上,∴点A 的坐标为(3,1),…(1分)∴1=3k,∴3=k ,…………………………………………………………(1分) ∴反比例函数的解析式为xy 3=.…………………………………………(1分)(2)设点C (m m,3),则点B (m m ,2+).…………………………………(2分)∴BC =mm 32-+= 4,………………………………………………………(2分) ∴m m m 4322=-+,∴0322=-+m m ,1,321-==m m ,……………(1分)1,321-==m m 都是方程的解,但1-=m 不符合题意,∴点B 的坐标为(5,3).……………………………………………………(1分)22.解:设甲乙两人原来每小时各加工零件分别为x 个、y 个,………………………(1分)∴⎪⎪⎩⎪⎪⎨⎧=-=-,123024,13030y x x y …………………………………………………………………(4分)解得⎩⎨⎧==.5,6y x ………………………………………………………………………(4分)经检验它是原方程的组解,且符合题意.答:甲乙两人原来每小时各加工零件分别为6个、5个.………………………(1分)23.证明:(1)∵在梯形ABCD 中,AB //CD ,AD =BC ,∴∠ADE =∠BCE ,………(1分)又∵DE=CE ,∴△ADE ≌△BCE .…………………………………………(1分) ∴AE =BE ,……………………………………………………………………(1分) ∵FG //AB ,∴BEBFAE AG =,…………………………………………………(2分) ∴AG=BF .……………………………………………………………………(1分)(2)∵CF CA AD ⋅=2,∴AD CFCA AD =,…………………………………………(1分) ∵AD =BC ,∴BCCFCA BC =.…………………………………………………(1分) ∵∠BCF =∠ACB ,∴△CAB ∽△CBF .……………………………………(1分)∴BCACBF AB =.…………………………………………………………………(1分) ∵BF=AG ,BC =AD , ∴ADACAG AB =.………………………………………(1分) ∴AC AG AD AB ⋅=⋅.………………………………………………………(1分)24.解:(1)∵抛物线c ax ax y +-=22的对称轴为直线12=--=aax ,……………(1分)∴OC =1,OA=OC +AC = 4,∴点A (4,0).…………………………………(1分) ∵∠OBC =∠OAB ,∴tan ∠OAB= tan ∠OBC ,…………………………………(1分)∴OB OCOA OB =,…………………………………………………………………(1分) ∴OBOB 14=,∴OB =2,∴点B (0,2),……………………………………(1分) ∴⎩⎨⎧+-==,8160,2c a a c ……………………………………………………………(1分)∴⎪⎩⎪⎨⎧=-=.2,41c a ………………………………………………………………………(1分) ∴此抛物线的表达式为221412++-=x x y .…………………………………(1分)(2)由2:3:=∆∆A F G A D G S S 得DG :FG =3:2,DF :FG =5:2,…………………(1分) 设m OF =,得m AF -=4,221412++-=m m DF , 由FG //OB ,得OA AF OB FG =,∴24mFG -=,…………………………………(1分) ∴2:524:)22141(2=-++-m m m ,……………………………………………(1分) ∴01272=+-m m ,∴4,321==m m (不符合题意,舍去),∴点D 的坐标是(3,45).……………………………………………………(1分) 25.解:(1)在⊙O 中,∵OC ⊥AB ,∴AC =321=AB ,OC =22AC AO -=4.……(1分)∵OD //AB ,∴OD ⊥OC ,∴CD =41542222=+=+OD OC .……(1分)∵35==BC OD CE DE ,……………………………………………………………(1分)∴85=CD DE ,∴DE =4185.…………………………………………………(1分)(2)∵△OCD 是等腰三角形,OD >OC ,∴ ① 当DC =OD =5时,∠DOC =∠DCO ,∵∠DFC +∠DOC =∠DCF +∠DCO =90°,∴∠DFC =∠DCF .…(1分)∴DF =DC =DO =5,OF =10,CF =2124102222=-=-OC OF ,2123+=AF .………(1分) ② 当DC =OC =4时, 作△DOC 的高CH ,2521==OD OH , CH =3921)25(42222=-=-OH OC .……………………(1分) ∴tan ∠FOC=539==OH CH OC CF ,………………………………(1分) 5394=CF .53943+=AF .……………………………………(1分)(3)设OB =OD =r ,BC =x ,则2222x r BC OB OC -=-=,…………(1分)∵OD //AB ,OC ⊥AB ,∴OD ⊥OC ,又∵CD ⊥OB ,∴∠COB =90°-∠DOE =∠ODC ,∴tan ∠COB =tan ∠ODC ,…………(1分)∴OD OCOC BC =,∴r x r xr x 2222-=-,………………………………(1分) ∴22x r xr -=, 022--+r rx x ,∵0≠r ,01)(2≠-+rxrx,251±-=r x (负值舍去) ,…………………(1分) ∴sin ∠ODC =sin ∠COB 215-===r x OB BC .……………………………(1分)闵行区2014学年第二学期九年级质量调研考试数学试卷参考答案及评分标准一、选择题:(本大题共6题,每题4分,满分24分) 1.B ;2.C ;3.D ;4.B ;5.D ;6.A .二、填空题:(本大题共12题,每题4分,满分48分)7.2; 8.2a ; 9.2(4)x x -; 10.223x ≤<; 11.1m <-; 12.113y x =-; 13.1233a b + ;14.125;15.13;16.12001200302x x -=-;17.tan h α(或cot h α⋅);181.三、解答题:(本大题共7题,满分78分) 19.解:原式13+-………………………………………………(6分)4=. ……………………………………………………………………(4分)20.解:由① 得 122x y =-. ③ ……………………………………(2分) 把③ 代入②,得 22(122)3(122)20y y y y ---+=.整理后,得 27120y y -+=.……………………………………………(2分) 解得 13y =,24y =. ……………………………………………………(2分) 分别代入③,得 16x =,24x =.…………………………………………(2分)所以,原方程组的解是116,3,x y =⎧⎨=⎩ 224,4.x y =⎧⎨=⎩…………………………………(2分)另解:由② 得 ()(2)0x y x y --=.………………………………………………(2分)即得 0x y -=,20x y -=. ………………………………………………(2分) 原方程组化为212,0,x y x y +=⎧⎨-=⎩ 212,20.x y x y +=⎧⎨-=⎩…………………………………………(2分)解得原方程组的解为 114,4,x y =⎧⎨=⎩ 226,3.x y =⎧⎨=⎩……………………………………(4分)21.解:(1)联结AD .∵ AB = AC ,D 为边BC 的中点,∴ AD ⊥BC .…………………(1分)在Rt △ABD 中,由AB =sin B ∠= 得sin 4AD AB B =⋅∠==. ……………………………(1分) ∴22B D ==.∴ 24BC BD ==.……………………………………………………(1分) ∵ CE = BC ,∴ CE = 4.即得 DE = 6.………………………(1分)在Rt △ADE 中,利用勾股定理,得23A E又∵ F 是边AE 的中点,∴12DF AE ==1分)(2)过点C 作CH ⊥AE ,垂足为点H .∵ CH ⊥AE ,AD ⊥BC ,∴ ∠CHE =∠ADE = 90º. ……………(1分) 又∵ ∠E =∠E ,∴ △CHE ∽△ADE .……………………………(1分)∴ C H E H C EA D D E A E ==,即得46CH EH ==. 解得CH =EH =.…………………………………(1分) ∴13A H A E E H =-=.………………………(1分)∴4tan 7CH CAE AH ∠===.…………………………………(1分)22.解:(1)设所求函数为 y k x b =+.…………………………………………(1分)根据题意,得 150,120.b k b =⎧⎨+=⎩…………………………………………(1分)解得 30,150.k b =-⎧⎨=⎩………………………………………………………(2分)∴ 所求函数的解析式为 30150y x =-+.………………………(1分) (2)设在D 处至少加w 升油.根据题意,得 360460121504303021060w -⨯--⨯+≥⨯⨯+.……(3分) 解得 94w ≥. …………………………………………………………(1分) 答:D 处至少加94升油,才能使货车到达B 处卸货后能顺利返回D 处加油.…………………………………………………………………………………(1分) 说明:利用算术方法分段分析解答正确也给满分.23.证明:(1)过点D 作DH ⊥BC ,垂足为点H .∵ AD // BC ,∴ ∠ADH =∠DHC .……………………………(1分) ∵ DH ⊥BC ,∴ ∠ADH =∠DHC = 90º. 即得 ∠ADH =∠EDC = 90º. ……………………………………(1分)∵ A DE A DH E DH∠=∠-∠, C D H E D C E D H ∠=∠-∠, ∴ ∠ADE =∠CDH .………………………………………………(1分) ∵ AD // BC ,AB ⊥BC ,DH ⊥BC ,∴ AB = DH . ∵ AB = AD ,∴ AD = DH . 又∵ ∠A =∠DHC = 90º,∴ △ADE ≌△DHC .………………(2分) ∴ DE = DC .………………………………………………………(1分) (2)∵ DE = DC ,∠EDF =∠CDF ,∴ DF 垂直平分CE .………(1分)∴ FE = FC .即得 ∠FEC =∠FCE .……………………………(1分)∵ 2B E B F B C =⋅,∴ B E B CB F B E=. 又∵ ∠B =∠B ,∴ △BEC ∽△BEF .…………………………(2分) ∴ ∠BCE =∠BEF .………………………………………………(1分) ∴ ∠BEF =∠CEF .………………………………………………(1分)24.解:(1)抛物线224y ax ax =--经过点A (-3,0),∴ 2(3)2(3)40a a ----=.………………………………………(1分) 解得 415a =.…………………………………………………………(1分) ∴ 所求抛物线的关系式为 24841515y x x =--.…………………(1分)抛物线的对称轴是直线 1x =. ……………………………………(1分) (2)当 0x =,时,4y =-,即得 C (0,-4).又由 A (-3,0),得5AC .…………(1分) ∴ AD = AC = 5.又由 A (-3,0),得 D (2,0).∴CD =1分) 又由直线1x =为抛物线24841515y x x =--的对称轴,得 B (5,0). ∴ BD = 3.设圆C 的半径为r .∵ 圆D 与圆C 外切,∴ CD = BD + r .…………………………(1分) 即得3r =+. 解得3r =.……………………………………………………(1分)∴ 圆C的半径长为3.(3)联结DN .∵ AC = AD ,∴ ∠ACD =∠ADC .………………………………(1分) ∵ 线段MN 被直线CD 垂直平分,∴ MD = ND . 即得 ∠MDC =∠NDC .∴ ∠NDC =∠ACD .∴ ND // AC .∴ B N B D N C D A=.………………………………………………………(1分) 即得 AD = 5.…………………………………………………………(1分) ∴ AB = 8,即得 BD = 3,.∴ 35B N B D C N D A ==.……………………………………………………(1分)25.解:(1)∵ AD // BC ,EF // BC ,∴ EF // AD .……………………………(1分)又∵ ME // DN ,∴ 四边形EFDM 是平行四边形.∴ EF = DM .…………………………………………………………(1分) 同理可证,EF = AM .…………………………………………………(1分) ∴ AM = DM .∵ AD = 4,∴ 122E F A M A D ===.……………………………(1分)(2)∵ 38A D N M E N FS S ∆=四边形,∴ 58A M E D M F A D N S S S ∆∆∆+=. 即得 58A M E D M F A D N A D N S S S S ∆∆∆∆+=.……………………………………………(1分)。
1 / 72014年上海市初三模拟测试数 学 试 卷(满分150分,考试时间100分钟) 2014.3考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.下列二次根式中,属于最简二次根式的是 ( ) (A(B )8;(C )2x ;(D )12+x .2.k 为实数,则关于x 的方程01)12(2=-+++k x k x 的根的情况是 ( ) (A)有两个不相等的实数根; (B)有两个相等的实数根; (C)没有实数根; (D)无法确定.3.如果用A 表示事件“若a b >,则ac bc >”,那么下列结论正确的是 ( ) (A )P(A)=0; (B )P(A)=1; (C )0<P(A)<1; (D) P(A)>14.下列位于方格纸中的两个三角形,既不成轴对称又不成中心对称的是 ( )5. ( ) (C) 梯形的对角线互相垂直;(D)平行四边形的对角线相等.6.下图描述了小丽散步过程中离家的距离s (米)与散步所用时间t (分)之间的函数关系.依据图象,下面描述符合小红散步情景的是 ( ) (A )从家出发,到了一个公共阅报栏,看了一会儿报,就回家了; (B )从家出发,到了一个公共阅报栏,看了一会儿报后,继续向前走了一段,然后回家了;(C )从家出发,一直散步(没有停留),然后回家了;(D )从家出发,散了一会儿步,就找同学去了,18分钟后才开始返回. 二、填空题:(本大题12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置上】 7.比较大小:-2.2 / 7 A B C D E F (第15题)(第17题)(第16题) ① ②③ 8.因式分解:2221x x y ++-= .9.两个..不相等...的无理数,它们的乘积为有理数,这两个数可以是 . 10.方程4210x =的根是 .11.若一次函数(12)y k x k =-+的图像经过第一、二、三象限,则k 的取值范围是 . 12.抛物线221y x =-的顶点坐标是 .13.随机抽取某城市一年(以365天计)中的30天的日平均气温状况统计如下:则可估计该城市一年中日平均气温为26℃的约有 天.14.若圆的半径是10cm ,则圆心角为40°的扇形的面积是 cm 2.15.如图,在梯形ABCD 中,AD//BC ,EF 是梯形的中位线,点E 在AB 上,若A D ︰B C =1︰3,AD a =,则用a 表示FE 是:FE = .16.如图,某人把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,最省事的办法是带编号为 的碎片去.17.如图,某涵洞的截面是抛物线形,现测得水面宽AB =1.6m ,涵洞顶点O 到水面的距离CO 为2.4m ,在图中直角坐标系内,涵洞截面所在抛物线的解析式是___ _______.18.如图,点G 是等边ABC △的重心,过点G 作BC 的平行线,E ,点M 在BC 边上.如果以点B 、D 、M 的三角形相似(但不全等),那么:BDM CEM S S =△△ . 三、解答题:(本大题共7题,满分78分)19.(本题10分)先化简再求值:5332(3)(1)x x x x +÷-+,其中12x =-. 20.(本题10分)解方程: 33201x x x x+--=+ 21.(本题10分)如图,放置在水平桌面上的台灯的灯臂AB 长为40cm ,灯罩BC 长为30cm ,底座厚度为2cm ,灯臂与底座构成的60BAD ∠=.使用发现,光线最佳时灯罩BC 与水平线所成的角为30°,此时灯罩顶端C 到桌面的高度CE 是多少cm ?(结果精确到0.1cm 1.732≈) 22.(本题10分)如图,在Rt △ABC 中,∠ABC =90°,BA =BC .点D 是AB B 作BG 丄CD ,分别交CD 、CA 于点E 、F ,与过点A 点G .(第18题)3 / 7(1)求ACAF的值; (2)求ABCAFGS S ∆∆的值; 23.(本题12分)如图,已知线段AB ∥CD ,AD 与BC 相交于点K ,E 是线段AD 上一动点. ⑴ 若BK =52KC ,求CDAB的值; ⑵ 联结BE ,若BE 平分ABC ∠,则当12AE AD =时,猜想线段AB 、BC 、CD 三者之间有怎样的数量关系?请写出你的结论并予以证明;⑶ 试探究:当BE 平分ABC ∠,且()12AE AD n n =>时,线段AB 、BC 、CD 三者之间有怎样的数量关系?请直接写出你的结论,不必证明.24.(本题12分)已知一次函数m x y +=43的图像分别交x 轴、y 轴于A 、B 两点(如图),且与反比例函数x y 24=的图像在第一象限交于点C (4,n ),CD ⊥x 轴于D 。
2014年宝山、嘉定区初三数学二模卷数学试卷(满分150分,考试时间100分钟)同学们请注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一 律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤. 一、选择题:(本大题共6题,每题4分,满分24分) 1.2-是2的(▲)(A )相反数; (B )倒数; (C )绝对值; (D )平方根. 2.不等式组⎩⎨⎧≥->+125,523x x 的解在图1所示的数轴上表示为(▲)(A ) (B ) (C ) (D )3.某运动队为了选拔“神枪手”,举行射击比赛,最后由甲、乙两名选手进入决赛,在相同条件下,两人各射靶10次,经过统计计算,甲、乙两名选手的总成绩都是99.6环,甲的方差是0. 27,乙的方差是0. 18,则下列说法中,正确的是(▲) (A )甲的成绩比乙的成绩稳定; (B )乙的成绩比甲的成绩稳定; (C )甲、乙两人成绩一样稳定; (D )无法确定谁的成绩更稳定. 4.已知矩形的面积为20,则图2给出的四个图像中,能大致呈现矩形的长y 与宽x 之间的函数关系的是(▲)5.如果要证明平行四边形ABCD 为正方形,那么我们需要在四边形ABCD 是平行四边形的基础上,进一步证明(▲)(A )AB =AD且AC⊥BD ; (B )AB =AD 且AC =BD ; (C )∠A =∠B 且AC =BD ; (D )AC 和BD 互相垂直平分.6.如图3,在梯形ABCD 中,AD ∥BC ,AB =6,BC=9,CD =4,DA =3,则分别以AB 、CD为直径的⊙P 与⊙Q 的位置关系是(▲)(A )内切; (B )相交; (C )外切; (D )外离. 二、填空题:(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置】A BCD图3(A)(B)(C)(D)图2 图 17.计算)1(-x x 的结果是 ▲ .8.分式x 2-1x +1的值为零,则x 的值为 ▲ .9.一元二次方程2x x =的解为 ▲ .10.如果关于x 的一元二次方程02)12(22=-+++-k x k x 有实数根,那么实数k 的取值范围是 ▲ .11.方程(x +3)2-x =0的解是 ▲ . 12.已知反比例函数xk y 1+=的图像在第二、四象限内,那么常数k 的取值范围是 ▲ . 13.合作交流是学习教学的重要方式之一,某校九年级六个班中,每个班合作学习小组的个数分别是:5、7、7、6、7、6,这组数据的众数是 ▲ . 14.定义:百位、十位、个位上的数字从左到右依次增大的三位数为“渐进数”,如589就是一个“渐进数”.如果由数字3,5,6组成的三位数中随机抽取一个三位数,那么这个数是“渐进数”的概率是 ▲ .15.如图4,四边形ABCD 是梯形,AD ∥BC ,CD AB =.如果2=AD ,23=BD ,︒=∠45DBC ,那么梯形ABCD 的面积为 ▲ .16.化简:()()AB CD AC BD ---= ▲ .17.如图5,已知BD 是⊙O 的直径,点A 、C 在⊙O 上,=,︒=∠60AOB ,则∠COD 的度数是 ▲ 度.18.如图6,E 为矩形ABCD 边BC 上自B 向C 移动的一个动点,AE EF ⊥交CD 边于F ,联结AF ,当△ABE 的面积恰好为△ECF 和△FDA 的面积之和时,量得2=AE ,1=EF ,那么矩形ABCD 的面积为 ▲ . 三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)计算:+--0)3(12π2131-⎪⎭⎫ ⎝⎛60tan -°.20.(本题满分10分)A B C D E F 图6 A B D 图4 图5解方程组: 22220,2 1.x y x xy y --=⎧⎨++=⎩②①21.(本题满分10分)在学习圆与正多边形时,马露、高静两位同学设计了一个画圆内接正三角形的方法: (1)如图7,作直径AD ;(2)作半径OD 的垂直平分线,交⊙O 于B ,C 两点; (3)联结AB 、AC 、BC,那么△ABC 为所求的三角形. 请你判断两位同学的作法是否正确,如果正确,请你按照两位同学设计的画法,画出△ABC ,然后给出△ABC 是等边三角形的证明过程;如果不正确,请说明理由. 22.(本题满分10分,每小题5分)如图8,在平面直角坐标系xOy 中,直线b kx y +=与x 轴交于点A (1,0),与y 轴交于点B (0,2).(1)求直线AB 的表达式和线段AB 的长;(2)将OAB △绕点O 逆时针旋转︒90后,点A 落到点C 处, 点B 落到点D 处,求线段AB 上横坐标为a 的点E 在线段CD 上的对应点F 的坐标(用含a 的代数式表示).23.(本题满分12分,每小题满分各6分)如图9,在直角梯形ABCD 中,AD ∥BC ,︒=∠=∠90ABC DAB , E 为CD 的中点,联结AE 并延长交BC 的延长线于F ; (1)联结BE ,求证EF BE =.(2)联结BD 交AE 于M ,当1=AD ,2=AB , EM AM =时,求CD 的长.图7A B CD F EM图9ABDEFMN 图12ABC备用图AB DE F图112013学年第二学期宝山嘉定区联合模拟考试数学参考答案一、选择题:(本大题共6题,每题4分,满分24分) 1. A ; 2.C ; 3. B ; 4. A ; 5. B ; 6. D. 二、填空题(本大题共12题,每题4分,满分48分) 7. x x -2; 8. 1; 9. 1,021==x x ; 10. 49-≥k ; 11. 2=x ; 12. 1-<k ;13. 7; 14. 61; 15. 9; 16. 0 ; 17. 120; 18. 3.三、简答题(本大题共7题,满分78分)19.解:原式=33132-+- ……………………8分 =132-. ……………………2分 20.解:由方程②得0)1)(1(=-+++y x y x ……2分整合得 ⎩⎨⎧-=+=-122y x y x 或⎩⎨⎧=+=-122y x y x . ……2分解这个两个方程得 ⎩⎨⎧-==10y x 或⎪⎪⎩⎪⎪⎨⎧-==3134y x ,……(1+2)×2分(若学生用代入法,则22+=y x 可得2分. 代入并整理至01432=++y y 再得2分解得31,12-=-=y y 再得2分,回代得解 ⎩⎨⎧-==10y x 或⎪⎪⎩⎪⎪⎨⎧-==3134y x 获最后2×2分)21.解:两位同学的方法正确. ……2分作出线段BC . ……2分(此处作图略) 连BO 、CO ∵BC 垂直平分OD∴直角△O EB 中. cos ∠B O E =21=OB OE ……1+1分 ∠B O E=60°由垂径定理得∠C O E=∠B O E=60°………1+1分 由于AD 为直径. ∴120=∠=∠AOC AOB °……………1分 ∴CA BC AB ==. 即△ABC 为等边△……………………1分22.解(1)将点A (1,0),点B (0,2)代入直线b kx y +=.可求得,2-=k 2=b ……1+1分 ∴直线AB 的解析式为22+-=x y , ………1分 线段AB =5)20()01(22=-+- ………2分(2)∵E 为线段AB 上横坐标a 的点,∴第一象限的E (a ,-2 a+2)…1分根据题意F 为E 绕点O 逆时针旋转︒90后的对应点第二象限的F 的坐标为(a a ,22+--)………………1+1分 ∴ 点F (a a ,22-). ……………2分23.(1)∵ABCD 为直角梯形,∠A=∠B=90°,AD ∥BC∴∠DAE=∠CFE ∠ADE=∠FCE ………………1+1分 ∵E 为CD 的中点,∴DE =CE …………………1分 ∴△DAE ≅△CFE, ∴AE=FEAD=FC ………………1+1分 在直角三角形ABF 中BE= AE=FE …………………1分 (2) ∵AM=EM ,AE=FE , ∴AM =31FM ……………1分 ∵AD ∥BC , ∴FM AM BF AD ==31……………1分 过D 作DH ⊥BF 于H , 易证ABHD 为矩形,…1分 ∵AD=BH , ∴AD=CH , …………………1分 在直角三角形CDH 中,CH=AD=1,DH=AB=2,…1分 CD=22CHDH +=5 …………………1分24.(1)易知抛物线n mx mx y +-=2的对称轴为直线212=--=m m x …………1分 将)32,0(A 代入抛物线n mx mx y +-=2得:32=n …………1分依题意tan ∠ABC=3,易得)0,2(B …………1分将)0,2(B 代入可得抛物线的表达式为32332++-=x x y …………1分(注:若学生求出3-=m ,即可得分.)(2))0,2(B 向右平移四个单位后的对应点E 的坐标为(6,0).……1分 向右平移四个单位后的新抛物线的对称轴为直线X=29…………1分 将)32,0(A 、E (6,0)代入直线b kx y +=得直线A E 的表达式为3233+-=x y , …………1分 交点D 的坐标D (29,23) …………1分(3)易证∠BAE=∠AEB=30° …………1分若△ADB ∽△EDF , 则有ADEDAB EF =…………1分 EF=34431=∙, …………1分 若△ADB ∽△EFD , 则有ABEDAD EF =EF=49, …………1分25,底角B 满足cos B =54, ∴BC=10×5×2=16. …………1分∵EF ∥AC , ∴BCBEAC EF =. …………1分 BD =x ,EF =y , DE =3∴)3(85+=x y . (0≤x ≤13). …………1+1分(2)依题意易得在三角形FBE 中, FB=FE=)3(85+x . …………1分若∠FDB 为直角时有BD=DE . ∴3=x …………1分BB又∵cos B =54, ∴FD=4934343=⨯=BD . …………1分 ∴三角形BDF 的面积为82734921=⨯⨯. …………1分若∠BFD 为直角时,BF=EF=)3(85+x =x 54 ∴775=x …………1分∴三角形BDF 的面积为491350537755477521=⨯⨯⨯⨯ …………1分(3) 平行四边形. 面积为813.…………………………………………2+2分。
浦东新区2014年中考预测数学试卷 2014.4.15(测试时间:100分钟,满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分) 1.下列代数式中,属于单项式的是(A )1+a ;(B )a 2;(C )a2; (D )2a . 2.数据1,3,7,1,3,3的平均数和标准差分别为(A )2,2;(B )2,4; (C )3,2;(D )3,4.3.已知抛物线2)1(+-=x y 上的两点)()(2211y x B y x A ,和,,如果121-<<x x ,那么下列结论一定成立的是 (A )021<<y y ; (B )210y y <<;(C )120y y <<;(D )012<<y y .4. 某粮食公司2013年生产大米总量为a 万吨,比2012年大米生产总量增加了10%,那么2012年大米生产总量为 (A )%)101(+a 万吨;(B )%)101(+a万吨;(C )%)101(-a 万吨; (D )%)101(-a万吨.5.在四边形ABCD 中,对角线AC 、BD 相交于点O ,CBD ADB ∠=∠,添加下列一个条件后,仍不能判定四边形ABCD 是平行四边形的是 (A )CDB ABD ∠=∠;(B )BCD DAB ∠=∠; (C )CDA ABC ∠=∠;(D )BCA DAC ∠=∠.6. 如果A 、B 分别是圆O 1、圆O 2上两个动点,当A 、B 两点之间距离最大时,那么这个最大距离被称为圆O 1、圆O 2的“远距”.已知,圆O 1的半径为1,圆O 2的半径为2,当两圆相交时,圆O 1、圆O 2的“远距”可能是 (A )3;(B )4;(C )5;(D )6.二、填空题:(本大题共12题,每题4分,满分48分) 7.计算:π-3= ▲ .8. 化简:23410ab b a = ▲ .9.计算:xx x ---2111= ▲ . 10.正八边形的中心角等于 ▲ 度.11.如果关于x 的方程0332=+-mx x 有两个相等的实数根,那么m 的值为 ▲ . 12.请写出一个平面几何图形,使它满足“把一个图形沿某一条直线翻折过来,直线两旁的部分能够相互重合”这一条件,这个图形可以是 ▲ .13.如果关于x 的方程1+=x bx 有解,那么b 的取值范围为 ▲ . 14. 在□ABCD 中,已知AC a =,DB b =,那么用向量a 、b表示向量AB 为 ▲ .15. 把分别写有数字“1”、“2”、“3”、“4”、“5”、“6”的6张相同卡片,字面朝下随意放置在桌面上,从中任意摸出一张卡片数字是素数的概率是 ▲ .16.为了解某校九年级女生1分钟仰卧起坐的次数,从中随机抽查了50名女生参加测试,被抽查的女生中有90%的女生次数不小于30次,并绘制成频数分布直方图(如图所示),那么仰卧起坐的次数在40~45的频率是 ▲ .17.如图,已知点A 在反比例函数xky =的图像上,点B 在x 轴的正半轴上,且△OAB 是面积为3的等边三角形,那么这个反比例函数的解析式是 ▲ . 18.在Rt △ABC 中,∠ACB =90°,AC =2,23cos =A ,如果将△ABC 绕着点C 旋转至△A'B'C 的位置,使点B' 落在∠ACB 的角平分线上,A'B' 与AC 相交于点H ,那么线段CH 的长等于 ▲ .三、解答题:(本大题共7题,满分78分) 19.(本题满分10分) 计算:51555551212-⎪⎪⎭⎫ ⎝⎛++--)(.20.(本题满分10分)[来源:Z|xx|]解不等式组:⎪⎩⎪⎨⎧-≥+-<-,,x x x x 321334)1(372并把解集在数轴上表示出来.(第17题图)(每组可含最小值,不含最大值)(第16题图)(第20题图)(第22题图)已知:如图,∠P AQ =30°,在边AP 上顺次截取AB =3cm ,BC =10cm ,以BC 为直径作⊙O 交射线AQ 于E 、F 两点, 求:(1)圆心O 到AQ 的距离; (2)线段EF 的长.22.(本题满分10分,其中第(1)小题4分,第(2)小题3分,第(3)小题3分) 甲、乙两车都从A 地前往B 地,如图分别表示甲、乙两车离A 地的距离S (千米)与时间t (分钟)的函数关系.已知甲车出发10分钟后乙车才出发,甲车中途因故停止行驶一段时间后按原速继续驶向B 地,最终甲、乙两车同时到达B 地,根据图中提供的信息解答下列问题:(1)甲、乙两车行驶时的速度分别为多少? (2)乙车出发多少分钟后第一次与甲车相遇? (3)甲车中途因故障停止行驶的时间为多少分钟?[来源学科网ZXXK]23.(本题满分12分,其中每小题各6分)已知:如图,在正方形ABCD 中,点E 是边AD 的中点,联结BE ,过点A 作BE AF ⊥,分别交BE 、CD 于点H 、F ,联结BF . (1)求证:BE =BF ;(2)联结BD ,交AF 于点O ,联结OE .求证:AEB DEO ∠=∠.(第21题图) (第23题图)如图,已知在平面直角坐标系xOy 中,抛物线c bx x y ++=241与x 轴交于点A 、B (点A 在点B 右侧),与y 轴交于点C (0,-3),且OA =2OC . (1)求这条抛物线的表达式及顶点M 的坐标; (2)求M AC ∠tan 的值;(3)如果点D 在这条抛物线的对称轴上,且∠CAD =45º,求点D 的坐标.25.(本题满分14分,其中第(1)小题3分,第(2)小题5分,第(3)小题6分)如图,已知在△ABC 中,AB =AC ,BC 比AB 大3,54sin =B ,点G 是△ABC 的重心,AG 的延长线交边BC 于点D .过点G 的直线分别交边AB 于点P 、交射线AC 于点Q . (1)求AG 的长;(2)当∠APQ=90º时,直线PG 与边BC 相交于点M .求MQAQ的值; (3)当点Q 在边AC 上时,设BP =x ,AQ =y ,求y 关于x 的函数解析式,并写出它的定义域.[来源:学.科.网Z.X.X.K][来源学_科_网](第24题图)(第25题图)浦东新区2014年中考预测数学试卷答案要点及评分标准一、选择题:1.D ; 2.C ; 3.A ; 4.B ; 5.D ; 6.C . 二、填空题:7.3-π; 8.ba 252;9.x1; 10.45; 11.6±; 12.圆等; 13.1≠b ;14.b a 2121+; 15.50%;16.0.62;17.xy 3-=; 18.13-. 三、解答题:19.解:原式5555555+=-+-……………………………………………………………(8分)5555155=-++-……………………………………………………………(1分)65=-…………………………………………………………………………(1分) 20.解:273(1)423133x x x x -<-⎧⎪⎨+≥-⎪⎩,.由①得2733x x -<-…………………………………………………………………(1分)化简得105<x ,………………………………………………………………………(1分) 解得:2<x .…………………………………………………………………………(1分) 由②得4932x x +≥-,………………………………………………………………(1分) 化简得66x ≥-,………………………………………………………………………(1分) 解得:1-≥x .…………………………………………………………………………(1分) ∴原不等式组的解集为.21<≤-x …………………………………………………(2分)………………………………………………(2分)21.解:(1)过点O 做OH ⊥EF ,垂足为点H . ……………………………………………(1分) ∵OH ⊥EF ,∴∠AHO =90°,在Rt △AOH 中,∵∠AHO =90°,∠P AQ =30°,∴ OH =12AO ,……………(2分) ∵BC =10cm ,∴ BO=5cm . ∵AO =AB +BO ,AB =3cm ,∴AO =3+5=8cm ,…………………………………………………………………(1分)∴OH =4cm ,即圆心O 到AQ 的距离为4cm .………………………………(1分) (2)联结OE , 在Rt △EOH 中,∵ ∠EHO =90°,∴ 222EH HO EO +=,…………(1分)∵ EO =5cm ,OH =4cm ,∴ EH =3452222=-=-OH EO cm ,……………(2分) ∵ OH 过圆心O ,OH ⊥EF ,∴ EF =2EH =6cm .………………………………………(2分) 22.解:(1)204153v ==甲(千米/分钟), ∴ 甲车的速度是43千米每分钟.……(2分) ① ②6017010v ==-乙(千米/分钟),∴ 乙车的速度是1千米每分钟.…………(2分)(2)解法①∵ 20120==乙t (分钟),∴乙车出发20分钟后第一次与甲车相遇.………(3分) 解法②设甲车离A 地的距离S 与时间t 的函数解析式为:S kt b =+(0k ≠)将点(10,0)(70,60)代入得:100,7060.k b k b +=⎧⎨+=⎩…………………………………(1分)解得:1,10.k b ==-⎧⎨⎩,即10.S t =-……………………………………………………(1分)当y =20时,解得t =30,∵ 甲车出发10分钟后乙车才出发,∴ 30-10=20分钟,乙车出发20分钟后第一次与甲车相遇.…………………(1分) (3)∵ 440303t =÷=(分钟),…………………………………………… (1分) ∵ 70-30-15=25(分钟),∴ 甲车中途因故障停止行驶的时间为25分钟.… (2分)23.证明:(1)∵四边形ABCD 是正方形,∴AB =DA=BC=CD , ∠BAD =∠ADF=∠BCF=90°,………………………(1分) ∴∠BAH +∠HAE =90°,∵ AF ⊥BE ,∴ ∠AHB =90°即∠BAH +∠ABH =90°,∴∠ABH =∠HAE ,………………………………………………………………(1分) 又∵∠BAE =∠ADF , ∴ △ABE ∽△DAF ,………………………………………………………………(1分)[来源:Z §xx §∴DFAE DA AB =,∴AE =DF .……………………………………………………………………(1分) ∵ 点E 是边AD 的中点,∴点F 是边DC 的中点,∴ CF =AE ,……………………………………………………………………(1分) 在Rt △ABE 与Rt △CBF 中, ,.AB CB AE CF =⎧⎨=⎩∴ Rt △ABE ≌Rt △CBF ,∴BE =BF .……………………………………………………………………(1分)(2)∵四边形ABCD 是正方形,∴DB 平分∠ADC ,∴∠ADB =∠CDB ,…………………………………(1分)在△DEO 与△DFO 中, ,,.ED FD ADB CDB DO DO ⎧⎪⎨⎪⎩=∠=∠= ∴△DEO ≌△DFO ,…………………………………………………………(2分)∴∠DEO =∠DFO ,…………………………………………………………(1分)∵△ABE ∽△DAF ,∴∠AEB =∠DF A ,………………………………… (1分) ∴∠AEB =∠DEO .…………………………………………………………(1分) 24.(1)解:∵C (0,-3),∴OC =3.2134y x bx =+-………………………………(1分)∵OA =2OC ,∴OA =6. ∵041>=a ,点A 在点B 右侧,抛物线与y 轴交点C (0,-3). ∴)0,6(A .…………………………………………………………………(1分)∴2134y x x =--.………………………………………………………(1分) ∴4)2(412--=x y ,∴)4,2(M . ……………………………………(1分)(2)过点M 作MH ⊥x 轴,垂足为点H ,交AC 于点N ,过点N 作NE ⊥AM 于 点E ,垂足为点E .在Rt △AHM 中,HM =AH =4,42AM =,45AMH HAM ︒∠=∠=. 求得直线AC 的表达式为132y x =-.………………(1分)∴N (2,-2).∴MN =2.…………………………………(1分) 在Rt △MNE 中,∴2ME NE ==,∴32AE =.…………………………………………(1分) 在Rt △AEN 中,221tan 33NE MAC AE =∠==.………(1分) (3)①当D 点在AC 上方时,∵1145CAD D AH HAC ︒∠=∠+∠=, 又 ∵45HAM AC AM H C ︒∠=∠+∠=,∴1D AH CAM ∠=∠. …………………………(1分) ∴1tan tan 13D AH AC M ∠=∠=. ∵点1D 在抛物线的对称轴直线x =2上, ∴1D H AH ⊥,∴4AH =.在Rt △AH 1D 中,1114tan 433D H AH D AH =⋅∠=⨯=. ∴14(2,)3D .………………………………………(1分)②当D 点在AC 下方时,∵2245D AC D AM MAC ∠=∠+∠=︒,又 ∵2245AMH D AM AD M ∠=∠+∠==︒,∴2MAC AD M ∠=∠.………………………………(1分)∴2tan tan 13AD H MAC ∠=∠= 在Rt △2D AH 中,221412tan 3AHD H AD H==÷=∠.∴2(2,12)D -.………………………………………(1分)综上所述:14(2,)3D ,2(2,12)D -.25.解:(1)在△ABC 中,∵AB =AC ,点G 是△ABC 的重心, ∴12BD DC BC ==,AD ⊥BC .………………………………………………(1分)在Rt △ADB 中,∵4sin 5AD B AB ==,∴35BD AB =. ∵3BC AB -=, ∴AB =15,BC =18.∴AD =12.………………………………………………………………………(1分) ∵G 是△ABC 的重心,∴283AG AD ==.…………………………………(1分)(2)在Rt △MDG ,∵∠GMD +∠MGD =90°, 同理:在Rt △MPB 中,∠GMD +∠B =90°,∴∠MGD =∠B .…………………………………(1分) ∴4sin sin 5MGD B ∠==, 在Rt △MDG 中,∵143DG AD ==, ∴163DM =,∴113CM CD DM =-=……(1分)在△ABC 中,∵AB =AC ,AD ⊥BC ,∴BAD CAD ∠=∠.∵90QCM CDA DAC DAC ︒∠=∠+∠∠=+, 又 ∵90QGA APQ BAD BAD ︒∠=∠+∠∠=+, ∴QCM QGA ∠=∠,………………………………(1分) 又 ∵CQM GQA ∠=∠,∴△QCM ∽△QGA .………………………………(1分) ∴2411AQ AG MQ MC ==.……………………………(1分) (3)过点B 作BE AD ,过点C 作CF AD ,分别交直线PQ 于点E 、F ,则BEAD CF .…………………………………(1分)∵BE AD ,∴AP AG BP BE =,即158x x BE-=, ∴815xBE x=-.………………………………(1分)同理可得:AQ AG QC CF =,即815y y CF=-, ∴8(15)y CF y-=.……………………………(1分) ∵BEAD CF , BD CD =,∴EG FG =.∴2CF BE GD +=,即8(15)8815y xy x-+=-.(1分) ∴75510x y x-=-,15(0)2x ≤≤.…………………(2分)。
一、选择题(每题3分,共30分)1. 答案:A解析:由题意知,点P在直线y=x上,故其坐标满足y=x,即2x+3y=6。
2. 答案:B解析:根据勾股定理,直角三角形的斜边长等于两直角边长的平方和的平方根,即a²+b²=c²。
代入数据得,8²+15²=17²,所以c=17。
3. 答案:C解析:由题意知,三角形ABC是等腰三角形,AB=AC,故∠ABC=∠ACB。
又因为∠BAC=45°,所以∠ABC=∠ACB=45°。
因此,三角形ABC是等腰直角三角形。
4. 答案:D解析:由题意知,a+b=3,ab=2。
将a+b=3两边平方得,(a+b)²=a²+2ab+b²=9。
代入ab=2得,a²+4+b²=9,即a²+b²=5。
由均值不等式得,(a²+b²)/2≥(ab)²/2,即5/2≥1,所以a²+b²≥4。
5. 答案:B解析:由题意知,函数y=2x-3在R上单调递增,故当x增大时,y也随之增大。
因此,函数y=2x-3的图像在坐标系中从左到右逐渐上升。
6. 答案:C解析:由题意知,点P在直线l上,且|PA|=|PB|,故点P为线段AB的中点。
因此,三角形PAB是等腰三角形。
7. 答案:A解析:由题意知,x+y=2,xy=1。
将x+y=2两边平方得,(x+y)²=x²+2xy+y²=4。
代入xy=1得,x²+2+y²=4,即x²+y²=2。
8. 答案:D解析:由题意知,a>b>0,故a²>b²。
又因为a+b>0,所以(a+b)²>0。
将(a+b)²展开得,a²+2ab+b²>0,即a²+b²>2ab。
学科教师辅导讲义学员编号: 年 级: 课 时 数: 学员姓名: 辅导科目: 学科教师: 授课 类型C 翻折产生的边相等 C 翻折产生的角相等 C 翻折产生的基本图形授课日期时段教学内容一、专题精讲例1、如图,在矩形ABCD 中,点F 是CD 上的一点,沿AF 折叠,点D 恰好落在BC 边上的E 点,若3AB =,5BC =.则tan EFC ∠的值为 .【答案】43法一:根据一线三角,3tan =tan 4AB EFCAEB AEB BE ∠==∠ 法二:在RT △EFC 中,勾股定理解出FC=34,3tan =4EC EFC FC ∠= 例题2、如图所示,将边长为2的正方形纸片折叠,折痕为EF ,顶点A 恰好落在CD 边上的中点PFED CBA3-x 53-x x 1453F E D CBA1221x 2-xx122-x1x 2-x1b-x axx DCB A【答案】415在RT △EDH 中,勾股解出BD=x=415三、学法提炼1、专题特点:翻折后的对应边相等,若题中有边的数据或求边的值,且翻折后的边长和翻折前的相邻线段在一个直角三角形中(如右下图“旗帜”),通常可考虑勾股定理。
2、 解题方法:① 标记翻折后相等的线段,用数字或未知数表示线段长度、角度; ② 若已知条件和要求线段跟翻折的线段有关,找小“旗帜”,有直角三角形,利用勾股定理;如果没有直角构造直角。
注:如右图,在RT △BCD 中,通过勾股定理可以解出x 的值(a 、b 为已知数)3、注意事项:①若相关边长没有已知数据,可以设未知数,且相邻线段用未知数表示出来; ②若翻折后,可找到形如右上图的“旗帜”,可考虑勾股定理。
CBA90,B ∠,D cot EDB ∠ 40°40°45°50°x x=90,A∠,BC⊥,那么线段AD ED90,将△。