武汉市十一初2012-2013学年度下学期期末模拟八年级数学试题
- 格式:doc
- 大小:2.19 MB
- 文档页数:10
5. 下列三角形中是直角三角形的是( )A .三边之比为5∶6∶7B .三边满足关系a +b =cC .三边之长为9,40,41D .其中一边等于另一边的一半 6.如果△ABC 的三边分别为12-m ,m 2,12+m ,其中m 为大于1的正整数,则( )A .△ABC 是直角三角形,且斜边为12-mB .△ABC 是直角三角形,且斜边为m 2 C .△ABC 是直角三角形,且斜边为12+mD .△ABC 不是直角三角形7.已知函数xk y =的图象经过点(2,3),下列说法正确的是( ) A .y 随x 的增大而增大 B.函数的图象只在第一象限 C .当x <0时,必有y <0 D.点(-2,-3)不在此函数的图象上 8.在函数x ky =(k >0)的图象上有三点A 1(x 1, y 1 )、A 2(x 2, y 2)、 A 3(x 3, y 3 ),已知x 1<x 2<0<x 3,则下列各式中,正确的是 ( )A.y 1<y 2<y 3B.y 3<y 2<y 1C. y 2< y 1<y 3D.y 3<y 1<y 2 9.直角三角形有一条直角边为6,另两条边长是连续偶数,则该三角形周长为( )A. 20 B . 22 C . 24 D . 2610.如图,函数y =k (x +1)与xk y =(k <0)在同一坐标系中,图象只能是( )二、填空题(每小题3分,共30分)11.用四舍五入,按要求对下数取近似值,并将结果用科学记数法 表示02008.0-(精确到万分位)=______________.12.化简:3286aba =________________.13.已知a 1 -b1 =5,则b ab a bab a ---2232+ 的值是 .14.正方形的对角线为4,则它的边长AB= .15.如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是_____米.16.一艘帆船由于风向的原因先向正东方向航行了160km ,然后向正北方向航行了120km ,这时它离出发点有____________km.17.某食用油生产厂要制造一种容积为5升(1升=1立方分米)的圆柱形油桶,油桶的底面面积s 与桶高h 的函数关系式为 .18.如果点(2,3)和(-3,a )都在反比例函数xk y =的图象 上,则a = .19.如图所示,设A 为反比例函数xk y =图象上一点,且矩形ABOC 的面积为3,则这个反比例函数解析式为 .20.如下图,已知OA=OB ,那么数轴上点A 所表示的数是____________.三、解答题(共40分)21.(每小题3分,共12分)化简下列各式:(1)422-a a +a -21 . (2))()()(3222aba b b a -÷-⋅-.第14题图第19题图(3))252(423--+÷--x x x x(4)(y x x - -y x y -2 )·yx xy 2- ÷(x 1 +y 1 ).22.(每小题4分,共8分)解下列方程:(1)223-x +x -11 =3. (2)482222-=-+-+x x x x x .23.(6分)比邻而居的蜗牛神和蚂蚁王相约,第二天上午8时结伴出发,到相距16米的银杏树下参加探讨环境保护问题的微型动物首脑会议.蜗牛神想到“笨鸟先飞”的古训,于是给蚂蚁王留下一纸便条后提前2小时独自先行,蚂蚁王按既定时间出发,结果它们同时到达.已知蚂蚁王的速度是蜗牛神的4倍,求它们各自的速度.24.(7分)已知21y y y +=,1y 与x +1成正比例,2y 与x +1成反比例,当x =0时,y =-5;当x =2时,y =-7。
2012-2013学年度下学期期末模拟考试八年级数学试题考试时间:120分钟 试卷满分:120分 编辑人:丁济亮一、选择题(36分): ( )1、分式121x +有意义的x 的取值范围是A.12x =B.12x ≠C.0x ≠D.12x ≠-( )2、下列各点,在函数y =13x -上的是A .(1,-2)B .(3,0)C .(2,-1 )D 、(3,3) ( )3、下列计算,正确的是A.523a a a =⋅ B.235()a a = C.326a a a =÷ D.22()bb aa=( )4.若分式242-+x x 的值为正,则x 需满足的条件是A .x >0B .x >2C .x ≠±2D .x ≠2( )5、随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000 000 73(mm 2),这个数用科技记数法表示为A .7.3×10-6B .0.73×10-6C .7.3×10-7D .0.73×10-7( )6、若一个长方形的面积为62cm ,则它的长y (cm )与宽x (cm )之间的函数关系用图像表示大致为( )7.如图,一棵大树在离地面9米高的B 处断裂,树顶A 落在离树底部C 的12米处,则大树断裂之前的高度为A.9米B.15米C.21米D.24米 ( )8、下列命题,错误的命题是A.对角线相等的四边形是矩形B.矩形的对角线相等C.平行四边形的两组对边分别相等D.两组对边分别相等的四边形是平行四边形 ( )9、右图是某班学生某次测验的成绩,则这次测验的平均成绩是 A.90 B.92 C.93 D.95_100_95_90_85_80第1第2第3第4…DBA ( )10、如图,第1个图有1个菱形,第2个图有5个菱形,第3个图有14个菱形,第4个图有30个菱形,则第6个图的菱形个数是A.55B.85C.91D.95( )11、如图,将矩形ABCD 沿EF 折叠后,点D 、C 分别 落在D ′、C ′的位置,若AB=6,BC=12,D ′到AB 、BC 的距离 分别为4、2,则CF 的长为A.2B.1.5C.1.8D.2.2( )12、如图,以正方形ABCD 的边向形内作等边△BCE , O 为BD 的中点,连AE 交BD 于M, 交CD 于F ,CE 交BD 于N , 则下列结论:①EM =DM ; ②FN ∥DE ; ③AE =3DM ;④∠AMD -3∠EBN=2∠FEC. 其中正确结论的个数是A .1B .2C .3D .4 二、填空题(12分)13、计算:15a 3b 2·2a 2c = ,2223a b c ⎛⎫- ⎪⎝⎭= ,xy x y -÷233xy y x -= . 14、一文具店老板购进一批不同价格的文具盒,它们的售价分别为10元,20元,30元,销售情况如图所示.这批文具盒售价的平均数是 .15、如图,BD 、CE 是△ABC 的中线,P 、Q 分别是BD 、CE 的中点,则PQ ︰BC 等于 . ;16、如图,正方形OABC ,矩形ADEF 的顶点A ,D ,C 在坐标轴上,点F 在AB 上,点B ,E 在函数xk y =(x >0)的图象上,若点E 的纵坐标1,四边形OBFE 的面积为4,则k = . 三、解答题(72分): 17(6分)、解方程:32122x x =---x18(6分)、如图是反比例函数xm y 25-=的图象的一支. 根据图象回答下列问题:(1)图象的另一支在哪个象限?常数m 的取值范围是什么?(2)若点A (m -3,b 1)和点B (m -4,b 2)是该反比例函数图象上的两点,请你判断b 1与 b 2的大小关系,并说明理由.19(7分)、如图,在□ABCD 中,H 、G 分别是BD 上两点,ABCDHG1 2y第14题第15题且DH=BG .求证:∠1=∠2.20、某瓜农采用大棚栽培技术种植了一亩地的良种西瓜,这亩地产西瓜约600个.为了考察(1)该问题中的样本容量是多少?(2)计算所抽查的西瓜的平均质量、众数和中位数;(3)目前西瓜的批发价约为每500克0.3元,若瓜农按此价格卖出,请你估计这亩地所产西瓜大约能卖多少元钱?21(8分)、如图,在平面直角坐标系中,矩形ADBC 的四个顶点坐标分别为:A (-1,1),B (1,6),C (1,1), D (-1,6),.(1)请画出矩形ADBC 关于直线BC 对称的图形矩形A 1B 1C 1D 1,再将它向右平移3个单位到矩形A 2B 2C 2D 2.,写出A 2、B 2、C 2、D 2的坐标. (2)连接BA,B 2A 2,判断四边形AB B 2A 2的形状(无需说明理由).22(8分)某人看一本300页的书,第一天按原计划速度,从第二天开始速度提高到原来的2倍,结果比原计划提前2天看完,求原计划每天看多少页的书?23(8分)、如图,在等腰梯形ABFD 中,AD ∥BF ,AB ∥DE ,AF ∥DC ,E 、F 两点在边BC 上,且DE 平分AF .(1)AD 与BC 有何等量关系,请说明理由;(2)当∠B=2∠C 时,求证:四边形AEFD 是菱形. (3)在(2)的条件下,若AD=2,求AC 的长。
2011-2012学年八年级下册数学期末考试模拟卷(二)北师版一、单选题(共9道,每道3分)1.下列调查,比较适合普查的是()A.了解我省八年级学生视力情况B.了解郑州市民对郑州地铁建造的欢迎程度C.环保部门调查4月份黄河某段水域的水质量情况D.了解某校八年级(2)班学生爱好音乐的情况答案:D试题难度:三颗星知识点:全面调查与抽样调查2.已知下列命题:①两条边及一个角对应相等的两个三角形全等②两条对角线互相垂直的四边形是菱形③两相似三角形的面积比等于周长比的平方④过直线外一点只能画一条直线与已知直线平行下列命题是真命题的个数是()A.1B.2C.3D.4答案:B试题难度:三颗星知识点:真命题、假命题3.下列计算错误的是()A.B.C.D.答案:D试题难度:三颗星知识点:分式的混合运算4.把不等式组的解集表示在数轴上,正确的是()A.B.C.D.答案:C试题难度:三颗星知识点:解一元一次不等式并用数轴表示5.将多项式分解因式时,应提取的公因式是()A.B.C.D.答案:A试题难度:三颗星知识点:因式分解--提取公因式6.如图,直线y=kx+b经过A(1,2),B(-2,-1)两点,则不等式x<kx+b<2的解集为().A.-1<x<1B.-1<x<2C.-2<x<1D.-2<x<2答案:C试题难度:三颗星知识点:一元一次不等式与一次函数7.甲乙丙丁四名参赛选手在预赛中所得的平均成绩及其方差如下图所示,如果选拔其中一人参加决赛,综合考虑,应该选择()A.甲B.乙C.丙D.丁答案:C试题难度:三颗星知识点:方差8.如图,已知AB∥CD∥EF,则下列各式中正确的是()A.∠1+∠2+∠3=180°B.∠1+∠2-∠3=180°C.∠1-∠2+∠3=180°D.∠2+∠3-∠1=180°答案:D试题难度:三颗星知识点:余角、补角的性质9.△ABC与△A′B′C′中,有下列条件:①;②;③∠A=∠A;④∠C=∠C.如果从中任取两个条件组成一组,那么能判断△ABC∽△A′B′C′的共有()A.1组B.2组C.3组D.4组答案:C试题难度:三颗星知识点:相似三角形的判定二、填空题(共9道,每道3分)1.若,则.答案:-5试题难度:三颗星知识点:比例的基本性质2.当x 时,分式有意义答案:≠5试题难度:三颗星知识点:分式有意义的条件3.分解因式结果为.答案:试题难度:三颗星知识点:先提取后公式4.在比例尺为1:2000000的地图上测得A、B两地间的距离为5cm,则A、B两地间的实际距离为km.答案:100试题难度:三颗星知识点:比例尺的应用5.如果不等式组的解集是,那么m的取值范围是.答案:m≧2试题难度:三颗星知识点:含字母的不等式组的已知解集求字母问题6.关于x的分式方程的解是一个非负数,则k的取值范围为.答案:k≧-3且k≠试题难度:三颗星知识点:含字母的不等式组的已知解集求字母问题7.如图,Rt△ABC∽Rt△ACD,AC=,AD=2,则BC= .答案:试题难度:三颗星知识点:相似三角形的判定与性质8.把命题“矩形的两条对角线相等”改写成“如果…,那么…”的形式为:如果,那么.答案:一个四边形是矩形;该四边形的两条对角线相等.试题难度:三颗星知识点:命题的条件和结论(命题结构)9.现有一大一小,形状相同的两张三角形年画,已知第一张的三边长为4dm、5dm、6dm,第二张的一边长为2dm,则第二张年画的周长为.答案:5dm或6dm或7.5dm试题难度:三颗星知识点:相似性质三、解答题(共7道,每道6分)1.请先化简1+,并在2,3,4选择一个你喜欢的数代入求值.答案:解:原式=1+=1+=1∵x≠±4且x≠2∴只能将x=3代入,原式=1综上,答案为试题难度:三颗星知识点:分式化简求值2.解分式方程:答案:解:方程两边同乘以x(x+1)得:去括号,合并同类项得:x=-1 检验:x=-1使得x(x+1)=0 综上:x=-1为原分式方程的增根.试题难度:三颗星知识点:解分式方程3.如图,若O是△ABC的内角的平分线交点,∠A=x°,∠BOC=y°,写出y与x函数关系式,并指出自变量x的取值范围.答案:解:如图,∵O是△ABC的内角的平分线交点,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=∠ABC+∠ACB=(∠ABC+∠ACB)=(180°-x).∵∠BOC=180°-(∠OBC+∠OCB),∴∠BOC=180°-(180-x),∴y=90°+x(0<x<180).试题难度:三颗星知识点:内角平分线的交点4.梯形ABCD的四个顶点分别为A(0,6),B(2,2),C(4,2)D(6,6).按下列要求画图.(1)在平面直角坐标系中,画出以原点O为位似中心,使其与梯形ABCD的相似比为的位似图形;(2)画出位似图形向下平移五个单位长度后的图形.答案:解:(1)图形正确得(3分)(2)图形正确得(1分)试题难度:三颗星知识点:作图-位似变换5.我国从2011年5月1日起在公共场所“禁烟”,为配合“禁烟”行动,某校组织开展了“吸烟有害健康”的知识竞赛,共有20道题,答对一道记10分,答错(或不答)一题记-5分,现在知道小明参加本次竞赛的分数不小于100分,但不超过150分,那么他答对了多少道题?答案:解:设小明答对了x道题则有:100≦10x-5(20-x)≦150解得:∵x为正整数∴x=14,15,16 答:小明答对了14或15或16道题试题难度:三颗星知识点:一元一次不等式(组)的应用(关键词型)6.为了增强环境保护意识,6月5日“世界环境日”当天,在环保局工作人员指导下,若干名“环保小卫士”组成了“控制噪声污染”课题学习研究小组.该小组抽样调查了全市40个噪声测量点在某时刻的噪声声级(单位:dB),将调查的数据进行处理(设所测数据均为正整数),得频数分布表如下:根据表中提供的信息解答下列问题:(1)频数分布表中的_,_,_;(2)补充完整频数分布直方图(3)计算如果全市共有200个测量点,那么在这一时刻噪声声级小于75dB的测量点约有多少个?答案:(1)根据频数与频率的正比例关系,可知,首先可求出a=8,再通过40-4-6-8-10=12,求出b=12,最后求出c=0.3;(2)(3)算出样本中噪声声级小于75dB的测量点的频率是0.3,0.3×200=60,∴在这一时刻噪声声级小于75dB的测量点约有60个.试题难度:三颗星知识点:图表信息型问题7.如图,在梯形ABCD中,AD∥BC,AD=3,DC=5,AB=,∠B=45°.动点M从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动;动点N同时从点C出发沿线段CD以每秒1个单位长度的速度向终点D运动.设运动的时间为t秒.(1)求BC的长;(2)当MN∥AB时,求t的值;(3)试探究:t为何值时,△MNC为等腰三角形.答案:(1)过点A作AK垂直BC于点K,过点D作DH垂直BC于点H,从而AK∥DH,如图①∵AK⊥BC,∠B=45°,AB=∴AK=BK=4∵AD//BC,AK∥DH,AK⊥BC∴ADHD为矩形∴AK=DH=4,KH=AD=3∵∠DHC=90°,DC=5∴HC=3∴BC=BK+KH+HC=3+3+4=10(2)依题意可知:CN=t,BM=2t,CM=10-2t(0≦t≦5),过点D作DG//AB交BC于点G,如图②,∵MN//AB∴DG//MN∴△GDC∽△MNC∵AD//BG,AB//DG∴AD=BG=3∴GC=BC-BG=10-3=7∵△GDC∽△MNC∴∵DC=5,CG=7,CN=t,CM=10-2t∴∴t=∵0≦≦5∴t=符合题意(3)0<t<5分三种情况讨论:①当NC=MC时,如图③,即t=10-2t,∴t=②当MN=NC时,如图④,过N作NE⊥MC于E,CE=∵∠C=∠C,∠DHC=∠NEC=90°,∴△NEC∽△DHC.∴即∴t=③当MN=MC时,如图⑤,过M作MF⊥CN于F点.FC=NC=t.∵∠C=∠C,∠MFC=∠DHC=90°,∴△MFC∽△DHC.∴即∴t=.由于0<<5,0<<5,0<<5,所以均符合题意综上所述,当t=、t=或t=时,△MNC为等腰三角形.试题难度:三颗星知识点:相似中的动点问题。
2012-2013学年度第二学期期末考试一、选择题(每小题3分,共36分) 1.在式子22,2,,3,1y x xab b a c b a --π中,分式的个数为( B )A .2个B .3个C .4个D .5个2.当x =( B )时,分式x x 242--的值为0。
A. 2B. -2C. ±2D. 63.若A (a ,b )、B (a -1,c )是函数xy 1-=的图象上的两点,且a <0,则b 与c 的大小关系为( B ) A .b <c B .b >c C .b=c D .无法判断4.如图,已知点A 是函数y=x 与y=x4的图象在第一象限内的交点,点B 在x 轴负半轴上,且OA=OB ,则△AOB 的面积为( C )A .2B .2C .22D .4第4题图 第5题图 第8题图 第10题图5.如图,在三角形纸片ABC 中,AC=6,∠A=30º,∠C=90º,将∠A 沿DE 折叠,使点A 与点B 重合,则折痕DE 的长为( ) A .1 B .2 C .3 D .26.△ABC 的三边长分别为a 、b 、c ,下列条件:①∠A=∠B -∠C ;②∠A :∠B :∠C=3:4:5;③))((2c b c b a -+=;④13:12:5::=c b a ,其中能判断△ABC 是直角三角形的个数有( )A .1个B .2个C .3个D .4个7.一个四边形,对于下列条件:①一组对边平行,一组对角相等;②一组对边平行,一条对角线被另一条对角线平分;③一组对边相等,一条对角线被另一条对角线平分;④两组对角的平分线分别平行,不能判定为平行四边形的是( )A .①B .②C .③D .④8.如图,已知E 是菱形ABCD 的边BC 上一点,且∠DAE=∠B=80º,那么∠CDE 的度数为( )A .20ºB .25ºC .30ºD .35º9.某班抽取6名同学进行体育达标测试,成绩如下:80,90,75,80,75,80. 下列关于对这组数据的描述错误的是( )A .众数是80B .平均数是80C .中位数是75D .极差是1510.某居民小区本月1日至6日每天的用水量如图所示,那么这6天的平均用水量是( )A .33吨B .32吨C .31吨D .30吨11.如图,直线y=kx (k >0)与双曲线y=x1交于A 、B 两点,BC ⊥x 轴于C ,连接AC 交y 轴于D ,下列结论:①A 、B关于原点对称;②△ABC 的面积为定值;③D 是AC 的中点;④S △AOD =21. 其中正确结论的个数为( )A .1个B .2个C .3个D .4个A B OyxABCDEABEDC第11题图 第12题图 第16题图 第18题图12.如图,在梯形ABCD 中,∠ABC=90º,AE ∥CD 交BC 于E ,O 是AC 的中点,AB=3,AD=2,BC=3,下列结论:①∠CAE=30º;②AC=2AB ;③S △ADC =2S △ABE ;④BO ⊥CD ,其中正确的是( )A .①②③B .②③④C .①③④D .①②③④ 二、填空题(每小题3分,共18分)13. 甲、乙两名学生在5次数学考试中,得分如下: 甲:89,85,91,95,90; 乙:98,82,80,95,95。
2012~2013八年级下册数学期末考试模拟卷注意:本试卷分试题卷和答题卡两部分。
考试时间100分钟,满分120分。
考生应首先阅读答题卡上的文字信息,然后在答题卡上作答,在试题卷上作答无效,交卷时只交答题卡。
一、选择题(每小题3分,共24分)1.下列各式是最简分式的是()A.22x yxB.4xπC.222244x yx y-+D.22244x yxy x--2.下列调查适合用抽样调查的是()①对某类烟花爆竹燃放安全情况的调査;②调查一架“歼20”隐形战机各零部件的质量;③对某班50名同学体重情况的调査;④对黄河水质情况的调査;⑤调查我市中学生每天体育锻炼的时间.A.①③⑤B.①④⑤C.①②④D.②③④ 3.已知a<b,c≠0,则下列四个不等式中一定成立的是()A.ac>bc B.a bc c<C.c-a>c-b D.c+a>c+b4.如图,阳光从教室的窗户射入室内,窗户框AB在地面上的影长DE=1.8m,窗户下檐到地面的距离BC=1m,EC=1.2m,那么窗户的高AB为()A.1.5m B.1.6m C.1.86m D.2.16mBA第6题图第7题图5.已知下列命题:①若a>b,则|a|>|b|;②斜边和一直角边对应成比例的两个直角三角形相似;③对应边成比例的两个平行四边形相似;④有一组内角相等的两个菱DCB A 形相似;⑤相似图形一定是位似图形;⑥两直线与第三条直线相交,内错角相等.其中真命题的个数是( )A .1个B .2个C .3个D .4个6. 如图,在正方形网格上有6个三角形:①△ABC ,②△BCD ,③△BDE ,④△BFG ,⑤△FGH ,⑥△EFK .其中②~⑥中与三角形①相似的是 ( ) A .②③④ B .③④⑤ C .④⑤⑥ D .②③⑥7. 如图,直线y =kx +b 经过A (1,2),B (-3,-1)两点,则不等式组13x <kx +b <2的解集为( ).A .-1<x <1B .-1<x <2C .-3<x <1D .-3<x <28. 如图,△ABC 中,A ,B 两个顶点在x 轴的上方,点C 的坐标是(-1,0).以点C 为位似中心,在x 轴的下方作△ABC 的位似图形,并把△ABC 的边长放大到原来的2倍,记所得的像是△A ′B ′C .设点B 的横坐标是a ,则它的对应点B ′的横坐标是( ) A .-2a -1 B .-2a -2C .-2a -3D .32a +-二、填空题(每小题3分,共21分)9.有意义的x 的取值范围是____________. 10. 省射击队准备从甲,乙两位运动员中选拔一人参加全国射击比赛,他们在选拔比赛中,射靶十次的平均环数是9.6x x ==甲乙,方差分别是2S 甲=1.5,2S 乙=3.8.根据以上提供的信息,你认为应该被推荐去参加全国射击比赛的运动员是______.11. 在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20cm ,则它的宽约为__________.12. 若不等式2x <4的解都能使关于x 的一元一次不等式(a -1)x <a +5成立,则a 的取值范围是_________.13. 如图,在△ABC 中,∠ABC 的平分线与∠ACB 的外角平分线相交于D 点,∠A =50°,则∠D =______. 14. 定义:a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,-1的差倒数是111(1)2=--.已知113a =-,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,…,依此类推,a 2013=______.15. 将腰长为6cm ,底边长为5cm 的等腰三角形废料加工成菱形工件,菱形的一个内角恰好是这个三角形的一个角,菱形的其他顶点均在三角形的边上,则这个菱形的边长是_______________. 三、解答题(共75分)16. (8分)小明把三个数-1,2-a ,12a +在数轴上从左到右依次排列在三个对应点上,你能确定a 的取值范围吗?请写出你的解答过程.17. (9分)先化简,再求值:2216222x x x x x -⎛⎫-÷ ⎪--⎝⎭,其中x4. 18. (9分)请你设计一个实际情景来表示分式方程303081.5x x-=的意义,并解答这个问题.19. (9分)如图,已知在△ABC 中,∠1=∠2=∠3.△ABC 与△DEF 有什么关系,证明你的结论.AF 2D 1E3CB20. (9分)为了了解2013年全国中学生创新能力大赛中竞赛项目“知识产权”笔试情况,随机抽查了部分参赛同学的成绩,整理并制作图表如下:请根据以上图表中提供的信息,解答下列问题:(1)该项调查的总体是______________________________________________,本次调查的样本容量为______;(2)在表中:m =______,n =______; (3)补全频数分布直方图;(4)参加比赛的小聪说,他的比赛成绩是所有抽查同学成绩的中位数,据此推断他的成绩落在__________分数段内;(5)如果比赛成绩80分以上(含80分)为优秀,那么你估计该竞赛项目的优秀率大约是 ________. 21. (10分)由于受金融危机的影响,某店经销的甲型号手机今年的售价比去年每台降价500元.如果卖出相同数量的手机,那么去年销售额为8万元,今分数/分年销售额只有6万元.(1)今年甲型号手机每台售价为多少元?(2)为了提高利润,该店计划购进乙型号手机销售,已知甲型号手机每台进价为1 000元,乙型号手机每台进价为800元,预计用不多于1.84万元且不少于1.76万元的资金购进这两种手机共20台,请问有几种进货方案?(3)若乙型号手机的售价为1 400元,为了促销,公司决定每售出一台乙型号手机,返还顾客现金a 元,而甲型号手机仍按今年的售价销售,要使(2)中所有方案获利相同,a应取何值?22. (10分)汪老师要装修自己带阁楼的新居(下图为新居剖面图),在建造客厅到阁楼的楼梯AC 时,为避免上楼时墙角F 碰头,设计墙角F 到楼梯的竖直距离FG 为1.75m .他量得客厅高AB =2.8m ,楼梯洞口宽AF =2m ,阁楼阳台宽EF =3m .请你帮助汪老师解决下列问题:(1)要使墙角F 到楼梯的竖直距离FG 为1.75m ,楼梯底端C 到墙角D 的距离CD 是多少米? (2)在(1)的条件下,为保证上楼时的舒适感,楼梯的每个台阶高小于20cm ,每个台阶宽要大于20cm ,问汪老师应该将楼梯建几个台阶?为什么?23. (11分)如图1,在△ABC 中,AB =10cm ,AC =8cm ,BC =6cm .如果点P由B 出发沿BA 方向向点A 匀速运动,同时点Q 由A 出发沿AC 方向向点C 匀速运动,它们的速度均为2cm /s ,当一个点到达终点时,另一个点也随之停止运动.设运动时间为t (s ). (1)当t 为何值时,PQ ∥BC ?(2)是否存在时刻t ,使S △APQ =15S △ABC ?若存在,求出t 的值;若不存在,请说明理由.(3)如图2,把△AQP 沿AP 翻折,得到四边形AQPQ ′.那么是否存在某时刻t ,使四边形AQPQ ′为菱形?若存在,求出t 的值;若不存在,请说明理由.图2图1Q'Q PABC。
2012~2013八年级下册数学期末考试模拟卷(一)注意:本试卷分试题卷和答题卡两部分.考试时间90分钟,满分120分,考生应首先阅读答题卡上的文字信息,然后在答题卡上作答,交卷时只交答题卡. 一、选择题(每小题3分,共24分)1. 如果m <n <0,那么下列结论错误的是( )A .m -9<n -9B .-m >-nC .mn>1 D .1n >1m2. 去年我市有7.6万学生参加初中毕业会考,为了解这7.6万名学生的数学成绩,从中抽取 1 000名考生的数学成绩进行统计分析,以下说法正确的是( )A .这种调查方式是普查B .这1 000名考生是总体的一个样本C .每位考生的数学成绩是个体D .1 000名学生是样本容量3. A .()5()+5x y x y -++ B .22x yx y-+ C .222()x y x y -+ D .2222x y x y -+4. 下列式子不能用公式法分解因式的是( )A .-12xy +x 2+36y 2B .-m 2-n 2C .-a 2+16b 2D .2114y y ++ 5. 将一副常规的三角尺按如图所示的方式放置,则图中∠1的度数为( )A .75°B .95°C .105°D .120°16. 下列命题中不正确的是( )A .两个三角形的两角对应相等,则这两个三角形相似B .直角三角形被斜边上的高分成的两个直角三角形与原三角形相似C .一个角对应相等的两个等腰三角形相似D .两个直角三角形两边对应成比例,那么这两个三角形相似7. 在△ABC 中,AB >BC >AC ,D 是AC 的中点,过点D 作直线l 截△ABC ,使得到的三角形与原三角形相似,这样的直线有( )条. A .2 B .3 C .4 D .58. 如图,直线y =x +1与直线y =mx +52相交于点P (a ,2),结合图形可得出不等式0<mx +52≤x +1的解集为( ) A .1≤x <2 B .x ≥1C .-1≤x <1D .1≤x <5 二、填空题(每小题3分,共21分)9. 用适当的符号表示a 是非负数为 . 10.11. 在命题“同角的余角相等”中,题设是 . 12. 甲、乙、丙、丁四名参赛选手在预赛中所得的平均成绩x 及其方差2S 如下表所示,如果选拔其中一人参加决赛,综合考虑应是 .13. 我们知道古希腊时期的巴台农神庙(Parthenom Temple )的正面是一个黄金矩形.若已知黄金矩形的长等于6m ,则这个黄金矩形的宽等于________.(结果保留两位小数) 14. 已知11xy x =-(x ≠0),且2111y y =-,3211y y =-,4311y y =-,···,111n n y y -=-,则y 2013=.15. 如图,四边形ABCD ,CDEF ,EFGH 都是正方形,有以下结论:①△ABF∽△CBA ;②∠1+∠2=45°;③AC CGCF AC=;④△ACF ∽△GCA .其中正确的结论是 .21HGFEDCBA三、解答题(本大题共8小题,共75分)16. (8分)解不等式组253(1)1132x x x x ≥--⎧⎪-⎨-⎪⎩<,并把解集表示在数轴上.17. (9分)解方程:261393x x x x +=+--.18. (9分)如图所示,图中的小方格都是边长为1的正方形,△ABC 与△A ′B ′C ′是以点O 为位似中心的位似图形,它们的顶点都在小正方形的顶点上. (1)画出位似中心点O ;(2)直接写出△ABC 与△A ′B ′C ′的位似比;(3)以位似中心O 为坐标原点,以格线所在直线为坐标轴建立平面直角坐 标系,画出△A ′B ′C ′关于点O 中心对称的△A ″B ″C ″,并直接写出△A ″B ″C ″ 各顶点的坐标.A'B'C'CB A19.(9分)某校学生会准备调查六年级学生参加“武术类”、“书画类”、“棋牌类”、“器乐类”四类校本课程的人数.(1)确定调查方式时,甲同学说:“我到六年级(1)班去调查全体同学”;乙同学说:“放学时我到校门口随机调查部分同学”;丙同学说:“我到六年级每个班随机调查一定数量的同学”.请指出哪位同学的调查方式最合理.器乐类武术类书画类棋牌类(2)他们采用了最为合理的调查方法收集数据,并绘制了如图所示的统计表和扇形统计图.③若该校六年级有学生560人,请你估计大约有多少学生参加武术类校本课程.20.(9分)证明:两条平行线被第三条直线所截,则它们的一对同位角的平分线互相平行.(要求画图,写出已知、求证、证明)21. (10分)如图,为了确定一条河的宽度,测量人员在对岸岸边P 点处观察到一根柱子,再在他们所在的这一侧岸上选点A 和点B ,使得B ,A ,P 在同一条直线上,且与河岸垂直,随后确定点C ,点D ,使BC ⊥BP ,AD ⊥BP ,由观测可以确定CP 与AD 的交点D .他们测得AB =45m ,BC =90m ,AD =60m ,从而确定河宽PA =90m ,你认为他们的结论对吗?还有其他测量方法吗?请说明如何实施你的方案.PCB A D销售甲、乙两种产品的利润m (万元)与销售量n (吨)之间的函数关系如 图所示.(1)若该企业上半年生产甲、乙两种产品共用原料180吨,投入生产成本340 万元,则该企业上半年利润有多少万元?(2)若该企业下半年计划生产甲、乙两种产品共120吨,但现有原料至多200 吨,生产成本至多390万元,则该企业下半年至多可获利润多少万元?并写出相应的生产方案.23.(11分)如图,在平面直角坐标系中,点C(-3,0),点A,B分别在x轴、y轴的正半轴上,且满足10OA-=,(1)求点A,点B的坐标.(2)若点P从C点出发,以每秒1个单位的速度沿线段CB由C向B运动,连接AP,设△ABP的面积为S,点P的运动时间为t秒,求S与t的函数关系式.(3)在(2)的条件下,是否存在点P,使以点A,B,P为顶点的三角形与△AOB相似?若存在,请直接写出点P的坐标;若不存在,请说明理由.。
BC AD2012-2013学年度下学期八年级数学期末检测试一、选择题(每小题3分,共18分) 1、在代数式x 1、21、212+x 、πxy3、y x +3、11++m a 中,分式有( )A 、2个B 、3个C 、4个D 、5个2、在反比例函数y=x2的图象上的一个点的坐标是( )A 、(2,1)B 、(-2,1)C 、(2、21)D 、(21,2)3、如图,已知四边形ABCD 是平行四边形,下列结论中不正确的是( ) A 、当AB=BC 时,它是菱形 B 、当AC ⊥BD 时,它是菱形 C 、当∠ABC=90°时,它是矩形 D、当AC =BD 时,它是正方形4、下列每组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是( ) A 、3、4、5 B 、6、8、10 C 、3、2、5 D 、5、12、13 5、数据-3、-2、1、3.6、x 、5的中位数是1,那么这组数据的众数是( )A 、2B 、1C 、10D 、6、如图,在周长为20cm 的 ABCD 中,AB ≠AD ,AC 、BD 相交于点O ,OE ⊥BD ,交AD 于点E ,则△ABE 的周长为( ) A 、4cm B 、6cm C 、8cm D 、10cm 二、填空题(每小题3分,共24分)7、将0.000702用科学记数法表示,结果为 。
8、一组数据-1,0,3,5,x 的极差是7,那么x 的值可能有 个。
9、在 ABCD 中,AB ,BC ,CD ,的三条边的长度分别是(x-2)cm ,(x+3)cm ,8cm ,则 ABCD 的周长为 cm 。
10、若矩形一个内角的平分线分它的长边为两部分,长分别为2和3。
则该矩形的面积为 。
11、甲、乙两人5次射击命中的环数如下:甲:7、9、8、6、10 乙:7、8、9、8、8 则这两人5次射击命中的环数的平均数x 甲=x 乙=8。
方差S 2甲 S 2乙。
(填“>”、“<”或“=”) 12、若菱形一条对角线长是另一条对角线长的2倍,且菱形的面积为16cm 2,则菱形的周长为 cm 。
2012-2013学年度八年级下学期期末数学质量检测试题(考试时间90分钟, 满分120分,) 一、选一选(每小题3分,共30分)1、下列多项式中能用平方差公式分解因式的是( )A .22)(b a -+ B.mn m 2052- C.22y x -- D.92+-x2、不等式组 ⎪⎩⎪⎨⎧≥<212x x 的解集在数轴上应表示为( )3、某中学人数相等的甲、乙两班学生参加了同一次数学测验,班平均分和方差分别为82=甲x 分82=乙x 分;2452=甲s ,1902=乙s ,那么成绩较为整齐的是( ) )A .乙班B .甲班C .两班一样整齐D .无法确定 4、△ABC 中,若∠A :∠B :∠C = 2:3:4,则∠C 等于( ) A.20° B.40° C.60° D.80° 5、如图,△ABC 中,D 、E 分别是AB 、AC 上的点,DE ∥BC , DE =1,BC =3,AB =6,则BD 的长为( ) A .1 B .2 C .4 D . 56、某市为了分析全市1万名初中毕业生的数学毕业成绩,共随机抽取40本试卷,每本30份,则这个问题中( )A.个体是每个学生 B.样本是抽取的1200名学生的数学毕业成绩 C.总体是40本试卷的数学毕业成绩 D.样本是30名学生的数学毕业成绩7、下列四个命题:①对顶角相等;②同位角相等;③等角的余角相等;④凡是直角都相等。
其中真命题的个数的是( )A.1个B.2个C.3个D.4个 8、设S 是数据1x ,……,n x 的标准差,Sˊ是5,521--x x …,5-n x 的标准差,则有:( )A .S=Sˊ B.Sˊ=S-5 C.Sˊ=(S -5)² D.Sˊ=5-S9、如图,矩形AOBC 中,点A 的坐标为(0,8),点D 的纵坐标为3,若将矩形沿直线AD 折叠,则定点顶点C 恰好落在边OB 上E 处,那么图中阴影部分的面积为 ( ) A.30 B .32 C .34 D .1610、如图所示,△ABC 中,点D 在边BC 上,点E 在边AC 上,且AB ∥ED ,连接BE ,若AE ︰EC =3︰5,则下列结论错误的是( ) A. △BED 与△EDC 的面积比为3︰5B.△EDC 与△ABC 的周长比为5︰8C.△EDC 与△ABC 的面积比为25︰64D. AB ︰ED =5︰3二、填空题:(每题3分,共30分)11、某公司行李托运的费用与重量的关系为一次函数,由右图 可知只要重量不超过________千克,就可以免费托运。
2012-2013学年度第二学期期末学情分析样题(一)八年级数学一、选择题(每小题2分,共16分) 1.当b a >时,下列不等式中正确的是( )A .b a 22<B .33->-b aC .1212+<+b aD .b a ->- 2.若分式121+x 有意义,则( )B A .2-=x B. 21-≠x C.21≠x D. 2≠x 3.下列命题中,假命题是( ) A .三角形三个内角的和等于l80° B .两直线平行,同位角相等 C .矩形的对角线相等 D .相等的角是对顶角4.已知1112a b -=,则aba b -的值是 ( ) A .12 B .-12C .2D .-25.如图所示,给出下列条件:①B ACD ∠=∠; ②ADC ACB ∠=∠; ③AC ABCD BC =;④ACAD AB AC =.其中单独能够判定ABC ACD △∽△的个数为 ( )A .1B .2C .3D .46. 小刚身高1.7m ,测得他站立在阳光下的影子长为0.85m ,紧接着他把手臂竖直举起,测得影子长为1.1m ,那么小刚举起的手臂超出头顶( ) A .0.5m B .0.55m C .0.6m D .2.2m 7.如果反比例函数y =1 –m x的图象在第一、三象限,那么下列选项中m 可能取的一个值为( )A .0B .1C .2D .3 8. 如图,把△ABC 纸片沿DE 折叠,使点A 落在图中的A '时,则与和的关系是( )A .212∠-∠=∠AB .)21(23∠-∠=∠AC .2123∠-∠=∠AD .21∠-∠=∠A(第5题图)32O二、填空题(每小题2分,共20分)9.如果 x 2 = y3 ≠0,那么xy x 32+= .10.在比例尺为1:5000000的中国地图上,量得盐城与南京相距6.4cm,那么盐城与南京两地的实际距离 为 km..11.分式112+-x x 的值为0,则x 的值为 .12.不等式组1021x x -≥⎧⎨-<⎩的整数解是___________.13.命题“平行四边形的对角相等”的逆命题是 .14.将4个红球若干个白球放入不透明的一个袋子内,摇匀后随机摸出一个球,若摸出的红球的概率为32,那么白球的个数为 . 15.两个相似三角形对应边长的比为1:2,则其面积比为 .16.如图,∠1=∠2,若使△ABC ∽△ADE .则要补充的一个条件是 .17.在反比例函数4y x=-的图象上有两点11()A x y ,、22()B x y ,,当120x x >>时,则1y 2y . (填“<”或“>”) 18.在方格纸中,每个小格的顶点称为格点,以格点连线为边的三角形叫格点三角形.在如图5×5的方格纸中,作格点△ABC 和△OAB 相似(相似比不为1),则点C 的坐标是 . 三、解答题(本大题共10小题,满分共64分) 19.(5分)解不等式223-x <21+x ,并把解集在数轴上表示出来..20.(5分)先化简,再求值:211122x x x -⎛⎫-÷⎪++⎝⎭,其中2x =.21. (5分)如图所示的方格地面上,标有编号1、2、3的3个小方格地面是空地,另外6个方格地面是草坪,小方格地面的大小和形状完全相同.(1)一只自由飞行的小鸟,将随意落在图中所示的方格地面上,求小鸟落在草坪上的概率;(2)现准备从图中所示的3个小方格空地中任选2个种植草坪,则编号为1、2的2个小方格空地种植草坪的概率是多少(用树状图或列表法求解)?22.(5分) 如图,在正方形网格中,△OBC 的顶点分别为O (0,0), B (3,-1)、C (2,1). 以点O (0,0)为位似中心,按比例尺2:1在y 轴的左侧将△OBC 放大得△OB C '' . (1) 画出△OB C ''的图形,并写出点B ′、C ′的坐标:B '( , ),C '( , ). (2)若点M (x ,y )为线段BC 上任一点,写出变化后点M 的对应点M ′的坐标( , )23.(6分)如图,点B 、E 分别在AC 、DF 上,BD 、CE 与AF 相交于点H ,G ,∠1=∠2,∠C =∠D . 求证:∠A =∠F .24.(6分)如图,反比例函数1ky x=的图象与一次函数2y mx b =+的图象交于A (1,3),B (n ,-1)两点. (1)求反比例函数与一次函数的关系式. (2)根据图象回答:①当x <-3时,写出y 1的取值范围; ②当y 1≥y 2时,写出x 的取值范围.第23题图21H GF E D C BA25.(7分)某厂为新型号电视机上市举办促销活动,顾客每购买一台该型号电视机,可获得一次抽奖机会.该厂家请来了一位数学老师,他设计的抽奖方案是:在一个不透明的盒子中,放入2个黄球和3个白球,这些球除颜色外都相同,搅匀后从中任意摸出2个球,摸到的2个球都是黄球的顾客获得大奖,其余的顾客获得小奖.求顾客获得小奖和大奖的概率分别是多少?26.(8分)某商场进货员预测某商品能畅销市场,就用8万元购进该商品,上市后果然供不应求.商场又用17.6万元购进了第二批这种商品,所购数量是第一批购进量的2倍,但进货的单价贵了4元,商场销售该商品时每件定价都是58元,最后剩下150件按八折销售,很快售完.在这笔生意中,商场共盈利多少元?27. (7分)某课题研究小组就图形面积问题进行专题研究,他们发现如下结论:(1)有一条边对应相等的两个三角形的面积之比等于这条边上的对应高之比;(2)有一个角对应相等的两个三角形的面积之比等于夹这个角的两边乘积之比;…现请你根据对下面问题进行探究,探究过程可直接应用上述结论.(S表示面积)问题1:如图1,现有一块三角形纸板ABC,P1,P2三等分边AB,R1,R2三等分AC.经探究S四边形P1R1R2P2=13S△ABC,请说明结论的正确性.问题2:若有另一块三角形纸板,可将其与问题1中的△ABC拼合成四边形ABCD,如图2,Q1,Q2三等分边DC.请探究S四边形P1Q1Q2P2与S四边形ABCD之间的数量关系.28.(10分)如图(1),△ABC与△EFD为等腰直角三角形,AC与DE重合,AB=EF=9,∠BAC=∠DEF =90°,固定△ABC,将△EFD绕点A顺时针旋转,当边DF与AB重合时,旋转中止.不考虑旋转开始和结束时重合的情况,设DE、DF(或它们的延长线)分别交BC(或它的延长线)于G、H两点,如图(2).(1)问:始终与△AGC相似的三角形有及;(2)设CG=x,BH=y,求y关于x的函数关系式(只要求根据2的情况说明理由);(3)问:当x为何值时,△AGH是等腰三角形?2012-2013学年度第二学期期末学情分析样题(一)八年级数学评分标准二、填空题(每小题2分,共20分)9.21310.320 11.1 12. 1、2 13.对角相等的四边形是平行四边形 14.2个 15.1 :4 16 .答案不唯一:例如:∠B =∠D ,或∠ACB =∠AED 或AEACAD AB = 17 . > 18. (4,0), (3,2) 三、解答题 19.(5分)解:去分母,得23-x <12+x ………………………………………………………………2分移项,得x x 23-<21+…………………………………………………………………3分解得x <3……………………………………………………………………………………4分不等式解集在数轴上表示正确………………………………………………………… …5分 20.(5分 ) 解:原式=⎪⎭⎫⎝⎛+-++2122x x x ÷()()211+-+x x x …………………………………………2分 =21++x x ·()()112-++x x x =11-x …………………………………………………4分 当2x =时,原式1=.…………………………………………………………………5分21. (5分 )解:(1)P (小鸟落在草坪上)=96=32.…………………………………………………2分 (2)用树状图或利用表格列出所有可能的结果:所以编号为1、2的2个小方格空地种植草坪的概率为62=31.………………………………………5分 22. (5分) ⑴ 画图正确…………2分B’( -6 , 2 ),C’( -4 , -2 )…………4分⑵ M ′的坐标( -2x , -2y ) …………5分 23.(6分)证明:因为∠1=∠2,又∠2=∠AGC所以∠1=∠AGC …………………………………………………………………………………1分 所以DB ∥EC ………………………………………………………………………………………2分 所以∠C =∠ABD ……………………………………………………………………………………3分 又因为∠C =∠D , 所以∠ABD =∠D ……………………………………………………………………………………4分 所以AC ∥DF …………………………………………………………………………………………5分 所以∠A =∠F …………………………………………………………………………………………6分 (其余证法参照上面给分) 24. (本题满分共6分) 解:⑴xy 31=…………1分,22+=x y …………3分 ⑵ ①1-<1y <0…………4分 ②3-≤x 或0<1≤x …………6分25.(本题满分共7分)解:该数学老师设计的抽奖方案符合厂家的设奖要求…………………………………………1分 分别用黄1、黄2、白1、白2、白3表示这5个球方法一:列表…………………………………………………………………………………………4分由列表可知共有20种等可能性结果…………………………………………………………………5分, 满足摸到的2个球都是黄球有2种,记为事件A ,其余的事件记为B ∴P (A )=101202=,P (B )1092018==………………………………………………………6分 即顾客获得大奖的概率为10%,获得小奖的概率为90%…………………………………7分方法二:树状图正确…………………………………………………………………4分(白3,白2)(白3,白1)(白3,黄2)(白3,黄1)(白2,白3)(白2,白1)(白2,黄2)(白2,黄1)(白1,白3)(白1,白2)(白3,黄1)(黄2,白3)(黄2,白2)(黄2,白1)(白2,黄1)(白1,黄2)(白1,黄1)(白1,黄1)(黄2,黄1)(黄1,黄2)白3白2白1黄2黄1白3白2白1黄2黄1结果第2球第1球第2球白2白1黄2黄1白1黄2黄1白3黄1黄2白2白3白3白1白2黄1第1球开始白3白2白1黄2白3白2白1黄2黄1由树状图可知可知共有20种等可能性结果………………………………………………………………5分 满足摸到的2个球都是黄球有2种,记为事件A ,其余的事件记为B ∴P (A )=101202=,P (B )1092018==………………………………………………………6分 即顾客获得大奖的概率为10%,获得小奖的概率为90%…………………………………7分26.(8分)解:设第一批购进x 件商品,第二批购进2x 件商品根据题意,得方程4800002176000=-xx …………………………………………3分 解这个方程得2000=x ………………………………………………………………5分经检验,2000=x 是所列方程的解且符合题意………………………………………6分则商场共盈利 176000800008.015058)1506000(58--⨯⨯+-⨯90260=(元)…………………………………………………………7分 答:商场共盈利90260元……………………………………………………8分27.(7分)28(本题满分共10分)【解】(1)△HGA及△HAB;…………………………………………………………2分(2)由(1)可知△AGC∽△HAB∴CG ACAB BH=,即99xy=,所以,81yx =…………………………………………………………4分(3)当CG<12BC时,∠GAC=∠H<∠HAC,∴AC<CH∵AG<AC,∴AG<GH又AH>AG,AH>GH此时,△AGH不可能是等腰三角形;…………………………………………………………6分当CG=12BC时,G为BC的中点,H与C重合,△AGH是等腰三角形;此时,GC x…………………………………………………………8分当CG>12BC时,由(1)可知△AGC∽△HGA所以,若△AGH必是等腰三角形,只可能存在AG=AH若AG=AH,则AC=CG,此时x=9综上,当x=9△AGH是等腰三角形.…………………………………………………10分(答本试卷时,正确的解法请参照评分细则给分)。
武汉市2012-2013学年度下学期期末模拟
八年级数学试题
考试时间:120分钟 试卷满分:120分 编辑人:丁济亮
一、选择题
1.0.000000032用科学计数法表示正确的是( )
A 、3.2×107
B 、3.2×10-7
C 、3.2×108
D 、3.2×10-8
2.计算a -2正确的结果是( ) A 、
2
21a
B 、
2
1a
C 、
2
41a
D 、
2
4a
3、若一个长方形的面积我6cm 2
,则它的长y (cm )与宽x (cm )之间的函数关系用表示大致为( )
A 、y=6xy
B 、y=6x
C 、y=6xx
D 、yy=6x 4.若点(-2,y 1)、(-1,y 2)、(1,y 1)都在反比例函数y=
x
k (k<0)的图象上,则下列结论正确的是
( )
A 、y 1>y 2>y 3
B 、y 2>y 1>y 3
C 、y 3>y 1>y 2
D 、y 3>y 2>y 1
5、如图,一棵大树离地面9米高的B 处断裂,树顶A 落在离树底部C 的12米处,则大树断裂之前的高度为( )
A 、9米
B 、15米
C 、21米
D 、24米
6、平行四边形周长30cm ,一组邻边之差为1cm ,则相邻两边长分别为( ) A 、8 cm ,7 cm B 、9 cm ,8 cm C 、10 cm ,9 cm D 、11 cm,10 cm
7、分式方程
x
m x x -=
+-+212
3无解,则m=( )
A 、-3
B 、-5
C 、5
D 、8
8、如图,在梯形ABCD 中,AD ∥BC ,对角线AC ⊥BD ,且AC=4,BD=3,则AD+BC 的值是( )
A 、7
B 、5
C 、6
D 、3
9、甲、乙两班举行电脑汉字输入速度比赛,参加学生每分钟输入汉字的个数.经统计和计算后结果如下表:
某同学根据上表得出如下结论:①甲、乙两班学生的平均水平相同;②乙班优秀的人数比甲班优秀的人数多(每分钟输入汉字达≥150个为优秀);③甲班成绩的波动比乙班参加的波动大.其中正确结论正确的是( )
A 、①②③
B 、①②
C 、①③
D 、②③ 10、图1是一个边长为1的等边三角形和一个菱形的组合图形,菱形边长为等边三角形边长的一半,以此为基本单位,可以拼成一个形状相同但尺寸更大的图形(如图2),依此规律继续拼下去(如图3),…,则第n 个图形的周长是( )
A 、32
B 、1024
C 、64
D 、128 11、如图,在直角梯形ABCD 中,AB=BC=12,点
E 为BC 边上一点,且∠EAD=45度,ED=10,则△AED 的面积为( )
A 、50
B 、45°
C 、60
D 、72
12.如图,正方形ABCD 中,△BCE 为等边三角形,AE 交CD 于F ,BD 分别交AF 、CE 于M 、N 两点,下列结论,①∠AMB=60°;②AM+MN=BM ;③CF
AB S S CEF
ABE =
△△;其中正确的结
论是( )
A .①②
B .①③
C .②③
D .①②③ 二、填空题 13.式子
2
3-+x x 有意义。
则x 的取值范围是 ;
14、某班第一小组六名男生体育中考“1分钟跳绳”项目的成绩如下:143,140,140,139,137,这组数据的极差是 ,众数是 ,中位数是 。
15.如图,将一根长为9,宽为3的长方形纸片ABCD 沿EF 折叠,使点C 与点A 重合,则EF 的长度为 ;
16.如图,等腰梯形ABCD 中,∥CD ,B 落在双曲线y=
x
k (x>0)上,C 、D 在直线y=-x+2上,
线段AD 被y 轴垂直平分,直线CD 交坐标轴于E 、F ,若,EOF ABCD S S △梯形8=,则
k= 。
三、解答题: 17、解分式方程:
121-=-
-
-x x x
x
18、武汉铁路局计划新修铁路1200km ,
①试写出铺轨天数y (天)与每天铺轨量x (km/天)之间的函数关系;
②若计划20天铺完,因天气原因,前5天每天铺轨30km ,要在计划时间内铺完,剩下的时间每天至少铺轨多少千米?
19、如图、平行四边形ABCD 的对角线AC 、BD 相交于点O 、EF 过点O 于AB 、CD 分别相交于点E 、F ,求证:OE=OF
20.、某班为了从甲、乙两同学中选出班长,进行了一次演讲答辩和民主测评A 、B 、C 、D 五位老师作为评委,对演讲答辩情况进行评价,结果如下表,另全班50位同学则参与民主测评进行投票,结果如下图:
规定:演讲得分按“去掉一个最高分和一个最低分再算平均分”的方法确定;民主测评得分=“好”票数×2分+“较好”票数×1分+“一般”票数×0分.
(1)求甲、乙两位选手各自演讲答辩的平均分分别为 ; 。
(2)民主测评统计图中a 的值= 、b 的值= ,甲、乙两位选手各自民众测评的得分分别为 ; 。
(3)若按演讲答辩得分和民主测评6:4的权重比计算两位选手的综合得分,则应选取哪位选手当班长? 21、(本题7分)如图,已知点A 的坐标为(1,4),点B 的坐标为(4,2),将线段AB 先向左平移4个单位得到线段CD ,再向下平移6个单位得到线段EF 。
(1)请在坐标系中画出线段CD ,线段EF ,并连接AE,BF ; (2)请分别写出点C 、F 的坐标:C ,F .
(3)试问四边形ABFE 的形状为 ,并求出其面积为 。
122、武汉国际动漫节开幕前,某动漫公司预测某动漫玩具能够畅销,就用32000元购进了一批这种玩具,上市后很快脱销,动漫公司又用68000元购进第二批这种玩具,所购数量是第一批购进数量的2倍,但每套进价多了10元. (1)该动漫公司两次共购进这种玩具多少套?
(2)如果这两批玩具每套的售价相同,且全部售完后利润率不低于20%,那么每套玩具至
少是多少元?
23、如图,点E 、F 分别是四边形ABCD 的一组对边AD 、BC 的中点,连接AC 、BD ,点G 、H 分别是BD 、AC 的中点。
(1) 若AB=CD ,求证:四边形EGFH 为菱形;
(2) 当四边形ABCD 满足 条件时,四边形EGFH 为矩形; (3) 当四边形ABCD 满足 条件时,四边形EGFH 为正方形。
24、已知,点E 是正方形ABCD 的边AB 上一点(不与点A 、B 重合),连接DE 、FG 垂直平分DE,交AD 于点F ,交BC 于点G . (1)如图1,求证,DE=GF ;
(2)如图2,点M 为FG 上一点,且EH=MH ,连接BM ,求证,FG=2BM,
(3)如图3,若E 点为AB 的中点,AB=42、AF=1,则BG= 。
(直接填出结果,不要求证明)
25、平面直角坐标系中,已知点A (0,4),P 为函数y=
x
8(x>0)图象上一点PC ⊥AP 于P ,
且PC=PA,D 为BC 的中点,连接PD 。
(1)如图1,若PA ⊥AO 于A ,请直接写出,点P 坐标 ,∠OBC= 度,线段PD 的长为 。
(2)如图2,若PA 不垂直OA ,连接OP ,求∠OPD 的度数。
(3)如图1,若PD ⊥AO 于A ①函数y=
x
8(x>0)图象上一点Q ,使得以B 、C 、P 、Q 为顶点的四边形是梯形,请写出
点Q 的坐标为: 。
②函数y=
x
8(x>0)图象上一点M ,x 轴正半轴上点N ,使得四边形BCMN 是等腰梯形,
求点M,N 的坐标。