概率论习题 李贤平版
- 格式:doc
- 大小:2.07 MB
- 文档页数:23
第一章 随机事件及其概率一、选择题:1.设A 、B 、C 是三个事件,与事件A 互斥的事件是: ( )A .AB AC + B .()A B C +C .ABCD .A B C ++2.设B A ⊂ 则 ( )A .()P AB I =1-P (A ) B .()()()P B A P B A -=-C . P(B|A) = P(B)D .(|)()P A B P A =3.设A 、B 是两个事件,P (A )> 0,P (B )> 0,当下面的条件( )成立时,A 与B 一定独立A .()()()P AB P A P B =I B .P (A|B )=0C .P (A|B )= P (B )D .P (A|B )= ()P A4.设P (A )= a ,P (B )= b, P (A+B )= c, 则 ()P AB 为: ( )A .a-bB .c-bC .a(1-b)D .b-a5.设事件A 与B 的概率大于零,且A 与B 为对立事件,则不成立的是 ( )A .A 与B 互不相容 B .A 与B 相互独立C .A 与B 互不独立D .A 与B 互不相容6.设A 与B 为两个事件,P (A )≠P (B )> 0,且A B ⊃,则一定成立的关系式是( )A .P (A|B )=1 B .P(B|A)=1C .(|A)1p B =D .(A|)1p B =7.设A 、B 为任意两个事件,则下列关系式成立的是 ( )A .()AB B A -=U B .()A B B A -⊃UC .()A B B A -⊂UD .()A B B A -=U8.设事件A 与B 互不相容,则有 ( )A .P (AB )=p (A )P (B ) B .P (AB )=0C .A 与B 互不相容D .A+B 是必然事件9.设事件A 与B 独立,则有 ( )A .P (AB )=p (A )P (B ) B .P (A+B )=P (A )+P (B )C .P (AB )=0D .P (A+B )=110.对任意两事件A 与B ,一定成立的等式是 ( )A .P (AB )=p (A )P (B ) B .P (A+B )=P (A )+P (B )C .P (A|B )=P (A )D .P (AB )=P (A )P (B|A )11.若A 、B 是两个任意事件,且P (AB )=0,则 ( )A .A 与B 互斥 B .AB 是不可能事件C .P (A )=0或P (B )=0D .AB 未必是不可能事件12.若事件A 、B 满足A B ⊂,则 ( )A .A 与B 同时发生 B .A 发生时则B 必发生C .B 发生时则A 必发生D .A 不发生则B 总不发生13.设A 、B 为任意两个事件,则P (A-B )等于 ( )A . ()()PB P AB - B .()()()P A P B P AB -+C .()()P A P AB -D .()()()P A P B P AB --14.设A 、B 、C 为三事件,则AB BC AC U U 表示 ( )A .A 、B 、C 至少发生一个 B .A 、B 、C 至少发生两个C .A 、B 、C 至多发生两个D .A 、B 、C 至多发生一个15.设0 < P (A) < 1. 0 < P (B) < 1. P(|B)+P(A B A )=1. 则下列各式正确的是( )A .A 与B 互不相容 B .A 与B 相互独立C .A 与B 相互对立D .A 与B 互不独立16.设随机实际A 、B 、C 两两互斥,且P (A )=,P (B )=,P (C )=,则P A B C -=U ()( ).A .B .C .D .17掷两枚均匀硬币,出现一正一反的概率为 ( )A .1/2B .1/3C .1/4D .3/418.一种零件的加工由两道工序组成,第一道工序的废品率为 1p ,第二道工序的废品率为2p ,则该零件加工的成品率为 ( )A .121p p --B .121p p -C .12121p p p p --+D .122p p --19.每次试验的成功率为)10(<<p p ,则在3次重复试验中至少失败一次概率为( )。
第三章 随机变量与分布函数1、直线上有一质点,每经一个单位时间,它分别以概率p 或p -1向右或向左移动一格,若该质点在时刻0从原点出发,而且每次移动是相互独立的,试用随机变量来描述这质点的运动(以n S 表示时间n 时质点的位置)。
2、设ξ为贝努里试验中第一个游程(连续的成功或失败)的长,试求ξ的概率分布。
3、c 应取何值才能使下列函数成为概率分布:(1);,,2,1,)(N k Nck f Λ==(2),,2,1,!)(Λ==k k c k f k λ 0>λ。
4、证明函数)(21)(||∞<<-∞=-x e x f x 是一个密度函数。
5、若ξ的分布函数为N (10,4),求ξ落在下列范围的概率:(1)(6,9);(2)(7,12);(3)(13,15)。
6、若ξ的分布函数为N (5,4),求a 使:(1)90.0}{=<a P ξ;(2)01.0}|5{|=>-a P ξ。
7、设}{)(x P x F ≤=ξ,试证)(x F 具有下列性质:(1)非降;(2)右连续;(3),0)(=-∞F 1)(=+∞F 。
8、试证:若αξβξ-≥≥-≥≤1}{,1}{12x P x P ,则)(1}{21βαξ+-≥≤≤x x P 。
9、设随机变量ξ取值于[0,1],若}{y x P <≤ξ只与长度x y -有关(对一切10≤≤≤y x ),试证ξ服从[0,1]均匀分布。
10、若存在Θ上的实值函数)(θQ 及)(θD 以及)(x T 及)(x S ,使)}()()()(ex p{)(x S D x T Q x f ++=θθθ,则称},{Θ∈θθf 是一个单参数的指数族。
证明(1)正态分布),(20σm N ,已知0m ,关于参数σ;(2)正态分布),(200σm N ,已知0σ,关于参数m ;(3)普阿松分布),(λk p 关于λ都是一个单参数的指数族。
但],0[θ上的均匀分布,关于θ不是一个单参数的指数族。
第二章 条件概率与统计独立性1、字母M ,A ,X ,A ,M 分别写在一张卡片上,充分混合后重新排列,问正好得到顺序MAAM 的概率是多少?2、有三个孩子的家庭中,已知有一个是女孩,求至少有一个男孩的概率。
3、若M 件产品中包含m 件废品,今在其中任取两件,求:(1)已知取出的两件中有一件是废品的条件下,另一件也是废品的条件概率;(2)已知两件中有一件不是废品的条件下,另一件是废品的条件概率;(3)取出的两件中至少有一件是废品的概率。
4、袋中有a 只黑球,b 吸白球,甲乙丙三人依次从袋中取出一球(取后来放回),试分别求出三人各自取得白球的概率(3≥b )。
5、从{0,1,2,…,9}中随机地取出两个数字,求其和大于10的概率。
6、甲袋中有a 只白球,b 只黑球,乙袋中有α吸白球,β吸黑球,某人从甲袋中任出两球投入乙袋,然后在乙袋中任取两球,问最后取出的两球全为白球的概率是多少?7、设的N 个袋子,每个袋子中将有a 只黑球,b 只白球,从第一袋中取出一球放入第二袋中,然后从第二袋中取出一球放入第三袋中,如此下去,问从最后一个袋子中取出黑球的概率是多少?8、投硬币n 回,第一回出正面的概率为c ,第二回后每次出现与前一次相同表面的概率为p ,求第n 回时出正面的概率,并讨论当∞→n 时的情况。
9、甲乙两袋各将一只白球一只黑球,从两袋中各取出一球相交换放入另一袋中,这样进行了若干次。
以pn ,qn ,rn 分别记在第n 次交换后甲袋中将包含两只白球,一只白球一只黑球,两只黑球的概率。
试导出pn+1,qn+1,rn+1用pn ,qn ,rn 表出的关系式,利用它们求pn+1,qn+1,rn+1,并讨论当∞→n 时的情况。
10、设一个家庭中有n 个小孩的概率为 ⎪⎩⎪⎨⎧=--≥=,0,11,1,n pap n ap p n n 这里p p a p /)1(0,10-<<<<。
若认为生一个小孩为男孩可女孩是等可能的,求证一个家庭有)1(≥k k 个男孩的概率为1)2/(2+-k k p ap 。
第四章 数字特征与特征函数1、设μ是事件A 在n 次独立试验中的出现次数,在每次试验中p A P =)(,再设随机变量η视μ取偶数或奇数而取数值0及1,试求ηE 及ηD 。
2、袋中有k 号的球k 只,n k ,,2,1 =,从中摸出一球,求所得号码的数学期望。
3、随机变量μ取非负整数值0≥n 的概率为!/n AB p n n =,已知a E =μ,试决定A 与B 。
4、袋中有n 张卡片,记号码1,2,…,n,从中有放回地抽出k 张卡片来,求所得号码之和μ的数学期望及方差。
5、试证:若取非负整数值的随机变量ξ的数学期望存在,则∑∞=≥=1}{k k P E ξξ。
6、若随机变量ξ服从拉普拉斯分布,其密度函数为,,21)(||∞<<∞-=--x ex p x λμλ0>λ。
试求ξE ,ξD 。
7、若21,ξξ相互独立,均服从),(2σa N ,试证πσξξ+=a E ),max(21。
8、甲袋中有a 只白球b 只黑球,乙袋中装有α只白球β只黑球,现从甲袋中摸出()c c a b ≤+只球放入乙袋中,求从乙袋中再摸一球而为白球的概率。
9、现有n 个袋子,各装有a 只白球b 只黑球,先从第一个袋子中摸出一球,记下颜色后就把它放入第二个袋子中,再从第二个袋子中摸出一球,记下颜色后就把它放入第三个袋子中,照这样办法依次摸下去,最后从第n 个袋子中摸出一球并记下颜色,若在这n 次摸球中所摸得的白球总数为n S ,求n S 。
10、在物理实验中,为测量某物体的重量,通常要重复测量多次,最后再把测量记录的平均值作为该体质重量,试说明这样做的道理。
11、若ξ的密度函数是偶函数,且2E ξ<∞,试证ξ与ξ不相关,但它们不相互独立。
12、若,ξη的密度函数为22221,1(,)0,1x y p x y x y π⎧+≤⎪=⎨⎪+>⎩,试证:ξ与η不相关,但它们不独立。
13、若ξ与η都是只能取两个值的随机变量,试证如果它们不相关,则独立。
第三章 随机变量与分布函数1、直线上有一质点,每经一个单位时间,它分别以概率p 或p -1向右或向左移动一格,若该质点在时刻0从原点出发,而且每次移动是相互独立的,试用随机变量来描述这质点的运动(以n S 表示时间n 时质点的位置)。
2、设ξ为贝努里试验中第一个游程(连续的成功或失败)的长,试求ξ的概率分布。
3、c 应取何值才能使下列函数成为概率分布:(1);,,2,1,)(N k Nck f ==(2),,2,1,!)( ==k k ck f kλ 0>λ。
4、证明函数)(21)(||∞<<-∞=-x e x f x 是一个密度函数。
5、若ξ的分布函数为N (10,4),求ξ落在下列范围的概率:(1)(6,9);(2)(7,12);(3)(13,15)。
6、若ξ的分布函数为N (5,4),求a 使:(1)90.0}{=<a P ξ;(2)01.0}|5{|=>-a P ξ。
7、设}{)(x P x F ≤=ξ,试证)(x F 具有下列性质:(1)非降;(2)右连续;(3),0)(=-∞F1)(=+∞F 。
8、试证:若αξβξ-≥≥-≥≤1}{,1}{12x P x P ,则)(1}{21βαξ+-≥≤≤x x P 。
9、设随机变量ξ取值于[0,1],若}{y x P <≤ξ只与长度x y -有关(对一切10≤≤≤y x ),试证ξ服从[0,1]均匀分布。
10、若存在Θ上的实值函数)(θQ 及)(θD 以及)(x T 及)(x S ,使)}()()()(ex p{)(x S D x T Q x f ++=θθθ,则称},{Θ∈θθf 是一个单参数的指数族。
证明(1)正态分布),(20σm N ,已知0m ,关于参数σ;(2)正态分布),(200σm N ,已知0σ,关于参数m ;(3)普阿松分布),(λk p 关于λ都是一个单参数的指数族。
但],0[θ上的均匀分布,关于θ不是一个单参数的指数族。
第一章 事件与概率1、若A ,B ,C 是随机事件,说明下列关系式的概率意义:(1)A ABC =;(2)A C B A =U U ;(3)C AB ⊂;(4)BC A ⊂.2、试把n A A A U L U U 21表示成n 个两两互不相容事件的和.3、若A ,B ,C ,D 是四个事件,试用这四个事件表示下列各事件:(1)这四个事件至少发生一个;(2)这四个事件恰好发生两个;(3)A ,B 都发生而C ,D 都不发生;(4)这四个事件都不发生;(5)这四个事件中至多发生一个。
4、证明下列等式:(1)1321232−=++++n n n n n n n nC C C C L ; (2)0)1(321321=−+−+−−n n n n n n nC C C C L ; (3)∑−=−++=r a k r a b a k b r k a C C C0.5、袋中有白球5只,黑球6只,陆续取出三球,求顺序为黑白黑的概率。
6、一部五本头的文集,按任意次序放书架上去,试求下列概率:(1)第一卷出现在旁边;(2)第一卷及第五卷出现在旁边;(3)第一卷或第五卷出现在旁边;(4)第一卷及第五卷都不出现在旁边;(5)第三卷正好在正中。
7、把戏,2,3,4,5诸数各写在一小纸片上,任取其三而排成自左向右的次序,求所得数是偶数的概率。
8、在一个装有n 只白球,n 只黑球,n 只红球的袋中,任取m 只球,求其中白、黑、红球分别有)(,,321321m m m m m m m =++只的概率。
9、甲袋中有3只白球,7办红球,15只黑球,乙袋中有10只白球,6只红球,9只黑球。
现从两袋中各取一球,求两球颜色相同的概率。
10、由盛有号码L ,2,1,N 的球的箱子中有放回地摸了n 次球,依次记下其号码,试求这些号码按严格上升次序排列的概率。
11、任意从数列L ,2,1,N 中不放回地取出n 个数并按大小排列成:n m x x x x <<<<<L L 21,试求M x m =的概率,这里N M ≤≤1。
第三章 随机变量与分布函数1、直线上有一质点,每经一个单位时间,它分别以概率p 或p -1向右或向左移动一格,若该质点在时刻0从原点出发,而且每次移动是相互独立的,试用随机变量来描述这质点的运动(以n S 表示时间n 时质点的位置)。
2、设ξ为贝努里试验中第一个游程(连续的成功或失败)的长,试求ξ的概率分布。
3、c 应取何值才能使下列函数成为概率分布:(1);,,2,1,)(N k N c k f ==(2),,2,1,!)( ==k k c k f kλ 0>λ。
4、证明函数)(21)(||∞<<-∞=-x e x f x 是一个密度函数。
5、若ξ的分布函数为N (10,4),求ξ落在下列范围的概率:(1)(6,9);(2)(7,12);(3)(13,15)。
6、若ξ的分布函数为N (5,4),求a 使:(1)90.0}{=<a P ξ;(2)01.0}|5{|=>-a P ξ。
7、设}{)(x P x F ≤=ξ,试证)(x F 具有下列性质:(1)非降;(2)右连续;(3),0)(=-∞F 1)(=+∞F 。
8、试证:若αξβξ-≥≥-≥≤1}{,1}{12x P x P ,则)(1}{21βαξ+-≥≤≤x x P 。
9、设随机变量ξ取值于[0,1],若}{y x P <≤ξ只与长度x y -有关(对一切10≤≤≤y x ),试证ξ服从[0,1]均匀分布。
10、若存在Θ上的实值函数)(θQ 及)(θD 以及)(x T 及)(x S ,使)}()()()(exp{)(x S D x T Q x f ++=θθθ,则称},{Θ∈θθf 是一个单参数的指数族。
证明(1)正态分布),(20σm N ,已知0m ,关于参数σ;(2)正态分布),(200σm N ,已知0σ,关于参数m ;(3)普阿松分布),(λk p 关于λ都是一个单参数的指数族。
但],0[θ上的均匀分布,关于θ不是一个单参数的指数族。
第一章 事件与概率1、解:(1) P {只订购A 的}=P{A(B ∪C)}=P(A)-{P(AB)+P(AC)-P(ABC)}=0.45-0.1.-0.08+0.03=0.30. (2) P {只订购A 及B 的}=P{AB}-C }=P(AB)-P(ABC)=0.10-0.03=0.07 (3) P {只订购A 的}=0.30,P {只订购B 的}=P{B-(A ∪C)}=0.35-(0.10+0.05-0.03)=0.23. P {只订购C 的}=P{C-(A ∪B )}=0.30-(0.05+0.08-0.03)=0.20.∴P {只订购一种报纸的}=P{只订购A}+P{只订购B}+P{只订购C}=0.30+0.23+0.20=0.73. (4) P{正好订购两种报纸的}=P{(AB-C) ∪(AC-B) ∪(BC-A)}=P(AB-ABC)+P(AC-ABC)+P(BC-ABC) =(0.1-0.03)+(0.08-0.03)+.(0.05-0.03)=0.07+0.05+0.02=0.14.(5) P {至少订购一种报纸的}= P {只订一种的}+ P {恰订两种的}+ P {恰订三种的} =0.73+0.14+0.03=0.90. (6) P {不订任何报纸的}=1-0.90=0.10.2、解:(1)ABC A C A B A ABC A BC A ⊃⊃⇒⊂⊃⇒=且显然)(,若A 发生,则B 与C 必同时发生。
(2)A C ⊂⊂⇒⊂⇒=且A B A C B A C B A ,B 发生或C 发生,均导致A 发生。
(3)A C AB ⇒⊂与B 同时发生必导致C 发生。
(4)C B A BC A ⊂⇒⊂,A 发生,则B 与C 至少有一不发生。
3、解:n A A A 21)()(11121----++-+=n n A A A A A A (或)=121121-+++n n A A A A A A A .4、解:(1)C AB ={抽到的是男同学,又不爱唱歌,又不是运动员}; C B A ={抽到的是男同学,又爱唱歌,又是运动员}。
第四章 数字特征与特征函数1、设μ是事件A 在n 次独立试验中的出现次数,在每次试验中p A P =)(,再设随机变量η视μ取偶数或奇数而取数值0及1,试求ηE 及ηD 。
2、袋中有k 号的球k 只,n k,,2,1 =,从中摸出一球,求所得号码的数学期望。
3、随机变量μ取非负整数值0≥n 的概率为!/n AB p n n =,已知a E =μ,试决定A 与B 。
4、袋中有n 张卡片,记号码1,2,…,n,从中有放回地抽出k 张卡片来,求所得号码之和μ的数学期望及方差。
5、试证:若取非负整数值的随机变量ξ的数学期望存在,则∑∞=≥=1}{k k P E ξξ。
6、若随机变量ξ服从拉普拉斯分布,其密度函数为,,21)(||∞<<∞-=--x e x p x λμλ0>λ。
试求ξE ,ξD 。
7、若21,ξξ相互独立,均服从),(2σa N ,试证πσξξ+=a E ),max(21。
8、甲袋中有a 只白球b 只黑球,乙袋中装有α只白球β只黑球,现从甲袋中摸出()c c a b ≤+只球放入乙袋中,求从乙袋中再摸一球而为白球的概率。
9、现有n 个袋子,各装有a 只白球b 只黑球,先从第一个袋子中摸出一球,记下颜色后就把它放入第二个袋子中,再从第二个袋子中摸出一球,记下颜色后就把它放入第三个袋子中,照这样办法依次摸下去,最后从第n 个袋子中摸出一球并记下颜色,若在这n 次摸球中所摸得的白球总数为n S ,求n S 。
10、在物理实验中,为测量某物体的重量,通常要重复测量多次,最后再把测量记录的平均值作为该体质重量,试说明这样做的道理。
11、若ξ的密度函数是偶函数,且2E ξ<∞,试证ξ与ξ不相关,但它们不相互独立。
12、若,ξη的密度函数为22221,1(,)0,1x y p x y x y π⎧+≤⎪=⎨⎪+>⎩,试证:ξ与η不相关,但它们不独立。
13、若ξ与η都是只能取两个值的随机变量,试证如果它们不相关,则独立。
第一章 事件与概率1、若A ,B ,C 是随机事件,说明下列关系式的概率意义:(1)A ABC =;(2)A C B A = ;(3)C AB ⊂;(4)BC A ⊂.2、试把n A A A 21表示成n 个两两互不相容事件的和.3、若A ,B ,C ,D 是四个事件,试用这四个事件表示下列各事件:(1)这四个事件至少发生一个;(2)这四个事件恰好发生两个;(3)A ,B 都发生而C ,D 都不发生;(4)这四个事件都不发生;(5)这四个事件中至多发生一个。
4、证明下列等式:(1)1321232-=++++n nnn n n n nC C C C ;(2)0)1(321321=-+-+--nn n n n n nC C C C ;(3)∑-=-++=r a k r a b a k b r k a C C C.5、袋中有白球5只,黑球6只,陆续取出三球,求顺序为黑白黑的概率。
6、一部五本头的文集,按任意次序放书架上去,试求下列概率:(1)第一卷出现在旁边;(2)第一卷及第五卷出现在旁边;(3)第一卷或第五卷出现在旁边;(4)第一卷及第五卷都不出现在旁边;(5)第三卷正好在正中。
7、把戏,2,3,4,5诸数各写在一小纸片上,任取其三而排成自左向右的次序,求所得数是偶数的概率。
8、在一个装有n 只白球,n 只黑球,n 只红球的袋中,任取m 只球,求其中白、黑、红球分别有)(,,321321m m m m m m m =++只的概率。
9、甲袋中有3只白球,7办红球,15只黑球,乙袋中有10只白球,6只红球,9只黑球。
现从两袋中各取一球,求两球颜色相同的概率。
10、由盛有号码 ,2,1,N 的球的箱子中有放回地摸了n 次球,依次记下其号码,试求这些号码按严格上升次序排列的概率。
11、任意从数列 ,2,1,N 中不放回地取出n 个数并按大小排列成:n m x x x x <<<<< 21,试求M x m =的概率,这里N M ≤≤1。
12、从6只不同的手套中任取4只,问其中恰有一双配对的概率是多少?13、从n 双不同的鞋子中任取2r(2r<n)只,求下列事件发生的概率:(1)没有成对的鞋子;(2)只有一对鞋子;(3)恰有两对鞋子;(4)有r 对鞋子。
14、袋中有n 只球,记有号码n ,,2,1 ,求下列事件的概率:(1)任意取出两球,号码为1,2;(2)任意取出3球,没有号码1;(30任意取出5球,号码1,2,3,中至少出现一个。
15、袋中装有N ,,2,1 号的球各一只,采用(1)有放回;(1)不放回方式摸球,试求在第k 次摸球时首次摸到1号球的概率。
16、甲有n+1个硬币,乙有n 个硬币,双方投掷之后进行比较,求早掷出的正面比乙掷出的正面多的概率。
17、一颗骰子投4次至少得到一个六点,与两颗骰子投24次至少得到一个双六这两件事,哪一个有更多的机会遇到? 18、从52张扑克牌中任意抽取13张来,问有5张黑桃,3张红心,3张方块,2张草花的概率。
19、桥牌游戏中(四人各从52张纸牌中分得13张),求4张A 集中在一个人手中的概率。
20、在扑克牌游戏中(从52张牌中任取5张),求下列事件的概率:(1)以A 打头的同花顺次五张牌;(2)其它同花是非曲直次五比重牌;(3)有四张牌同点数;(4)三张同点数且另两张也同点数;(5)五张同花;(6)异花顺次五张牌;(7)三张同点数;(8)五比重中有两对;(9)五张中有一对;(10)其它情况。
21、某码头只能容纳一只船,现预知某日将独立来到两只船,且在24小时内各时刻来到有可能性都相等,如果它们需要停靠的时间分别为3小时及4小时,试求有一船要在江中等待的概率。
22、两人约定于7点到8点在某地会面,试求一人要等另一人半小时以上的概率。
23、设n A A A ,,,21 是随机事件,试用归纳法证明下列公式:∑∑=≥>≥--++-=ni i j n n n j iin A A A P A AP A P A A A P 1121121)()1()()()( 。
24、考试时共有N 张考签,n 个学生参加考试)(N n ≥,被抽过的考签立刻放回,求在考试结束后,至少有一张考签没有被抽过的概率。
25、甲,乙丙三人按下面规则进行比赛,第一局由甲,乙参加而丙轮空,由第一局的优胜者与丙进行第二局比赛,而失败者则轮空,比赛用这种方式一直进行到其中一个人连胜两局为止,连胜两局者成为整场比赛的优胜者。
若甲,乙,丙胜每局的概率各为1/2,问甲,乙,丙成为整场比赛优胜者的概率各是多少?26、给定()()()B A P r B P q A P p ===,,,求()AB P 及()B A P 。
27、已知:()()()B A C AB C B P A P AB P ⊃⊃=,,,证明:)()()(C P A P AC P ≥。
28、(1)已知1A 与2A 同时发生则A 发生,试证:)()(≥)(21A P A P A P +-1 (2)若A A A A ⊂321,试证:≥)(A P 2-)()()(321A P A P A P ++ 29、利用概率论的想法证明下列恒等式:aA aa A a A A A a A a A A a A =+-⋅-++-----+--+)1()1(12)()2)(1()1)((11其中A ,a 都是正整数,且a A >。
30、证明Ω的一切子集组成的集类是一个-σ域。
31、证明:-σ域之交仍为-σ域。
32、向边长为 a 的正方形由任意投一点,求此点正好落在对正方形对角形上的概率?33、在10只电子表中有2只是次品,现从中不放回的连续抽取两次,每次抽取一只,求正好抽到一个是正品,一个是次品的概率? 34、在5双不同的鞋中任取4双,求至少能配成一双的概率? 35、在整数0至9中任取4个,能排成一个四位偶数的概率是多少?36、两人相约于7点到8点间在某地相会,约定先到者等候另一人20分钟,过时离去,试求这两人能会面的概率是多少?37、有10个电阻,其电阻值分别为1,2,,10 ΩΩΩ ,从中取出三个,要求取出的三个电阻,一个小于5Ω,一个大于5Ω,另一个等于5Ω,问取一次就能达到要求的概率。
38、两船欲靠同一码头,设两船独立地到达,而且各自到达时间在一昼夜间是可能的,如果此两船在码头停留的时间分别是1及2小时,试求一船要等待空出码头的概率。
39、任意取两个正的真分数,求它们的乘积不大于1/4的概率。
40、在区间(0,1)中随机取两数,求两数之和小于1.2的概率。
41、设3个事件A ,B ,C ,满足AB φ=,求()P A B C 。
42、某城市中发行2种报纸A ,B 。
经调查,在这2种报纸的订户中,订阅A 报的有45%,订阅B 报的有35%,同时订阅2种报纸A ,B 的有10%。
求:(1)只订A 报的概率;(2)只订1种报纸的概率。
43、从1,2,3,4,5五个数码中,任取3个不同数码排成三位数,求:(1)所得三位数为偶数的概率;(2)所得三位数为奇数的概率。
44、电话号码由6个数字组成,每个数字可以是0,1,2,,9 中的任一个数(但第1个数字不能为0),求电话号码由完全不相同的数字组成的概率。
45、袋中有5个白球和3个黑球。
从中任取2个球,求:(1)取得的2个球同色的概率;(2)取得的2个球至少有1个是白球的概率。
46、证明: ()()-() ()P AB P AC P BC P A +≤47、证明:包含一切形如),(x -∞的区间的最小-σ域是一维波雷尔-σ域。
第二章条件概率与统计独立性1、字母M ,A ,X ,A ,M 分别写在一张卡片上,充分混合后重新排列,问正好得到顺序MAAM 的概率是多少?2、有三个孩子的家庭中,已知有一个是女孩,求至少有一个男孩的概率。
3、若M 件产品中包含m 件废品,今在其中任取两件,求:(1)已知取出的两件中有一件是废品的条件下,另一件也是废品的条件概率;(2)已知两件中有一件不是废品的条件下,另一件是废品的条件概率;(3)取出的两件中至少有一件是废品的概率。
4、袋中有a 只黑球,b 吸白球,甲乙丙三人依次从袋中取出一球(取后来放回),试分别求出三人各自取得白球的概率(3≥b )。
5、从{0,1,2,…,9}中随机地取出两个数字,求其和大于10的概率。
6、甲袋中有a 只白球,b 只黑球,乙袋中有α吸白球,β吸黑球,某人从甲袋中任出两球投入乙袋,然后在乙袋中任取两球,问最后取出的两球全为白球的概率是多少?7、设的N 个袋子,每个袋子中将有a 只黑球,b 只白球,从第一袋中取出一球放入第二袋中,然后从第二袋中取出一球放入第三袋中,如此下去,问从最后一个袋子中取出黑球的概率是多少?8、投硬币n 回,第一回出正面的概率为c ,第二回后每次出现与前一次相同表面的概率为p ,求第n 回时出正面的概率,并讨论当∞→n 时的情况。
9、甲乙两袋各将一只白球一只黑球,从两袋中各取出一球相交换放入另一袋中,这样进行了若干次。
以pn ,qn ,rn 分别记在第n 次交换后甲袋中将包含两只白球,一只白球一只黑球,两只黑球的概率。
试导出pn+1,qn+1,rn+1用pn ,qn ,rn 表出的关系式,利用它们求pn+1,qn+1,rn+1,并讨论当∞→n 时的情况。
10、设一个家庭中有n 个小孩的概率为 ⎪⎩⎪⎨⎧=--≥=,0,11,1,n p ap n ap p n n这里p p a p /)1(0,10-<<<<。
若认为生一个小孩为男孩可女孩是等可能的,求证一个家庭有)1(≥k k 个男孩的概率为1)2/(2+-k kp ap。
11、在上题假设下:(1)已知家庭中至少有一个男孩,求此家庭至少有两个男孩的概率; (2)已知家庭中没有女孩,求正好有一个男孩的概率。
12、已知产品中96%是合格品,现有一种简化的检查方法,它把真正的合格品确认为合格品的概率为0.98,而误认废品为合格品的概率为0.05,求在简化方法检查下,合格品的一个产品确实是合格品的概率。
13、设A ,B ,C 三事件相互独立,求证B A AB B A -,, 皆与C 独立。
14、若A ,B ,C 相互独立,则C B A ,,亦相互独立。
15、证明:事件nA A A ,,,21 相互独立的充要条件是下列2n 个等式成立:)ˆ()ˆ()ˆ()ˆˆˆ(2121nn A P A P A P A A A P =, 其中i A ˆ取iA 或i A 。
16、若A 与B 独立,证明},,,{ΩA A φ中任何一个事件与},,,{ΩB B φ中任何一个事件是相互独立的。